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Chapter 1

Introduction

Reconstructing three-dimensional shapes from images is important in the field of computer vision

and a variety of applications, such as augmented reality, entertainment industry, robotics, industrial

inspection, digital archival and aerial cartography. Estimating 3-d models from images can be

performed via stereo vision. The term stereo here is used as a short for stereopsis, the perception of

depth and 3-d structure from observing a scene from different viewpoints. Stereo most often refers to

binocular vision, i.e., two eyes or two views, while multiple view stereo refers to the use of three or

more images.

In binocular vision, objects at distinct depths project into two views with different relative

positions, called disparities, which provide depth perception since objects that are closer present

larger disparities than the ones that are farther. In order to process disparities, the correspondence

between image locations must be known. Thus, estimating 3-d models from images has image

correspondence and feature matching as a building block.

Features are points of interest in an image that differ in appearance from their local neighborhood.

Ideally, a feature would be as a geometric point, i.e. have a location but no extent, yet in practice

this is relaxed since images are discretized into pixels and a single pixel is a poor representation for a

feature. Thus, typical features are small pieces of information in an image, e.g. a corner, an edge or a

blob. Feature matching is the process of determining corresponding feature locations in images taken

under different viewing conditions (see figure 1.2). In order to automatically estimate an underlying

1
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Figure 1.1: Image-based reconstruction pipeline.

rigid 3-d model that was perceived through a number of images, there are three basic steps:

Step 1: Estimate sparse feature correspondences between images as illustrated in figure 1.3,

which allows recovery of camera parameters for the cameras that acquired the images.

Camera parameters include camera relative motion (location and orientation) and

optical characteristics of the lens and imaging device.

Step 2: Estimate dense correspondences for the observed surface given camera geometry. Dense

matching returns a set of 3-d points, denoted a point cloud, extracted from multiple

overlapping image pairs taken around an object. The estimated points are dense samples

of the observed surface of the scene, as in figure 1.4.

Step 3: Fit a surface to the dense unstructured point cloud in order to recover a complete

representation of the true surface of the scene via a process called meshing, which

represents surfaces as a polygon mesh (see figure 1.5).

It is possible to bypass the dense point representation and estimate surface directly using methods

that implicitly aggregate estimated surface location data into a volumetric representation, or methods

that assume known scene topology and possibly some other prior information. However, it is often

possible to isolate the point estimation stage of a method from the surface extraction stage yielding

the three aforementioned steps, which are illustrated in figure 1.1. Note, camera geometry estimated

in step 1 is achieved via structure from motion (SFM), the problem of simultaneously estimating

camera relative motion and scene structure (3-d points) from 2-d image correspondences. SFM

normally includes a global refinement called bundle adjustment that simultaneously refines all scene

geometry and camera parameters.

This thesis tackles the 3-d image modeling problem and divides the solution into the three

aforementioned steps consisting, respectively, of camera estimation (step 1), dense stereo matching

(step 2) and surface extraction (step 3), which are performed in this order. The problems arising here
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x 
x 

x x 

Figure 1.2: A correspondence between two views of an object and the geometry of the associated
observed surface point. Left: pixel in a reference image. Right: matching location in another image.
Bottom: illustration of a 3-d scene depicting camera locations, corresponding viewing rays, the
associated observed 3-d point and its depths from each camera location.

Figure 1.3: Illustration of a few corresponding feature locations that are connected by green lines.
The images are aerial views from a helicopter.
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Figure 1.4: Dense 3-d point cloud extracted from images of the scene shown in figure 1.3 via proposed
dense matching method. Top: a bird’s-eye view of the point cloud. Bottom: a nadir view. In order
to model the entire object it is observed from multiple angles. Each color represents points estimated
from a given reference viewing location, i.e. from a depth map.
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Figure 1.5: Illustration of an triangle mesh representing a building estimated via proposed approach.
Top left: the mesh with colored faces. Top right: the geometry of the untextured mesh illuminated
with artificial light. Bottom left: detail view of the mesh with colored faces. Bottom right: detail
view of the mesh showing the faces, edges and vertices.

are far from being entirely solved since many factors introduce errors and degrade correspondence

performance, as radiometric conditions, specularity, occlusion, perspective distortions and ambiguities.

