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Abstract— A nonlinear observer for lateral velocity of an
automotive vehicle is extended for robustness with respect to
unknown road surface conditions. The observer uses a friction
model parametrized with the maximum road-tire friction co-
efficient, and an adaptive parameter update law is designed
for estimation of this coefficient. The adaptive nonlinear ob-
server is proven to be uniformly globally asymptotically stable
under a uniform δ -persistency-of-excitation condition, and a
set of additional technical assumptions, using results related to
Matrosov’s Theorem. The adaptive observer is validated using
experimental data from a car.

I. INTRODUCTION

A recent focus of the car industry has been the devel-

opment of safety systems which actively assist the driver

in order to avoid dangerous situations. As such systems

become more advanced, they depend to an increasing extent

on accurate information about the state of the vehicle and its

surroundings. Much—although not all—of this information

can be obtained by direct measurement, but the appropriate

sensors may be unreliable, inaccurate or prohibitively ex-

pensive. Observers are therefore used to provide estimates

of important states. Some observers use a road-tire friction

model internally, and therefore rely on information about the

road surface conditions, usually represented in the friction

model by a friction parameter. This situation forms the basis

of this paper.

Existing schemes for estimating road surface conditions

vary in their approach. In [1], a least-squares method is

used on measurements of wheel angular velocity to estimate

the slope of the friction force versus tire slip. An observer

for lateral velocity in [2] includes a filtering scheme for

estimating the maximum road-tire friction coefficient, by

primarily using the lateral acceleration measurement dur-

ing times when this provides a good measurement of the

coefficient. A similar approach is taken in [3]. In [4], a

Kalman filter is used to classify road surface conditions, by

inspecting the ratio between slip values of the driven wheels

and the normalized friction force, obtained using wheel

angular velocities and engine torque. In [5], an extended

Kalman filter (EKF) is combined with statistical methods in

order to estimate the maximum road-tire friction coefficient,

using measurements of the yaw and roll rates, wheel angular

velocities, and longitudinal and lateral accelerations, as well

as knowledge of the steering angle and total brake line

pressure. Other examples of EKFs are presented in [6] and
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[7]. In [8], wheel angular velocity, longitudinal tire slip

and wheel torque is used to generate an estimate of the

wheel angular velocity and for adaptation of a friction

parameter. Wheel angular velocity and torque is used in [9]

for estimation of the longitudinal velocity and wheel angular

velocity, and adaptation of a friction parameter. In both [8]

and [9], convergence of the adapted friction parameters under

conditions of nonzero longitudinal tire slip is studied.

In [10], a numerically efficient, nonlinear observer based

on a modular design was presented with stability guarantees.

The contribution of this paper is to present a solution to

a significant weakness of this observer, namely, its as-

sumed knowledge of the road surface conditions for accurate

estimation of the lateral velocity. The solution presented

relies on no additional measurements, such as engine or

braking torque, thereby providing a solution for a sensor

configuration found in conventional cars. Theoretical stability

results are presented, subject to technical assumptions and a

persistency-of-excitation condition.

II. VEHICLE MODEL

A. Rigid-Body Dynamics

The vehicle is modeled as a rigid body and is studied in a

body-fixed coordinate system with the origin located at the

center of gravity, as illustrated in Fig. 1. Considering only

the lateral direction, the equation of motion is

v̇y =
1

m
τy − rvx,

where vx is the longitudinal velocity, vy is the lateral velocity,

r is the yaw rate, τy is the force acting in the lateral direction

and m is the vehicle mass. Using Newton’s Second Law, we

may write (1/m)τy = ay, where ay is the lateral acceleration,

to obtain the following equation (see [11]):

v̇y = ay − rvx. (1)

All forces acting on the vehicle are disregarded, except those

caused by friction between the road surface and the tires

of the vehicle. These forces are denoted by the vectors

Fi = [Fx,i Fy,i]
T, i = 1, . . . ,4, with reference to wheel-fixed

coordinate systems, which are rotated by angles δi with re-

spect to the body-fixed coordinate system. We may therefore

write

τy =
4

∑
i=1

[0 1]R(δi)Fi,

where

R(δi) =

[

cosδi −sinδi

sinδi cosδi

]
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Fig. 1. Schematic overview of vehicle

are rotational matrices from the wheel-fixed coordinate sys-

tems to the body-fixed one.

