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This paper presents the development, validation, and deployment of the visual target
tracking capability onto the Mars Exploration Rover (MER) mission. Visual target track-
ing enables targeted driving, in which the rover approaches a designated target in a closed
visual feedback loop, increasing the target position accuracy by an order of magnitude and
resulting in fewer ground-in-the-loop cycles. As a result of an extensive validation, we de-
veloped a reliable normalized cross-correlation visual tracker. To enable tracking with the
limited computational resources of a planetary rover, the tracker uses the vehicle motion
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estimation to scale and roll the template image, compensating for large image changes be-
tween rover steps. The validation showed that a designated target can be reliably tracked
within several pixels or a few centimeters of accuracy over a 10-m traverse using a rover
step size of 10% of the target distance in any direction. It also showed that the target is
not required to have conspicuous features and can be selected anywhere on natural rock
surfaces excluding rock boundary and shadowed regions. The tracker was successfully
executed on the Opportunity rover near Victoria Crater on four distinct runs, including
a single-sol instrument placement. We present the flight experiment data of the tracking
performance and execution time. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

The Mars Exploration Rovers (MERs), Spirit and
Opportunity, have been exploring the Martian sur-
face for more than 4 years since landing in January
2004, well exceeding the 90-day primary mission life-
time. To date, they have logged a combined 17 km on
different terrain types with about 25% of this traver-
sal distance using autonomous vision-based navi-
gation. The software release that was onboard at
the time of landing provided robotic capabilities for
autonomous navigation with local obstacle avoid-
ance using stereo-based image processing (Maimone,
Leger, & Biesiadecki, 2007). It also provided a capa-
bility for rover pose (position and orientation) esti-
mation using visual odometry (Cheng, Maimone, &
Matthies, 2005).

In parallel with the robotic software development
for the MERs, NASA centers and universities were
developing a number of robotic autonomy technolo-
gies for potential use in future missions under the
competed NASA’s Mars Technology Program. The
technology development cycle can take from 1 to
3 years, after which the technology gets tested onto a
research rover at the Jet Propulsion Laboratory (JPL)
or at NASA Ames Research Center. The Mars Tech-
nology Program provides a unified software infra-
structure called CLARAty (Coupled Layer Architec-
ture for Robotic Autonomy) (Nesnas et al., 2003) for
the integration, maturation, and deployment of these
technologies onto the research rovers.

One of the technologies developed under this
program was visual target tracking (VTT). This tech-
nology is a key component of targeted driving and
single-sol instrument placement, which enable sci-
entists to direct the rover to autonomously go to a
remote target 10–20 m away on Mars and collect
in situ scientific measurements. The benefit of this
autonomous capability is a reduction in operational
time from, at least, three sols to a single sol, thus in-
creasing the overall science return for the mission.

Following its successful validation, VTT was selected
as one of the four technologies (Hayati et al., 2007)
to be demonstrated on Mars. Since then, we inte-
grated this capability into the MER flight software,
and four distinct runs were successfully executed on
the Martian surface as part of the operational check-
outs process. A sequential combined execution of
the targeted driving capability with the vision-based
arm collision detection and auto placement capability
(Hayati et al., 2007; Maimone et al., 2007) on the Op-
portunity rover demonstrated the first single-sol in-
strument placement on a planetary surface from 6 m
away.

This paper focuses on the VTT for targeted driv-
ing. After the Background section, we present the
overall concept of targeted driving operations in
Section 3 and provide details of the VTT component
in Section 4. In Section 5, we present the validation re-
sults. In Section 6, we describe the infusion of this ca-
pability into the MER flight software. Thereafter, we
present the successful results of running this capabil-
ity on the Opportunity rover on Mars in Section 7 and
close with a conclusion in Section 8.

2. BACKGROUND

Visually localizing and tracking a target using a tem-
plate designated in a previous image is a well-studied
problem in computer vision, and several survey pa-
pers on image registration (Brown, 1992; Zitova &
Flusser, 2003) and object tracking (Yilmaz, Javed,
& Shah, 2006) are available. One recent approach
is the SIFT (scale-invariant feature transform) algo-
rithm that detects and uses scale-invariant features to
match one frame to the next (Lowe, 2004). Such an
approach can be computationally expensive for ap-
plications with limited computing power. In contrast
to feature-based image matching, a number of area-
based matching algorithms have been well studied.
There are two search techniques for area matching:
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brute-force and iterative search. The iterative method
uses successive approximations based on image gra-
dients to track a distinct target (Lucas & Kanade,
1981; Shi & Tomasi, 1994) but allows only very
small target image displacement between frames. The
use of multiresolution image pyramids (Anandan,
1989; Bergen, Anandan, Hanna, & Hingorani, 1992;
Bouguet, 2000) allows relatively larger image dis-
placements. When the translational displacement of
the target image is larger than tens of pixels, the
brute-force search by image correlation tends to be
more reliable as long as the target image appear-
ance does not change much in terms of scale and
rotation. Image similarity measures used for area
matching include sum of absolute differences (SAD)
(Barnea & Silverman, 1972), sum of squared differ-
ences (SSD), and normalized cross-correlation (NCC)
(Pratt, 1974; Rosenfeld & Kak, 1982). Normaliza-
tion in NCC makes matching less sensitive to image
brightness and contrast changes. Computation be-
comes expensive with a large search area. Coarse–fine
template matching (Rosenfeld & Vanderbrug, 1977)
reduces computation time significantly, by starting
with a low-resolution template matching, followed
by a full-resolution template matching.