Illumination color, illumination direction and imaging devices are radiometric variations that affect

the appearance of an object across images. Specularity effects cause surfaces to reflect more light in

some directions than in others causing serious matching difficulties. In order to handle occlusion,

a method must be robust to missing matches, presenting no correspondences when none is in fact

visible. Another problem is ambiguities from duplicated structures requiring special disambiguation

since more than one correspondence exist for such structures based solely on local appearance. A

window array in the facade of a large building is an example of such duplicated structures. Regions

with nearly constant appearance, also known as textureless regions, e.g. the sky, are an additional

source of ambiguity. Matching textureless regions is much harder than when using their textured
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counterparts, analogous to the difficulties found in solving jigsaw puzzles for pieces having no texture

variation versus other puzzle pieces.

This thesis revisits the use of normalized cross-correlation as a similarity measure to be used

for image matching in step 1 and step 2. Traditionally, the correspondence problem of camera

estimation in step 1 has been broadly tackled using other robust feature descriptors, especially

the widely popular scale-invariant feature transform (SIFT) descriptor [74]. However, it is shown

that normalized cross-correlation estimates matching features with higher location accuracy than

SIFT. Moreover, it is shown that the computationally more expensive computations of normalized

cross-correlation for correspondence search can be completely mitigated by parallel implementations

on commodity graphics hardware. This thesis proposes a high-performance correlation search parallel

implementation that is used both in steps 1 and 2 for real-time computation of putative matches for

many thousands of features per image pair of a dataset.

For step 1, the proposed real-time correlation matching is followed by an additional proposed

serial disambiguation module that will be parallelized in future work. The disambiguation allows

finding a large number of matches that, in general, surpass the number of matches found via SIFT.

For step 2, an entire pipeline is implemented in parallel to retrieve 3-d point clouds from images in

real-time via multiple view stereopsis (MVS). The MVS pipeline uses the same proposed parallel

normalized cross-correlation implementation for matching, which is also used in step 1. For step 3,

one may use any meshing technique available. Common ones are based on level sets, graph cuts

optimization or signed distance functions. Meshing results are demonstrated using a proposed graph

cuts approach that produces a watertight polygon mesh and works on uncontrolled environments. A

mesh here is a set of vertices, edges and triangular faces defining a polyhedral solid that represents

an approximation of a surface (see figure 1.5).

The proposed methods are experimentally validated on several aerial scene datasets. Aerial scenes

are one of the most challenging datasets categories since virtually no conditions can be controlled, as

opposed to datasets acquired in laboratory, where illumination, object materials, camera motion,

camera stability and background may be fixed and chosen to support an algorithm. Results on indoor

and controlled environments are also shown.
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Figure 1.6: Results of the proposed wide-baseline matching of dense repetitive features for building
facades. The features are expected to be on a plane and distributed on a regular grid. Correspondences
are shown with the same marker. The top row shows robustness to occlusion and to multiple planar
surfaces. The bottom row illustrates that the matching is also robust to missing grid matches.

Urban and architectural scenes are common in aerial views used for building 3-d maps of cities.

Such scenes normally present dense feature repetition that often causes issues in matching algorithms,

therefore it is a relevant topic in computer vision. This work also presents a novel solution to the

very ambiguous problem of matching dense periodically repeating features found in such scenes, as

windows on facades of large buildings (see images in figure 1.6 for examples). The matching of such

features are hard to disambiguate due to their density and periodicity. The algorithm uses a plausible

assumption that these repeating features are distributed in a regular grid on a planar surface that

allows match disambiguation.
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The proposed method for matching repeating features also exploits detected planar geometry

for achieving wide-baseline matching, an important topic in 3-d reconstruction related to accuracy,

and results are illustrated in figure 1.6. Baseline is the distance between two viewing locations.

Short-baseline matches allow recovery of scene geometry usually subject to larger errors along the

depth direction, while wide-baseline matches suffer from location bias due to the drastic change in

appearance that affect local feature descriptors. Clearly there is a trade-off. Figure 1.2 illustrates

the geometry of a wide-baseline match. The errors in short-baseline matching arise from the nearly

degenerate geometry extracted from the image pairs. In a short-baseline example, the two viewing

rays seen in figure 1.2 would be nearly parallel and their intersection (the reconstructed 3-d point)

would be very sensitive to small errors.

Wide-baseline matches do not suffer from degeneracy problems, however it is harder to obtain

them in general given the considerable appearance changes of feature points under a wide viewpoint

change. The proposed solution for matching repeating features of planar facades is then extended

for attaining wide-baseline matching, thus improving geometry estimation accuracy in urban scenes.

In summary, this solution handles a problem where traditional local matching methods fail due to

extreme ambiguity and can be used to correspond the planar facades from arbitrary viewpoints

as long as they are visible (under ultra wide baseline changes). The proposed solution also uses

normalized cross-correlation and achieves far superior geometry estimation accuracy when compared

to short-baseline counterparts. A second benefit of detecting planar facades is a first step in the

geometric interpretation of a 3-d scene.