B. Friction Modeling

The force vectors Fi are modeled using a friction model.

Several semi-empirical models for road-tire friction exist, the

most well-known of which is often referred to as the Magic

Formula (see [12]). In this paper, no particular friction model

will be referred to. Rather, it will be assumed that certain

structural properties hold for the friction model.1

Road-tire friction models are usually based on the normal

force between the tires and the road, and tire slip values,

which are measures of the relative difference between the

vehicle velocity and the circumferential velocity of the tire.

Exact definitions of slip vary, but one definition, which is

the one referred to in this paper, is

λx,i =
ωiRdyn −‖vi‖cosαi

‖vi‖
, λy,i = sinαi, (2)

where λx,i and λy,i are the slips in the longitudinal and lateral

directions of tire number i, respectively; Rdyn is the dynamic

radius of the tire; ωi is the angular velocity of the wheel;

vi is the velocity vector of the vehicle above the tire center;

and αi is the angle between the longitudinal direction of the

tire and vi.

It is common to define the friction coefficient µ = F/Fz,

where F is the magnitude of the road-tire friction force and Fz

is the magnitude of the vertical force. In general, µ is lower

on more slippery surfaces. However, µ is not a constant for

a particular surface, so a more suitable value for describing

1A proprietary friction model is used in the experiments presented in
Section V-B.

road surface conditions is the maximum road-tire friction

coefficient, which is the maximum value of µ for a particular

surface. We will assume that in the friction model, the

difference in road-tire adhesion between particular surfaces is

represented by the maximum road-tire friction coefficient, or

a closely related value, denoted θ . For simplicity, the value

θ will be referred to as the friction parameter.

III. OBSERVER

A. Notation

We will estimate lateral velocity and the friction parameter,

and we define a vector x = [vy θ ]T of these states. For

some variable z, ẑ represents its estimate and z̃ := z− ẑ. In

the friction model, the forces are functions of the vector x

and several time-varying signals, so we write τy = τy(t,x).
As seen above, ay = (1/m)τy(t,x), and we also define ây :=
(1/m)τy(t, x̂) (i.e., the lateral acceleration calculated based

on estimated states), as well as ãy := ay − ây. We denote the

closed ball with center at the origin and radius z by B(z).

B. Non-Adaptive Observer

This paper is based on an observer from [10], which

estimates longitudinal velocity, lateral velocity and yaw rate.

It uses measurements of longitudinal acceleration, lateral

acceleration, yaw rate, wheel angular velocities and steering

wheel angle. The individual wheel angles δi can be calculated

from the steering wheel angle. The measurements go into

the friction model as time-varying signals for calculation of

normal force and tire slip values. The estimate of the lateral

velocity, given by

˙̂vy = ay − rvx −Kvy (ay − ây) , (3)

is particularly sensitive to errors in the friction parameter

because the feedback in this estimate is through the friction

model. By contrast, the yaw rate is measured directly, and the

longitudinal velocity estimation is based on feedback from

the wheel angular velocities. This paper will therefore focus

on the lateral velocity alone, and assume that vx and r are

known.

If the friction parameter is known, then, under a set

of technical assumptions, the origin of the error dynamics

resulting from the observer (3) is exponentially stable within

a region. The goal in this paper is to find a parameter update

law for estimation of the friction parameter which ensures

accurate and globally asymptotically stable estimation of

the lateral velocity when the actual friction parameter is

unknown.

C. Adaptive Observer

In order to state some necessary assumptions, we define a

vector d as containing all time-varying signals upon which

the calculation of friction forces depends, except vy and θ ,

and write Fi = Fi(d,x). It is assumed that d includes the

steering angles δi.