Coupling the visual feedback provided by tar-
get tracking with the control of a robot also results
in the well-studied problem of visual servo con-
trol (Ellekilde, Favrholdt, Paulin, & Petersen, 2007;
Hutchinson, Hager, & Corke, 1996). Most terres-
trial applications can run at high frame rates and
can consequently assume that the target has only
a small change in appearance from one frame to
another. Unfortunately, for space applications, in
which radiation-hardened processors lack the com-
putational bandwidth of their terrestrial counter-
parts, this assumption does not hold and a high-
frame-rate tracker is not feasible. For example, on
the MERs’ 20-MHz CPU, image capture and trans-
fer takes tens of seconds for a pair of 12-bit full-
resolution (1,024 × 1,024 pixels) stereo images (or sev-
eral seconds for 8-bit quarter-resolution of 256 × 256
pixels). Because of these limitations, we have to
drive the rover in small steps and perform VTT
only at these discrete stops. This implies that the vi-
sual tracker must reliably handle large changes in
image appearance between frames. Unfortunately,
NCC itself can handle only slight changes in tar-
get image scale and rotation. Although there are
generalized NCC with geometric transformation

(Zitova & Flusser, 2003), the computational load in-
creases very fast with the number of parameters
while the false matching probability increases as
well. Instead of determining the geometric trans-
formation purely from images, which is difficult
and time-consuming, we utilize the available rover
pose estimation to scale and roll the template im-
age prior to NCC, which enabled reliable tracking
for space applications with a limited computational
resource.

Some of the very first versions of VTT on plan-
etary research rovers were demonstrated on the
Marsokhod rover at NASA Ames Research Center
(Wettergreen, Thomas, & Bualat, 1997) and on the
Rocky 7 rover at the JPL (Nesnas, Maimone, & Das,
1999). The Marsokhod tracker used the sign of the
difference of Gaussian (SDOG) to match the target
templates to new images. The Rocky 7 tracker used
three-dimensional (3D) information from stereo im-
ages combined with intensity information to track
the target, which was used for both sample acquisi-
tion and instrument placement. A follow-on joint ef-
fort by these two teams led to the first visual target
tracker (Nesnas et al., 2004) that was developed and
deployed on the Rocky 8 rover using the CLARAty
framework (Nesnas et al., 2006; Volpe et al., 2000).
Another joint effort under the ASTEP (Astrobiology
Science and Technology for Exploring Planets) pro-
gram also led to the development of a single- and
multiple-target instrument placement on the K9 rover
at Ames Research Center (Pederson, Bualat, Smith, &
Washington, 2003).

The resultant tracker was a two-stage visual
tracker consisting of a first-stage normalized cross-
correlator (NCC) and a second-stage multiresolution
affine tracker for fine matching (Bajracharya, Diaz-
Calderon, Robinson, & Powell, 2005; Nesnas et al.,
2004). Subsequent validation experiments, however,
indicated that pure NCC for the first stage was not
sufficient to cope with the large changes in image ap-
pearance. Therefore, we added a preprocessing step
to the NCC to compensate for image scale and roll
using the rover’s pose estimator and removed the
second stage to improve the overall reliability of the
tracker (Kim, Ansar, & Madison, 2006). The final
tracker used template image scale and roll in the pre-
processing phase feeding into the normalized cross-
correlator stage. This visual target tracker was able to
reliably track any target on natural rock surfaces with
little contrast.

Journal of Field Robotics DOI 10.1002/rob



246 • Journal of Field Robotics—2009

Figure 1. Functional diagram of the overall targeted driving capability. Navcams are mounted on the mast, and hazcams
are mounted on the rover body.

3. TARGETED DRIVING SYSTEM

Targeted driving enables operators to autonomously
drive planetary rovers to visually designated targets
that are up to 10–20 m away. In a typical opera-
tional scenario, scientists and rover planners first se-
lect a target from the downlinked navigation camera
(navcam) images of the previous day and then up-
link a command sequence that specifies the desig-
nated target position, the rover’s goal distance (and
optional position offset) from the target, and subse-
quent operations for targeted driving. Then the rover
autonomously drives to the goal position, avoiding
obstacles while continually tracking the target using
the rover’s articulated stereo camera pair, and reaches
the goal position within a few centimeters of accu-
racy. The initial target position can be specified in one
of the three ways: (1) two-dimensional (2D) image co-
ordinates in the left navcam image together with the
mast’s azimuth/elevation angles, (2) 3D coordinates
in the local rover frame, or (3) 3D coordinates in the
global site frame.

As shown in a functional diagram of the targeted
driving capability (Figure 1), the visual tracker closes
the feedback loop through navigator path planning,
locomotor driving, rover pose estimator, and mast-
mounted camera pointing and stereo imaging. The
navigator uses a goodness map generated from the

range data of the body-mounted stereo hazard avoid-
ance cameras (hazcams). Both the Morphin naviga-
tor (Urmson, Simmons, & Nesnas, 2003) and the
GESTALT navigator (Maimone et al., 2007) were used
during the validation of this capability, with the latter
used when operating on Mars. For pose estimation,
we typically use wheel odometry integrated with in-
ertial sensing (Ali et al., 2005) for flat hard-packed
terrains. For slopes or high-slip terrains, we addition-
ally use visual odometry (Cheng et al., 2005) com-
bined with wheel odometry and inertial sensing for
improved position estimation accuracy. The pose es-
timate is then fed into the algorithm to point the mast
camera to the target (Kim, Ansar, & Steele, 2005).

4. VISUAL TARGET TRACKER

4.1. Functional Description

Figure 2 shows a functional diagram of the visual
tracker. After the target is selected in the image, we
initialize a fixed-size template centered at the target
point to represent the target. Then the tracker per-
forms the following actions at each tracking update:

1. After the rover stops, estimate the target po-
sition relative to the new rover pose using the
target position updated at the previous rover
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Figure 2. Functional diagram of the visual target tracker.

stop and the change in rover pose reported
by the pose estimator(s).

2. Compute the azimuth and elevation angles
of the camera mast so that the left navcam
points to the estimated target at the center of
the image. Point the mast and capture nav-
cam stereo images.