1.1 Goals and requirements

This thesis revisits normalized cross-correlation to show that it is one of the most accurate feature

descriptors for the purpose of camera estimation and proposes a massively parallel implementation of

normalized cross-correlation to show feasibility of its use in the fundamental problem of real-time 3-d

reconstruction from 2-d images. This is a core problem in computer vision and consists of estimating

the elements that have generated the input images. The solution is geared towards very general

and uncontrolled environments. The focus is on outdoor scenes such as ground level imagery from
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moving hand-held camera or aerial imagery acquired from aircraft or satellite. The images may be

taken from a video sequence or may be an unorganized image collection obtained from the Internet.

The proposed algorithms operate on grayscale images but can be extended to use color.

Video sequences typically taken at 24 frames per second or higher rates provide small frame

to frame motion and high temporal continuity. When compared to still images, video has lower

quality in terms of image detail, due to lower resolution, motion blur and compression artifacts,

however, high frame rate video provides a much larger amount of data, and, correspondence search

between adjacent frames of such videos can be performed in small windows. In contrast, still images

present larger disparities for correspondences between adjacent image pairs, which improves the

overall accuracy of geometry estimation. One of the major challenges of still images are occlusions

that will happen more often than in video due to the larger viewpoint change.

In this thesis, focus is given to high-resolution images for maximizing geometry estimation accuracy.

A requirement of the proposed algorithms is that any two frames are connected via a sequence

of small-baseline frames, otherwise they may not be automatically registered to each other in a

common reference frame. This is a fair assumption used by most, if not all, general 3-d reconstruction

techniques in order to perform reliable feature matching to register images to each other. Therefore,

images are expected to be acquired at low frame rates from a smoothly moving camera, preferably

of high resolution. Note, the proposed methods have no high frame rate continuity assumptions so

images may be sampled to have a significant baseline change if taken from high frame rate video.

The current implementation of feature matching for step 1 does not handle a large 2-d image-

rotation of adjacent pairs since normalized cross-correlation is not rotation-invariant. Noticeable

2-d rotations may arise in short-baseline pairs if a camera is significantly rotated about the viewing

axis, whose direction is perpendicular to the image sensor. This short limitation can be easily fixed

as future work by preprocessing an image pair to estimate and compensate for the relative image

rotation by matching rotation-invariant features descriptors, e.g. SIFT or others. The proposed

solution for multiple view stereo, step 2, does not have such limitation since an image rotation is

compensated as a by-product of an algorithm simplification transformation called rectification used in

step 2. Rectification of an image pair requires estimated matches or relative cameras and is discussed
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in detail in chapter 3.

The proposed algorithms work under fixed or varying illumination conditions from frame to

frame since normalized cross-correlation is invariant to linear changes in lighting. In addition one

of the most important goals is to be able to run in real-time in significantly large images. Such

data is commonly found in aerial views from aircraft and is useful for building detailed 3-d maps

of ground terrain, real-time surveillance, and accurate unmanned aerial vehicle (UAV) navigation.

Although UAVs can navigate using Global Positioning System (GPS) measurements, this navigation

may be inaccurate, may fail on GPS-denied areas or fail due to faulty GPS, therefore real-time visual

odometry navigation is important.

It must be stressed that real-time application implementations running on large images is a

challenging problem and therefore many available state-of-the-art solutions do not apply since they

are developed to run in an offline fashion and have slow performance. The rather recent availability

of cheap parallel processing power on general purpose graphics hardware allowed the development of

real-time solutions for the problems of interest given appropriate parallel algorithms, which are used

in this thesis to accelerate program runtime. Processing large images is a challenge not only due to

the amount of data to process, but also since they occupy precious space in the limited memory of

current graphics hardware.

1.2 Contibutions

The following are contributions of this thesis:

• A novel sparse feature matching method based on normalized cross-correlation (NCC) that

presents significantly higher location accuracy and number of matches than state-of-the-art

widely used SIFT matching. The correlation matching performs in real-time followed by a

disambiguation.

• A model-based matching method for dense repeating features found in urban scenes, also based

on NCC, that involves tracking planes to achieve wide-baseline matching and outperforms the

location accuracy of SIFT by a substantial amount.

• A real-time implementation of multiple view stereo that recovers dense point clouds from
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calibrated images with accuracy that is comparable to the slower state-of-the-art and speed

that similar to the less accurate fastest methods. The images may be large and the entire

pipeline is implemented on a graphics processing unit (GPU).