Assumption 1: There exist compact sets Dd ⊂ R
m and

Dx ⊂ R
2 such that (d,x) ∈ Dd ×Dx; Fi(d,x), [∂Fi/∂x](d,x)

and [∂ 2Fi/∂x2](d,x) are continuous on Dd ×R
2; d and vy are



uniformly continuous in t on R; and there exist constants c1,

c2 and c3 such that for all (t,x) ∈ R×R
2,

−c2 ≤
1

m

∂τy(t,x)

∂vy

≤−c1 < 0, (4)

1

m

∣

∣

∣

∣

∂τy(t,x)

∂θ

∣

∣

∣

∣

≤ c3. (5)

Remark 1: Implicit in this assumption are some assump-

tions on the physical state of the vehicle in order to avoid

singularities in the slip equations (2). Assumption 1 and

Assumption 3 below are discussed in detail in Section IV.

Assumption 2: The friction parameter θ is constant, such

that θ̇ = 0.

Assumption 3: The lateral force τy(t,x) can be written as

a truncated Taylor series expansion, as follows:

τy(t,x) = τy(t, x̂)+
∂τy(t, x̂)

∂vy

ṽy +
∂τy(t, x̂)

∂θ
θ̃ . (6)

For ease of notation, we define

ξ̄vy(t, x̂) :=
1

m

∂τy(t, x̂)

∂vy

, ξ̄θ (t, x̂) :=
1

m

∂τy(t, x̂)

∂θ
.

Subtracting τy(t, x̂) from both sides of (6) and dividing by

m, we get the following expression for ãy:

ãy = ξ̄vy(t, x̂)ṽy + ξ̄θ (t, x̂)θ̃ . (7)

Noting that x̂ = x− x̃, we also define ξvy(t, x̃) := ξ̄vy(t, x̂) and

ξθ (t, x̃) := ξ̄θ (t, x̂) by considering x a time-varying signal.

We propose the following observer:

˙̂vy = ay − rvx −Kvy (ay − ây) , (8a)

˙̂θ = −Γξ̄θ (t, x̂)ξ̄−1
vy

(t, x̂)(ay − ây), (8b)

with tuning gains Kvy > 0 and Γ > 0. Note that (8b) is

well-defined, because, according to Assumption 1, ξ̄vy(t, x̂)≤
−c1 < 0. In the following section, the stability properties of

this observer will be investigated.

D. Stability

Subtracting (8a) from (1), we obtain the following error

dynamics:

˙̃vy = Kvy ãy, (9a)

˙̃θ = Γξθ (t, x̃)ξ−1
vy

(t, x̃)ãy. (9b)

Note that Assumptions 1–2 imply that the right-hand side of

(9) is continuous in t and locally Lipschitz continuous in x̃,

uniformly in t.

Lemma 1: If Assumptions 1–3 hold, then the origin of (9)

is uniformly globally stable (UGS).

Proof: Define a Lyapunov function candidate V : R
2 →

R as V (x̃) := 1
2

(

ṽ2
y +KvyΓ−1θ̃ 2

)

. Its time derivative along the

trajectories of (9) is

V̇ (t, x̃) = Kvy ãyṽy +Kvyξθ (t, x̃)ξ−1
vy

(t, x̃)ãyθ̃ .

Using (7) to substitute for ṽy, we get that

V̇ (t, x̃) = Kvy ξ−1
vy

(t, x̃)ã2
y ≤−

Kvy

c2
ã2

y ≤ 0. (10)

Because V is radially unbounded and V̇ is negative semidef-

inite, it follows that the origin of (9) is UGS (see [13, Def.

1]).

The time derivative of the Lyapunov function is not nega-

tive definite, so we cannot directly conclude with asymptotic

stability. If we assume that ãy is uniformly continuous, it

is possible to invoke Barbălat’s Lemma (see [14], [15])

to conclude that limt→∞ ãy = 0. Inspecting (7), one might

intuitively think that if ξ̄vy and ξ̄θ vary independently with

time, this cannot happen unless ṽy and θ̃ also go to zero.

In the following theorem, a formal condition is given for

uniform global asymptotic stability (UGAS) of the origin of

the error dynamics.

Theorem 1: Suppose that for each χ ∈R
2\{0}, there exist

ε > 0 and T > 0 such that ∀t ∈ R,

∫ t+T

t
ξ 2

vy
(τ,χ)dτ

∫ t+T

t
ξ 2

θ (τ,χ)dτ

≥

(

∫ t+T

t
ξvy(τ,χ)ξθ (τ,χ)dτ

)2

+ ε. (11)

If Assumptions 1–3 hold, then the origin of (9) is UGAS.