3. Use the estimated target position and the left
navcam camera model to compute the scale
(magnification/shrinking) factor and roll an-
gle of the target template image to compen-
sate for the image appearance change due to
the rover roll motion. Scale and roll the target
template image accordingly.

4. Apply NCC to the left navcam image within
a search window to find the new target im-
age point that matches best to the scaled and
rolled template image.

5. Update (replace) the target template image
with the window around the newly found
target point in the left navcam image.

6. Perform point stereo to find the correspond-
ing target image point in the right navcam
image and compute the newly updated tar-
get 3D position by triangulation.

Figure 3 shows an example of VTT results,
demonstrating good tracking despite drastic change
in target appearance.

4.2. Theoretical Calculation of Target
Approach Accuracy

To meet the instrument placement accuracy require-
ment of less than 3 cm, we need to visually track
the designated target during the traverse. To illustrate
this, we compute the target positioning accuracy with
and without a visual target tracker for an 8-m rover
traverse from an initial position 10 m away from the
target to the final goal position 2 m away. When a mis-
sion planner selects a target on a downlinked image,
there is an inherent target designation error because
the target position measured by the stereo camera
views is limited by the stereo down-range error �R,
which is proportional to the square of the target dis-
tance from the rover:

�R = R2

fpB
�d, (1)

where B is the stereo baseline, R is the range, �d is
stereo disparity error, and fp is the camera’s equiv-
alent focal length in pixels (Kim, Ansar, Steele, &
Steinke, 2005). The stereo disparity error �d is as-
sumed to be 1 pixel for the 3-σ stereo range error. The
camera focal length f can be converted to pixels by

fp = f/pixel size. (2)

Here, we will consider two different mast-
mounted cameras equipped with a 1/3-in. (8.5 cm)
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Figure 3. Dramatic change in target appearance. A full frame, full resolution (1,024 × 1,024 pixels) with a target selected at
the center of the large rock in the MER indoor test facility (left). The 161 × 161 pixel NCC search window at the start of the
traverse (middle). The search window with the target point in the center at 1.5 m away (right). The two target images bear
little resemblance after 4× enlargement.

charge-coupled device (CCD) image sensor with
a 1,024 × 768 pixel resolution: (1) pancam with
B = 300 mm and f = 16 mm with a 17 × 13 deg
field of view and (2) navcam with B = 200 mm and
f = 6 mm with a 49 × 37 deg field of view. Because
the effective image size of the 1/3-in. CCD image sen-
sor is approximately 4.8 × 3.6 mm, each CCD pixel
is a square with the pixel size of 4.8/1,024 mm =
3.6/768 mm = 4.69 μm (manufacturer’s specification
of the actual pixel size was 4.65 μm). From Eqs. (1)
and (2), the target designation errors at a 10-m
distance, which is the stereo range error at 10 m, are
computed, and they listed in the second column of
Table I.

Without visual target tracker, the commanded
goal position defined relative to the designated tar-
get position is unchanged throughout the rover tra-
verse. Thus, at the end of the 8-m traverse, the target
approach error without visual tracker is roughly the
root sum square (RSS) of the target designation error
and the rover navigation estimation error over an 8-m

traverse:

�Rno tracking,10m =
√

�R2
stereo,10m + �R2

nav,8m. (3)

If we assume that the rover navigation error based
on the wheel and visual odometers is roughly 2% of
the rover travel distance, then �Rnav,8m = 16 cm. The
computational results of Eq. (3) are listed in the third
column of Table I.

When a visual target tracker is employed, the tar-
get position and its related commanded goal posi-
tion are updated more accurately as the rover ap-
proaches the target. If the target is perfectly tracked,
the target position error will be reduced to the stereo
range error at a 2-m distance with �d = 1 pixel. How-
ever, because a 1-pixel (±0.5-pixel) image expands
to a 5 × 5-pixel image as the rover approaches the
target from 10 m away to 2 m, the visual tracker
cannot track more accurately than ±2.5 pixels. This
can be conveniently considered as a target drift of

Table I. Target designation error and target approach errors without and with visual tracking. Visual tracker compensates
for the initial target designation error by continually updating the target position during the course of target approach.

Target designation error (3σ ) Target approach error (3σ ) at Target approach error (3σ ) at
Camera specifications due to stereo range error at 2 m using visual odometry 2 m with visual tracker with
(1/3-in. CCD sensor) 10-m distance (cm) without tracker (cm) N -pixel drift at 2 m (cm)

Pancam, f = 16 mm, 9.7 18.7
√

(0.4)2 + (0.06N )2

B = 30 cm
Navcam, f = 6 mm, 38.8 42.0

√
(1.6)2 + (0.16N )2

B = 20 cm
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�xd = ±2.5 pixels, where the cross-range error (Kim,
Ansar, Steele, & Steinke, 2005) is given by

�Rdrift = R

fp

�xd. (4)

From Eq. (4), a 1-pixel drift at a 2-m target distance re-
sults in 0.6-mm lateral error for pancam and 1.6-mm
lateral error for navcam. At the end of the 8-m tra-
verse, the total approach error with visual tracking is
approximately the RSS of the stereo down-range er-
ror at 2 m and the cross-range error due to drift:

�Rtracking,10m =
√

�R2
stereo,2m + �R2

drift. (5)

The computational results of Eq. (5), with R = 2 m,
�d = 1 pixel, and a drift �xd = N pixels, are shown
in the last column of Table I. Even with an extreme
10-pixel drift, the target approach error with visual
tracker is 0.7 cm for pancam and 2.3 cm with navcam.
It clearly demonstrates that VTT improves the target
approach accuracy by an order of magnitude.