Proof: For this proof, [13, Cor. 3], which is a refor-

mulation of [16, Th. 6.3], will be utilized. We may write
˙̃x = f (t, x̃) = A(t, x̃)x̃, where

A(t, x̃) :=

[

Kvy ξvy(t, x̃) Kvy ξθ (t, x̃)
Γξθ (t, x̃) Γξ 2

θ (t, x̃)ξ−1
vy

(t, x̃)

]

.

From Lemma 1, the origin of this system is UGS. Both V

and f are bounded for bounded x̃, and hence for each ∆ > 0,

there exists a number ε1 > 0 such that ∀(t, x̃) ∈ R×B(∆),
max{|V (x̃)| ,‖ f (t, x̃)‖} ≤ ε1. Define Y : R

2 × R
2 → R as

Y (z,ψ) := −CψTψ , where C = Kvy c2
1/(K2

vy
c2

1c2 + Γ2c2c2
3).

Then

Y (x̃, f (t, x̃)) = −C
(

K2
vy

+Γ2ξ 2
θ (t, x̃)ξ−2

vy
(t, x̃)

)

ã2
y .

It follows from (10) and the bounds on ξvy(t, x̃) and

ξθ (t, x̃) that V̇ (t, x̃) ≤ Y (x̃, f (t, x̃)). Because Y (z,ψ) is nega-

tive semidefinite, it follows that (z,ψ) ∈ B(∆)×B(ε1) =⇒
Y (z,ψ) ≤ 0. From the definition of Y , it is easy to see that

(z,ψ) ∈ B(∆)×B(ε1), Y (z,ψ) = 0 =⇒ ψ = 0.

Thus, the origin of (9) is UGAS if f is uniformly δ -

persistently exciting (Uδ -PE) with respect to x̃, as defined

in [13]. To show when this is the case, [13, Lemma 1] is

used. Consider the matrix Q(t) =
∫ t+T

t AT(τ,χ)A(τ,χ)dτ .

Writing out the integral yields

Q(t) = K2
vy

∫ t+T

t

[

ξ 2
vy

(τ,χ) ξvy(τ,χ)ξθ (τ,χ)

ξvy(τ,χ)ξθ (τ,χ) ξ 2
θ (τ,χ)

]

dτ

+Γ2
∫ t+T

t

[

ξ 2
θ (τ,χ) ξ 3

θ (τ,χ)ξ−1
vy

(τ,χ)

ξ 3
θ (τ,χ)ξ−1

vy
(τ,χ) ξ 4

θ (τ,χ)ξ−2
vy

(τ,χ)

]

dτ.

Note that both terms are positive semidefinite, and consider

the first term, denoted Q1(t). Its first-order principal minor is

K2
vy

∫ t+T
t ξ 2

vy
(τ,χ)dτ ≥K2

vy
c2

1T > 0. Its second-order principal



minor, or determinant, is

K2
vy

∫ t+T

t
ξ 2

vy
(τ,χ)dτ

∫ t+T

t
ξ 2

θ (τ,χ)dτ

−K2
vy

(

∫ t+T

t
ξvy(τ,χ)ξθ (τ,χ)dτ

)2

. (12)

The condition (11) therefore implies positive definiteness

of Q1(t). It also implies that Q1(t) has a uniformly lower

bounded determinant, which together with the fact that Q1(t)
has uniformly bounded elements means that its minimum

eigenvalue is also uniformly lower bounded by some value

ε2 > 0. We can therefore write Q(t) ≥ Q1(t) ≥ ε2I.

This implies that for each χ 6= 0 there exist ε3 > 0 and

T > 0 such that ∀t ∈R, χTQ(t)χ =
∫ t+T

t ‖ f (τ,χ)‖2 dτ ≥ ε3.

Boundedness of the integrand for each χ in turn implies that

for each χ 6= 0 there exist ε4 > 0 and T > 0 such that ∀t ∈R,
∫ t+T

t ‖ f (τ,χ)‖ dτ ≥ ε4, which means that f is Uδ -PE with

respect to x̃.