4.3. Image Registration and Tracking Using
Rover Motion Estimation

As shown in Figure 2, we chose NCC with template
scale and roll correction as the final template match-
ing configuration of the visual target tracker. We use
the available rover pose estimation to determine the
scale and roll.

4.3.1. Template Image Scale and Roll Correction

Based on the perspective projection imaging geom-
etry, the target image scale is inversely proportional

to the target distance from the camera. Therefore, the
template scale factor can be computed by the ratio of
the old target distance before the rover’s move Dold
to the new target distance after the move Dnew:

scale factor = Dold

Dnew
= |pold − Cold|

|pnew − Cnew| . (6)

The target distance is the vector norm from the left
navcam lens center C to the target 3D position p,
where C and p are updated from the rover pose es-
timation. When the rover moves closer to the target,
the template image gets enlarged with scale factor
greater than 1. When the rover moves away from the
target, scale factor becomes less than 1.

Figure 4 illustrates the importance of template
image roll compensation. A large roll angle can be ob-
served not only during traverses over rocky terrain
but also when the rover passes by the target on per-
fectly flat terrain. The rover may pass the target to
approach it from a different angle. Figure 4 shows a
30-deg roll between two images on a flat terrain tra-
verse. Without the proper roll compensation, this run
would not have succeeded.

The template image roll compensation rotates the
image only about the camera optical axis perpendicu-
lar to the image plane, changing neither the perspec-
tive viewpoint nor the target image shape. Because
the mechanical pan-tilt mast of the rovers provides
only two degrees of freedom for azimuth and eleva-
tion control, the third degree of freedom of roll con-
trol can be achieved only by software. Given the two
camera models obtained from the rover pose estima-
tion before and after the rover’s move, we employ a
practical approach to determine the roll angle change
between the two images.

Figure 4. A 30-deg roll in image at 6.8 m away (pos1) that at 1.8 m away (pos2).
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We define a hypothetical 3D point p0-adj adjacent
to the target point p0 such that the vector from p0 to
p0,adj is parallel to the horizontal axis of the camera
model before the rover’s move. The projection of the
vector on the template image makes zero roll angle,
aligned with the horizontal axis of the template im-
age. In the CAHVOR camera model (Gennery, 2006)
used on the MER, the horizontal unit axis vector Hx

along the x axis can be derived from H, V, and A vec-
tors, which are not mutually orthogonal:

hs = |A × H| , (7)

hc = A • H, (8)

Hx = H − hcA
hs

. (9)

Then the hypothetical adjacent point is given by

p0,adj = p0 + k Hx, (10)

where k is set to an arbitrary, small length of 5 cm.
Now using the new camera model after the rover’s
move, we can project both points, p0 and p0,adj, on the
new camera image plane. The projected vector from
these two points determines the template roll angle
needed. Because the image y axis is defined down-
ward, a clockwise rotation yields a positive roll angle.

4.3.2. NCC

After the preprocessing step that scales and rolls the
template, we match the template to the target using
NCC given by

N =
∑

(I − Ī )(J − J̄ )√∑
(I − Ī )2

∑
(J − J̄ )2

, (11)

where Ī and J̄ are the pixel intensity averages of the
template image and the matching image window of
the same size. The range of N is −1 ≤ N ≤ 1. The
NCC value is computed for every possible matching
window within the image search area, and the im-
age window location that yields the maximum corre-
lation is selected as the best match. To speed up the
computation, we employed multiresolution coarse-
to-fine template matching. This technique increased
the computation speed by a factor of 10. On the MER
processor, this algorithm takes about 4 s to process for
a 21 × 21 template over a 161 × 161 search image.

4.3.3. Template Update

We typically update the template at every track-
ing update cycle to accommodate noticeable changes
in target appearance (up to 10% scale change and
5.7-deg rotation). Figure 3 illustrates a drastic change
between initial and final target images, strongly sug-
gesting that template updates are necessary. Because
the total number of rover steps and corresponding
template updates is small (<20), continuous updates
did not cause noticeable cumulative drifts. Therefore,
other template update schemes (Matthews, Ishikawa,
& Baker, 2004) were not considered.

4.4. Point Stereo and Target Position Update

After we match the target point in the left navcam,
we find the corresponding point in the right nav-
cam image. Because the full-frame stereo vision is
time-consuming, we use a point stereo that searches
for the corresponding right image point only along
the epipolar line with a few pixels (default 2 pixels)
of vertical offset tolerance (Bajracharya et al., 2005).
Once the 3D target position is computed by point
stereo, the target position is updated. We limited the
search disparity range to one half of the search win-
dow width, which increased the computational speed
by a factor of 10. On the MER processor, this algo-
rithm takes about 1 s to process.

4.5. Subframe Exposure Control

To achieve robustness against changes in lighting
conditions, we use automatic exposure control over
a subframe region rather than over the entire image
area. Controlling the exposure on small subframe re-
gions around the target reduces the impact of a large
global effect due to the change in proportion of the
very bright sky region in the image relative to darker
terrain surface. By doing local autoexposure adjust-
ment over a small subframe region, we maintain a
good contrast within the region surrounding the tar-
get. This feature, which was available as part of the
MER flight software (Litwin & Maki, 2005), was used
in VTT.

4.6. Target Loss Detection
and Fault Protection

Flight software qualification requires a fault protec-
tion mechanism to handle target losses, which can
result from anomalous conditions such as occlusion,
shadow, and indistinct features. We used four main

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. Both target distance and position error toler-
ances are recomputed at each tracking update.

criteria to detect tracking outlier and declare target
loss:

1. NCC match score < 0.7
2. point stereo match score < 0.7
3. target distance correction between frames

> target distance error tolerance (Figure 5)
4. cumulative target position correction

> target position error tolerance (Figure 5)

The first and second criteria avoid potential false
matches by eliminating the cases when the correla-
tion score is too low. The threshold is set to 0.7 empiri-
cally based on experiments. The third criterion checks
the target distance change after each stereo update
primarily along the bore-sight direction of the cam-
era. The fourth criterion checks the cumulative target
position change relative to the initial target position.

When the VTT target is lost, the tracker enters a
“lost” state but continues to update up to N times
(Figure 6), at which the default value is 2. If the
target is recovered during these N frames, the sys-
tem returns to normal state. Otherwise, VTT declares
FAILURE and remains in that state until the target is
cleared.

5. TECHNOLOGY VALIDATION

The thorough validation process not only helped
home in on the most robust tracking algorithm for
the given mission constraints, but it also produced
sufficient experimental results to secure approval for
flight infusion. The technology development and re-
search environment used for the visual tracking de-

Figure 6. Visual tracking state transition diagram for fault
protection.

livery was the CLARAty test bed that allowed testing
this capability on planetary research rovers at JPL’s
outdoor Mars Yard.

Extensive experiments were performed to com-
pare eight different tracker configurations for space
applications (Kim, Steele, Ansar, Ali, & Nesnas, 2005;
Kim, Steele, Ansar, Ator, & Catron, 2006), and the re-
sults showed that the NCC with the template image
scaling using the rover motion estimation performed
best. For brevity, here we present only the experimen-
tal results comparing this best configuration with the
pure NCC. Template image scaling refers to magni-
fying or shrinking the image without changing the
template window size. A 21 × 21 pixel template win-
dow was used because it provided the best result for
natural rock images tested in the Mars Yard.

5.1. Validation Results from Tracking with
Straight Traverses toward Target

In this experiment, we compared the performance of
the two tracker configurations for straight traverses
toward the target. First, we drove the Rocky 8 rover
in the JPL Mars Yard in a straight line toward a tar-
get 10 m away and collected navcam stereo images at
steps of 5% of the remaining distance. Because the tar-
get image size changes inversely with the target dis-
tance, the step size magnifies the target image by a
constant 5% for every step. Therefore, the step size
was gradually reduced from 0.5 m at 10 m to 0.12 m
at 2.26 m for a total of 7.74-m traverse. We ran dif-
ferent tracker configurations for the same data set on
each of the same 20 initial target points. The tracker
tracks only one target per run.
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Figure 7. Tracking results for straight traverse toward target. Initial target selection at 10 m (top two images); final tracked
targets at 2.3 m after 30 steps (bottom four images).

The top left image in Figure 7 shows the ini-
tial image used for target selection with an overlay
of the template windows of the 20 targets selected.
The top right image of Figure 7 shows a zoomed-
in view. Note that targets on the large rock were in-

tentionally selected on two lines with equal spacing.
This aligned pattern of multiple targets helps exam-
ine tracking drifts easily by observing the evenly ar-
ranged smooth curve pattern of final target positions
overlaid. We examined the tracker’s performance by

Journal of Field Robotics DOI 10.1002/rob
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Figure 8. Comparing tracking performance with straight-
forward rover motions. NCC with template image scale (di-
amonds) performed much better than pure NCC (squares).

skipping images in the set to simulate a larger step
size. For an image skip of N , the resulting step size is
1 − 0.95(N+1).

The bottom four images of Figure 7 show the final
tracked target positions. At 2.3 m, target images were
magnified by a factor of 4 relative to the initial targets
10 m away. Further, the viewing angle changed sig-
nificantly: mostly looking forward in the initial im-
age while mostly looking down in the final one. In
the second row of Figure 7, pure NCC tracked 16 tar-
gets of 20 (80% tracking) with a step size = 5% of
target distance and tracked 3 targets (15% tracking)

with a step size = 23% target distance. By contrast, in
the bottom row of Figure 7, NCC with template im-
age magnification (scale) tracked all 20 targets (100%
tracking) with a 5% step size and lost only 1 tar-
get (95% tracking) with a 23% step size. The evenly
arranged smooth curve pattern of final target posi-
tions for the bottom left image of 100% tracking in-
dicates that tracking drifts are not noticeable despite
that the targets are picked arbitrarily on two lines
with equal spacing without considering conspicuous
features. Based on the above results, only NCC with
image scale was used in the subsequent tracking ex-
periments with sideways and turn-in-place rover mo-
tions. A tracking percentage plot of the above exper-
iments is shown in Figure 8, clearly demonstrating
that template image scale is essential to achieve reli-
able tracking performance.

5.2. Tracking with Sideways Rover Motions

The rover motions chosen in this experiment were
sideways crab motions encircling the target point
with 5-deg heading change per step, while keeping
the rover facing the target. These turn-around-the-
target motions have an effect of changing the azimuth
angle of the target relative to the rover. The begin-
ning and end images in these experiments are shown
in Figure 9, where the rover encircled the target by
70 deg in total at a 7-m radius. Experimental results
in Figure 10 indicate that good tracking over 70 deg

Figure 9. Tracking with sideways rover motions of 70 deg in total encircling the target. Beginning (left) and end (right)
images show that only one face of the big rock is seen on both images. Targets were selected on this surface. Note that image
appearance changes significantly. Excluding a badly selected target (top location) on the occluding boundary, the images
illustrate that 2 targets of 11 were lost at 15-deg step size.
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Figure 10. Tracking results with sideways rover motions
as a function of step size and search window size. The
smaller search window size (200 pixels; diamonds) had less
chance to lose tracking than the larger search window (600
pixels; squares).

was possible with a step size of up to 5–10 deg. As
the search window size increases, the tracking per-
centage decreases slightly because the chance of tar-
get loss by picking up false target increases. Among
12 targets, 1 target happened to be selected on the oc-
cluding boundary where its target window (top one
in Figure 9) overlapped with another rock in the back-
ground. Because of large discontinuities at occlud-
ing boundaries, the tracker failed for this target. As
an operating guideline, the target should not have
been selected on occluding boundaries. Excluding the
target on rock boundaries, the tracker successfully
tracked all targets for 5- and 10-deg step sizes.