Remark 2: According to the Cauchy-Schwartz Inequality,

the first term of (12) is equal to or larger than the second

term, and they are equal only if the signals ξvy(τ,χ) and

ξθ (τ,χ) are linearly dependent (see [17, Th. 1.9]). Hence,

(11) is a requirement of linear independence between ξvy(t, x̃)
and ξθ (t, x̃) for fixed, nonzero x̃.

There is an intuitive interpretation of the condition for

stability stated by Theorem 1. The functions ξvy and ξθ are

nonlinear functions which depend on several time-varying

signals. Because ξvy and ξθ are substantially different from

each other, they will behave differently when excited by these

time-varying signals. Therefore, if there is some variation in

these signals in the interval between t and t +T , ξvy(t,χ) and

ξθ (t,χ) will not be linearly dependent for fixed χ over this

interval. If, on the other hand, all the time-varying signals

are kept constant, the functions ξvy(t,χ) and ξθ (t,χ) will

themselves be constant and, therefore, linearly dependent.

In practical terms, this leads to a requirement of a some-

what varied driving pattern. Rather than driving in a straight

line or a circle at constant speed, UGAS requires a cer-

tain amount of turning, acceleration or braking. Maneuvers

causing large variation in the lateral tire slip values are

particularly useful. It is not required that this happen all

the time, but there must exist a T , arbitrarily large, such

that within any time interval of length T , there is sufficient

variation to excite the system.

If the condition does not hold because the vehicle is driven

along a straight path for an indefinite amount of time, we can

state a separate result which does hold in this case.

Theorem 2: Suppose that Assumptions 1–3 hold and that

for each ε1 > 0 there exists a ε2 > 0 such that |v̂y| ≥ ε1, r = 0,

δ = 0 =⇒ |ây| ≥ ε2. If ∀t ≥ t0, ay = 0, vy = 0, r = 0, δ = 0,

then limt→∞ ṽy = 0.

Proof (Outline): Using the Lyapunov function from

Lemma 1, Barbălat’s Lemma can be used to conclude that

limt→∞ ây = 0, which, by the extra condition in Theorem 2,

implies that limt→∞ v̂y = 0.

Remark 3: The practical meaning of the extra condition

in Theorem 2 is that if the steering wheel angle is zero and

the vehicle is not rotating, any nonzero lateral velocity will

generate a nonzero lateral acceleration. This is reasonable

from a physical point of view, and is likely to hold for most

friction models, at least if the possibility of a friction-less

surface is excluded. The problem of physically unreasonable

friction parameter estimates is addressed in the next section.

E. Robustness Modification

It has been assumed up to this point that Assumption 1

holds for all θ ∈ R, but from physical considerations, θ is

confined to a small region. In particular, we can assume

that on any surface, some friction forces are generated,

and that the friction parameter is upper bounded. Inserting

physically unreasonable values into a friction model may

result in violation of the assumptions, for example by causing

a singularity or switching the sign of (4), and it is therefore

preferable if θ̂ remains within a physically reasonable region.

This type of problem can be handled by using a projection

scheme to prevent the trajectories of the system from leaving

some convex valid region (see [18]). The parameter update

law is therefore altered as described in the next theorem.

Theorem 3: Suppose that there are known bounds θmin

and θmax on the friction parameter, such that 0 < θmin ≤ θ ≤
θmax, and that the parameter update law (8b) is substituted

with

˙̂θ = (sat(ρ(t, x̂))−1)Γξ̄θ (t, x̂)ξ̄−1
vy

(t, x̂)ãy,

ρ(t, x̂) =











(θmin − θ̂)/θε , θ̂ ≤ θmin, ξ̄θ (t, x̂)ãy < 0,

(θ̂ −θmax)/θε , θ̂ ≥ θmax, ξ̄θ (t, x̂)ãy > 0,

0, otherwise,

(13)

where θε is some arbitrarily small, positive value and sat( ·)
is a saturation with lower limit 0 and upper limit 1. Then,

under the same conditions as in Theorem 1, the origin of

the observer error dynamics is UGAS, and if θmin−θε ≤ θ̂ ≤
θmax + θε at time t0, then for all t ≥ t0, θmin − θε ≤ θ̂ ≤
θmax +θε .