5.3. Tracking with Turn-in-Place Rover Motions

It is often desirable to change the heading by turn-
in-place motion during visual tracking, for instance,
to face the rover toward the target at the starting posi-
tion or after the rover reaches the goal position. To de-
termine the appropriate step size for the turn-in-place
motion, visual tracking was performed with every
5 deg of turn-in-place motion. Tracking experiments
with different step sizes indicated that tracking was
good over the entire range of 5–45 deg for turn-in-
place motions. Unlike the previous turning-around-
target motion, image appearance did not change even
with a large turn-in-place motion because of exact
compensation by mast camera pointing using pan
control. For this reason, there is no limit in turn-in-
place step size as long as the rover pose estimator is
sufficiently accurate.

Figure 11. System-level testing on Rocky 8 in the JPL Mars
Yard.

5.4. Determining Rover Drive Step Size

On the basis of the above visual tracking valida-
tion experiments with straightforward, sideways,
and turn-in-place rover motions, we determined that
an appropriate rover step size is 10% of the target dis-
tance in all directions. The 10% limit is sufficient to
cover any direction of rover motion because it limits
the maximum target azimuth angle due to the rover
sideways motion to 0.1 radian or 5.7 deg. Thus, a sep-
arate limit on target azimuth angle change is not nec-
essary. The rover step size is 1 m when the rover is
10 m away from the target and 20 cm at 2 m away.

5.5. Visual Tracking with Visual Odometry
on Various Terrains

As a system-level test, visual tracking combined
with visual odometry was performed on four types
of terrains (Figure 11): (1) flat ground, (2) shallow
(6–10 deg) inclines, (3) steep (15–20 deg) inclines, and
(4) oblique path up/down hill. Among the primary
considerations in testing was the feasibility of VTT
in the presence of large vehicle slip. A total of 26
runs were performed in a variety of situations, some
of which pushed the tracking tests beyond normal
operating conditions. The results are summarized in
Table II. There were two failures. One failure hap-
pened during an extreme rover motion case of ex-
cessive target azimuth angle change of more than
10 deg combined with target occlusion. The other fail-
ure happened when there was a dramatic sun light-
ing change due to a patch of opaque clouds passing
across the sun, which caused a large drift in track-
ing target position. This dramatic change is unlikely
on Mars because clouds on Mars are thin and fluffy.

Journal of Field Robotics DOI 10.1002/rob



Kim et al.: Targeted Driving Using Visual Tracking on Mars • 255

Table II. Visual tracking results with visual odometry on various terrains.

Terrain type No. of trials No. of failures Reason for failures

Flat ground 11 1 1 Failure due to excessive azimuth change
Shallow incline 4 0 None
Steep incline 6 0 None (despite 100% slippage sometimes)
Oblique path 5 1 1 Failure due to dramatic lighting change

From the above observations, VTT was 100% success-
ful for all normal operating conditions, demonstrat-
ing its robustness. In many cases, significant slip oc-
curred during the traverse on slopes. For steep hills,
the slip was sometimes as large as 100%, and yet
tracking was 100% successful.

6. INFUSION INTO MER

The MER flight software (Reeves, 2005) consists
of many modules. Many of these modules start
their own independent task(s) and monitor message
queues to communicate with other tasks through
message passing. Some modules, however, simply
provide library functions that are called and man-
aged by other modules. The Autonomous Navigation
(NAV) module (Maimone et al., 2007) is such an ex-
ample. Likewise, the VTT module also contains a col-
lection of visual tracking functions but does not have
its own task context. The Mobility Manager (MOBM)
task (Biesiadecki & Maimone, 2006), while communi-
cating with other tasks via message passing, handles
queued messages including commands to perform

visual tracking and calls appropriate VTT and NAV
module functions when needed. Similar to the NAV
module, the VTT module ported from CLARAty is
mostly written in C++. Global variables and public
functions are defined with a C interface, so that MER
C programs can call VTT public functions.

VTT is fully integrated into the existing MER soft-
ware, so that it can run in any combinations of rover
driving: blind driving (using the wheel odometry
and initial sensing estimator only), Visodom (visual
odometry), and Autonav. Figure 12 illustrates the de-
tails of a single rover step. The upper portion shows
the MOBM/NAV functional flow of the original MER
flight software, and the lower portion shows the in-
sertion of VTT functions. If Visodom is enabled, this
is done first. Then, if Autonav is enabled, the hazard
avoidance map is updated and path selection for au-
tonomous navigation is performed. Finally, the rover
is driven a single step. When VTT is enabled, the
VTT routine executes right after Visodom and right
before Autonav. The VTT routine specifies the cam-
era pointing and performs the VTT update. The Au-
tonav goal position may optionally be assigned to the

Figure 12. Functional flow of VTT integrated into the MER flight software. The upper portion shows the existing functional
flow for one cycle of rover motion with hazard avoidance and visual odometry when enabled. The lower portion shows
the insertion of VTT functions right after Visodom and right before Autonav. VTT module functions (boxes) are additions
to the existing MER software (circles).
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Figure 13. Visual tracking with Autonav rover path with hazard avoidance (left) and MER engineering model driving on
a 25-deg ramp (right).

new VTT target position. The actual image capture is
done by the IMG (image) module. MER provides the
rover pose estimator (Ali et al., 2005) based on wheel
odometry and inertial sensing using LN200 inertial
measurement unit (IMU). MER also provides visual
odometry (Cheng et al., 2005).

A total of 14 regression tests were successfully
performed on the MER engineering model in the sur-
face system test bed shown in Figure 13. This in-
cluded testing visual tracking with blind driving,
with visual odometry, and with autonomous navi-
gation using both body-mounted and mast-mounted
cameras. In tests in which the target rock was small
(less than 10 cm in height), the integrated software
had no difficulty driving toward the target. How-
ever, in tests in which the target was selected on a
large rock, the obstacle avoidance algorithm tended
to avoid the target. Therefore, we had to adjust the
navigation parameters to steer the rover toward the
designated target. Tests were also conducted with
the mast-mounted navcams that combined two im-
age wedges. A single-wedge, 45-deg map was not
wide enough to find a collision avoidance path when
there was an obstacle on the way.

7. DEPLOYMENT ON MARS

Prior to general use by rover planners and scientists,
three operational checkouts of VTT were performed
on the Opportunity rover roaming along the rim of
Victoria Crater on Mars.

7.1. First Operational Checkout

In the first checkout performed on sol 992 (Novem-
ber 8, 2006), VTT was performed only to track the
target without controlling the rover’s movement. A
small, 7-cm-wide rock located about 4 m away from
the rover was chosen as the target [Figure 14(a)].
The rover path [Figure 14(b)] on that day was man-
ually commanded to go around the target in seven
steps over a total azimuth angle change of 53 deg,
while keeping the target distance at about 4 m. The
target azimuth angle changed from −3.4 deg (posi-
tion 1) to 50.1 deg (position 8) relative to the rover.
The rover moved straight 42.5 cm each for the first
two steps (rover positions 2 and 3) and then 55 cm
each for the next three (positions 4, 5, and 6). There-
after, the rover made a 20-deg turn in place (position
7), followed by a final 1-m straight move (position
8). Figure 15 shows samples of navcam subframe im-
ages (161 × 161 pixels) used for VTT. The target win-
dow (21 × 21 pixels) overlays clearly indicate that the
tracking was successful over all eight images despite
dramatic changes in target rock appearance.

Table III shows details on tracking performance.
The template image scales were ranged from 0.97
to 1.04, all of which were well within the nominal
limit of the ±10% change because the rover path was
more or less at the same distance from the target over
all seven steps. Changes in the target image roll an-
gle were also small, ranging from 0.06 to 6.25 deg.
On the other hand, changes in the target image az-
imuth angle relative to the rover were much larger,
up to 15.44 deg (Table 3). Because VTT does not do
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Figure 14. (a) A target was selected at the center of the rock from this full-frame navcam image (45 × 45 deg field of view).
(b) Rover path.

azimuth compensation (difficult due to image ap-
pearance change), the maximum azimuth change is
nominally limited to 0.1 radian (5.7 deg). Despite the
excessively large azimuth angle change (Figure 15),
visual tracking was successful for all eight images.
The NCC match score ranged from 0.79 to 0.94, where
the nominal threshold is 0.7. Not surprisingly, the
lowest NCC score (0.79) occurred at rover position 8
with the largest azimuth angle change. An unantici-

pated benefit of the visual tracking capability, which
was pointed out by a scientist after this successful
run, was the use of the multiple views of a single tar-
get for photometric analysis.

7.2. Second Operational Checkout

In the second checkout of sol 1100 (February 26, 2007),
a 12-cm-wide rock located about 10 m away from the

Figure 15. Subframe images of 161 × 161 pixels (7 × 7 deg field of view), taken during the VTT run, with target window
overlay: (a) dist = 4.00 m, azimuth = −3.4 deg; (b) dist = 3.67 m, azimuth = 17.5 deg; (c) dist = 3.73 m, azimuth = 34.7 deg;
and (d) dist = 3.68 m, azimuth = 50.1 deg.
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Table III. VTT details for operational checkout 1.

Rover position

Parameter 1 2 3 4 5 6 7 8

Magnification – 1.04 1.03 1.03 1.01 1.00 0.97 1.04
Roll change (deg) – 2.46 2.46 2.92 3.27 3.27 0.06 6.25
Azimuth change (deg) – 6.01 6.38 8.53 8.58 8.62 0.00 15.44
NCC score – 0.88 0.88 0.85 0.87 0.87 0.94 0.79

rover was chosen as the target [Figure 16(a)]. The Op-
portunity drove autonomously within 2 m of the tar-
get rock in 15 steps [Figure 16(b)] while performing
visual tracking at each stop and updating the drive
goal. At each stop, the next rover step size was set to
10% of the target distance. The template image mag-
nifications were between 1.09 and 1.13, which were
close to 1.1 as expected for the 10% step size. Fig-
ure 16(b) also shows the updated target positions in
the site (world) frame at all stops. As the rover ap-
proaches the target, the stereo range error becomes
smaller and the visually tracked target position be-
comes more accurate. The total change between the
initial and final target positions was 36 cm, which
was the amount of correction made by visual track-
ing. Pancam images of the target were also taken at
a couple of locations during the drive. Excluding the
pancam image collection and wait durations, this 8-m
run using VTT took 19 min in total. Figure 17 clearly
illustrates that the target rock was tracked very well
over all 18 images despite the target rock image be-

ing magnified by a factor of 5 in total over the course.
The NCC match scores and stereo match scores were
all greater than 0.85, well above the 0.7 threshold, in-
dicating good tracking performance.

In this checkout, VTT used the IMU and wheel
odometer–based MER pose estimator without visual
odometry. If the rover pose estimator and the mast
camera pointing were perfect, the target image point
would appear right at the center of the image at ev-
ery stop. Because there is generally some error, the
target image will appear a little off from the center.
The visual tracking will correct this error by finding
the best match of the previous template target im-
age. In this checkout, the maximum correction made
by visual tracking was only 11 pixels, whereas the
NCC search range was set to ±61 pixels for both rows
and columns. This much smaller amount of correc-
tion is quite expected because this checkout was done
on flat surface with negligible slippage and thus the
IMU and wheel odometer–based estimator was fairly
accurate.