Proof (Outline): Inspection of (13) reveals that the

modification to the parameter update law adds a non-positive

term to the time derivative of the Lyapunov function from

Lemma 1. Part one of Theorem 3 then follows from including

this perturbation in the proofs of Lemma 1 and Theorem

1. Part two of Theorem 3 follows from continuity of the

solutions and the fact that for θ̂ = θmin −θε , ˙̂θ ≥ 0, and for

θ̂ = θmax +θε , ˙̂θ ≤ 0.

IV. DISCUSSION OF ASSUMPTIONS

A. Assumption 1

In Assumption 1, certain assumptions are made on the

continuity of the friction model, and the partial derivatives

of τy with respect to vy and θ are assumed to be globally

bounded. The validity of these assumptions depends on the

friction model used, but clearly we cannot tolerate singular-

ities in the model. Considering the definition of longitudinal

tire slip in Section II-B, it is easy to see that the expression

can become singular at low speeds. In [10], the vehicle



is assumed to always be forward-moving, and the stability

results are regional, such that the friction model can never

become singular. When estimating only vy, and not vx and r,

we can avoid singularity of the friction model if we assume

that the vehicle is moving forward with a certain velocity and

is not rotating unreasonably fast. This is therefore implied

by Assumption 1.

As discussed previously, it is unlikely that the assumptions

hold for all friction parameters, but this problem is circum-

vented by the method described in Section III-E. It is also

possible that problems may occur if the magnitude of the

lateral velocity estimate attains unreasonably large values. If

this is the case, the same method may be used to restrict v̂y

to physically reasonable values.

The partial derivative of τy with respect to vy is assumed

strictly negative. This is also assumed in [10] and forms

the basis of the original, non-adaptive observer. The same

arguments as in [10] therefore largely apply. There is a

difference, however, in that we assume that this holds for

arbitrarily large lateral velocities, which may cause very

large slip angles αi, and this may not be realistic. Again,

the same method as the one described in Section III-E may

be employed in order to restrict the magnitude of v̂y, so

the global assumption is not significantly stricter than the

regional one.

B. Assumption 3

According to the Mean Value Theorem, (6) would hold

exactly if the partial derivatives were taken at some point

between the real and the estimated values of vy and θ .

Instead, we assume that it holds when they are taken at the

estimated values. This obviously does not hold in general, but

it holds approximately for small estimation errors, and the

error committed vanishes at the origin of the error dynamics.

As stated in [13], UGAS equilibrium points are locally

input-to-state stable and therefore robust with respect to

small perturbations, and we may therefore expect that, at

least locally, the approximations made will not cause prob-

lems. This is verified experimentally in the next section.

It may also be pointed out that the stability analysis is

fully nonlinear and that Assumption 3 is only needed in

order to evaluate the factors in (7) from known quantities,

for implementation of the parameter update law.

V. PRACTICAL ISSUES AND EXPERIMENTAL RESULTS

The observer has been implemented and tested on recorded

measurements from a car, using Kvy = 1.0, Γ = 0.7, θmin =
0.1, θmax = 1.0 and θε = 0.01. A slight modification was

made to the observer in order to improve results. This is

described in the next section.

A. Modification for Low Excitation

In the theoretical analysis, it was found that convergence

of the observer relies on a certain amount of variation in the

driving pattern. This is clearly reflected in the experimental

results. In particular, the quality of the friction parameter

estimate tends to be poor when there is insufficient variation

in the lateral acceleration, and therefore little information in

ãy, and it may in fact drift off. Simulations show that using

an estimate of the friction parameter that is much too low

may lead to significantly reduced observer performance, and

is far worse than using one that is too high. This means that

problems may arise if a lack of variation leads the friction

parameter to drift toward artificially low values.