Figure 16. (a) A target was selected from this full-frame navcam image at the center of the rock located at the rim of
Victoria Crater. (b) Actual rover path.
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Figure 17. Subframe images of 161 × 161 pixels, taken during the VTT run, with target window overlay: (a) dist = 9.65 m,
(b) dist = 6.11 m, (c) dist = 3.05 m, and (d) dist = 1.92 m.

7.3. Third Operational Checkout

The third VTT checkout ran successfully on Oppor-
tunity on sol 1194 (June 2, 2007). This checkout in-
volved using VTT with Visodom, followed by using
VTT with Autonav. To get enough distance between
the rover and the target rock called Paloma [Figure
18(a)], the rover first backed up from Paloma using
VTT along the way. After backing up at a 7-m dis-
tance [Figure 18(b)], the rover drove toward the tar-
get for 2.1 m in four steps using VTT with Visodom.
Thereafter, the rover drove 1.4 m further in four more
steps using VTT with Autonav. Figure 19(a) shows an

example of a navcam image used for Visodom. For a
flat terrain with scarce salient features, it is a com-
mon MER operational practice to use wheel tracks of
the rover as Visodom features. Figures 19(b) and 19(c)
show an example of two wedges of navcam images
used for Autonav map building. Because hazcam im-
ages often had not made good stereo range maps
for featureless flat terrain, navcam images were used.
However, because a single navcam’s field-of-view an-
gle (45 deg) was not wide enough, two wedges were
used to build a sufficiently wide terrain map: one for
the left-side and the other for the right-side stereo
range map. When the first terrain map was built, the

Figure 18. (a) A target was selected from this full-frame navcam image at the center of the rock located at the rim of
Victoria Crater. (b) Actual rover path.
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Figure 19. (a) An example of a navcam image used for Visodom. (b) and (c) An example of left-wedge and right-wedge
pair of navcam images used for Autonav.

rover needed to move forward at least 2 m more be-
fore Autonav could be used, because Autonav would
not be able to find a path without a terrain map right
underneath the rover.

The operational sequence and execution times
are summarized in Table IV. VTT was successful for
all motions: turn in place, backing up from the target,
VTT with Visodom, and VTT with Autonav (in this
checkout, there were no obstacles in the way). The
initial 70-deg turn-in-place operation was done in
several incremental motions of a 10-deg turn in place
combined with a 10-cm alternate back-and-forth step.
This is a usual procedure adopted for the Opportu-
nity rover to avoid rover trenching due to its broken
front-right steering wheel motor.

During the backward course, the VTT template
image was shrunken prior to NCC match. Each VTT
update took 0.5–1 min, among which only 5 s is for
computation, 30 s for image capture and transfer of
a stereo pair of 12-bit full-frame images, and the rest
for other unrelated background tasks. Each Visodom
update took 1–2 min, and thus VTT was overall two
to three times faster than Visodom. Computationally,
VTT was 10–20 times faster than Visodom.

7.4. Single-Sol Instrument Placement

The final VTT checkout was combined with the
AutoPlace checkout on Opportunity. The successful
completion of this run on sol 1216 (June 23, 2007)

Table IV. Operational checkout 3 summary.

No. of VTT updates No. of Visodom updates No. of Autonav Total execution
Operational mode (0.5–1 min each) (1.5–2 min each) updates (5 min each) duration (min)

VTT seed at 3 m away from
target

2 2

Turn-in-place CCW by 10-deg
increments

7 10

Move back from 4 to 7 m
away

10 11

VTT with Autonav to build
initial map

1 5

VTT with Visodom over 2.1 m 4 6 15
VTT with Autonav over 1.4 m 4 4 23
Total 27 6 5 66
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Figure 20. (a) Navcam image used for target selection. (b) MI image of hematite-rich “blueberries” and soil acquired after
an autonomous placement on sol 1216 near the rim of Victoria Crater. The patch of terrain viewed in the image is roughly
3 cm.

marks the first single-sol instrument placement on a
planetary surface. In this checkout, a true “go-and-
touch” was performed by a sequential execution of
VTT followed by AutoPlace. A target named Sami
Kai was chosen on a slab of bedrock near Victoria
Crater from the previous sol’s navcam panorama. At
the start of the checkout, Sami Kai was 4.7 m away
from the rover. The rover performed a VTT-guided
drive to within 2 m of the target and then performed
AutoPlace to touch a Moessbauer and acquire a sin-
gle microscopic imager (MI) stack of five images. The
AutoPlace software detected potential terrain colli-
sions with some of the tools for the original target
and picked a target about 8 mm away. The VTT track-
ing, handoff of the target from VTT to AutoPlace, and
AutoPlace were successful. Figure 20(a) is the navcam
image in which the Sami Kai target was picked, and
Figure 20(b) shows one of the MI images of Sami Kai.

8. CONCLUSIONS

We successfully infused the targeted driving capabil-
ity with VTT into the MER flight mission and have
used it on Mars. This capability enabled scientists
to autonomously drive the rovers to a target with
the target positioning accuracy of within a few cen-
timeters. In particular, within the limited computa-
tion resources of the planetary rovers, we developed
a particular class of the visual tracker that works reli-
ably using NCC with template scale and roll prepro-

cessing based on the available rover pose estimation.
Through extensive validation in the JPL Mars Yard
and the MER indoor test facility, the visual tracker
was successfully deployed on Mars. All four op-
erational checkouts including single-sol instrument
placement were successfully executed on the Oppor-
tunity rover near Victoria Crater. An unanticipated
benefit of the visual tracking capability, which was
pointed out by a scientist, was the use of the multi-
ple views of a single target for photometric analysis.
The Opportunity is now out of Victoria Crater, and
scientists are interested in using the targeted driving
capability when an interesting cobble is spotted in the
future. This capability will also be available on the fu-
ture Mars Science Laboratory rover.
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