The practical solution chosen is to let θ̂ be attracted

toward what we may term a safe value θs whenever the

lateral acceleration error ãy remains close to zero. In practice,

this is implemented by adding a term Ksl(ā
2
y)

(

θs − θ̂
)

to

the parameter update law (13), where l(ā2
y) is a logical

expression evaluating to 1 if ā2
y < b and 0 otherwise. The

value ā2
y is a low-pass filtered version of ã2

y , given by its

Laplace transform as ā2
y(s) = 1/(Tss+1) ã2

y(s), and b is some

threshold value. In the experiments, the values Ks = 0.1,

b = 0.2 θs = 1.0 and Ts = 2.0 were used.

A too high value for θ̂ generally results in a lower

magnitude of v̂y. However, a lack of excitation often goes

together with a low magnitude of vy, and it is safer to

estimate the magnitude of vy too low than too high, as

explained in [2]. Moreover, θ̂ tends to quickly come down

to low values when there is more excitation.

B. Experimental Results

In this section, results are shown for particular test cases.

The measurements of lateral acceleration, yaw rate, steering

wheel angle and wheel angular velocities are provided by

the test vehicle’s electronic stability program (ESP) unit; the

longitudinal acceleration is measured with a separate inertial

measurement unit (IMU); and the longitudinal and lateral

velocities are measured, for validation purposes only, using

optical correlation sensors mounted on the test vehicle. In

the tests, longitudinal velocity estimated using the modular

design from [10] is used as input to the lateral velocity ob-

server, in order to give a realistic impression of performance.

Replacing the estimate by the optical measurement does not

alter the results significantly for the tests presented.

1) Slalom Maneuver on High-Friction Surface: The first

test is a slalom maneuver on a high-friction surface, where

the initial value of the friction parameter is set low, at 0.1. For

about 12s, the longitudinal velocity remains around 27m/s.

It then decreases to about 13m/s at t = 22s, and abruptly

returns to around 27m/s. The results can be seen in Fig. 2.

It is clear that θ̂ climbs and is stopped only by the upper

limit on the friction parameter. The observer overall correctly

estimates the velocity and a high friction parameter.

2) Circle Maneuver on Low-Friction Surface: The second

test is a circle maneuver on ice. The real θ probably varies,

whereas the initial value for θ̂ is set high, at 1.0. The

longitudinal velocity increases approximately from 16m/s

to 24m/s at t = 14s. It then decreases to about 16m/s

at t = 17s, and increases slightly again from there. The

results can be seen in Fig. 3. This experiment clearly shows

how θ̂ drops to appropriate, low values as soon as there is

enough variation in the lateral direction, and it is therefore

an illustration of the Uδ -PE condition from the theoretical



Time (s)

L
at

er
al

v
el

o
ci

ty
(m

/s
)

0 5 10 15 20 25 30

−10

0

10

(a) Real (dashed) and estimated (solid) lateral velocity

Time (s)

F
ri

ct
io

n
p
ar

am
et

er

0 5 10 15 20 25 30
0

0.5

1

(b) Estimated friction parameter

Fig. 2. Slalom maneuver

analysis. The estimate v̂y tracks vy quite well. Note that the

rise in θ̂ at around t = 17s is likely attributable to an actual

change in the road surface conditions during the physical

test, as the vehicle may slide off the test track after the driver

loses control around t = 15s.

C. Discussion

The observer has been tested successfully on more test

cases than the ones discussed above. It is primarily effective

at giving an accurate estimate of the lateral velocity, with the

estimated friction parameter tending to take on appropriate

values whenever there is enough variation in the lateral

direction. The estimate θ̂ will tend to capture the effects of

other, unmodeled phenomenons as well, and it can therefore

not be expected to represent the road surface conditions

accurately. This, together with the fact that the road surface

conditions can change during regular driving, means that the

assumption of a constant friction parameter should be seen

as an approximation. It seems likely, however, that—perhaps

with some post-processing of the estimate—the adapted

friction parameter estimate may provide useful information

about the road surface conditions.

VI. CONCLUDING REMARKS

An adaptive observer has been presented with the aim of

improving an estimate of the lateral velocity when the road

surface conditions are unknown. According to the theoretical

analysis, UGAS of the origin of the observer error dynamics

relies on a condition essentially requiring a varied driving

pattern. Experimental results support this and show that the

lateral velocity estimate remains accurate even when the

initial estimate of the friction parameter is completely wrong.
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