• A method to fit polygon mesh surfaces to the dense point cloud estimated by multiple view

stereo using an approach designed to fit limited available memory and to perform well on

real outdoor scenes. The method is volumetric and models space more densely than standard

alternative approaches based on oriented points, thus estimating more representative surfaces.

• The proposed parallel implementations of the NCC that runs on a GPU and attains very

high performance up to three orders of magnitude faster than alternative CPU methods and

significantly faster than other parallel methods.

• The proposed MVS and feature matching approaches, which also run on a GPU exploiting the

proposed parallel NCC method.

• All proposed approaches are automatic, work under rather general conditions and are described

in detail.

1.3 Outline

This thesis is organized as follows.

• Chapter 2 provides a comprehensive review of the literature associated to the topics covered

by this thesis: sparse feature matching, multiple view stereo and match disambiguation in the

presence of duplicate structure.

• Chapter 3 reviews basic concepts common in computer vision that are used throughout this

thesis.

• Chapter 4 describes the proposed sparse feature matching method based on normalized cross-

correlation that achieves better accuracy than SIFT according to a feature location error

criterion. The chapter also discusses a disambiguation procedure that allows the method

to produce high numbers of correspondence estimates that are higher than those of SIFT

matching. Such estimated correspondences are used for camera estimation. The cameras are

refined by global optimization and employed in dense reconstruction of chapter 6.
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• Chapter 5 presents a novel algorithm to provide correspondences for dense repeating feature

patterns seen under significant viewpoint changes. The solution augments traditional matching

on urban scenes with large buildings containing many windows since windows in a facade all

have the same texture and, therefore, cannot be distinguished from one another based solely

on appearance. This chapter describes the automatic detection and automatic matching of

such repeating patterns between views.

• Chapter 6 discusses the proposed dense reconstruction approach using multiple view stereo

that achieves real-time performance and extends a state-of-the-art method to deal with 3-d

reconstruction in uncontrolled environments such as aerial scenes. This dense matching method

is based in normalized cross-correlation, assumes cameras are given and does not require

fixed illumination. The entire pipeline of multiple view stereo is implemented on a GPU. The

chapter also proposes a fast method that estimates a surface as a mesh that fits the estimated

point cloud. This complementary meshing method does not run in real-time since it was

implemented on a single-core CPU.

• Chapter 7 provides details of the real-time implementations discussed in this thesis, including

a description of the parallel algorithms and a review of programming on a GPU. The parallel

methods are implemented in cross-platform language geared towards GPUs and were tested in

multiple GPUs from multiple vendors. Details are given for all the pipelines with emphasis

on the proposed parallel implementation of normalized cross-correlation, which achieves

remarkable performance given sophisticated parallel programming design and the associated

use of massive GPU parallelism.

• Chapter 8 validates the claims of the proposed matching and reconstruction algorithms through

a series of experiments on several datasets showcasing the ability of the methods to operate

on large scenes, handle high ambiguities, achieve real-time performance, show robustness to

illumination changes and provide high location accuracy in feature matching. Experiments

also compare the proposed approaches to existing alternative techniques.

• Chapter 9 concludes this thesis and discusses future work.



Chapter 2

Related work

This thesis is related to the broad literature in scene reconstruction and is primarily associated

to feature matching, dense reconstruction and match disambiguation with essence in normalized

cross-correlation and massive parallel processing on GPU (graphics processing unit). This chapter

provides a review of key developments of each field starting with feature matching, followed by

multiple view stereo for dense 3-d point cloud reconstruction, and then normalized cross-correlation

match disambiguation. Emphasis is given to both CPU and GPU methods.

2.1 Feature detection and matching

Feature detection and matching are essential components of 3-d reconstruction as well as other fields,

e.g., object recognition [74, 36], image registration [141], robot localization [109, 29] and camera

estimation [106, 132]. Matched features support the identification of objects seen from different angles,

and, allow recovery of scene structure and camera motion jointly [122, 105, 59, 98, 131]. Features

generally are processed in three steps: detection, description and matching (see figure 2.1). Detection

consists of finding interest points, a descriptor is a vector describing the visual appearance of an

interest point, and matching involves finding corresponding descriptors. The most important property

of feature detectors is repeatability, which indicates whether features can be reliably found in two

views taken under varying viewing conditions. An important property of descriptors is distinctiveness,

13
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Figure 2.1: Feature detection and matching pipeline.

i.e., descriptor vectors should be similar only when describing similar features. Likewise, it is desirable

to have descriptors with robustness to noise, to illumination changes and to geometric deformations.

Feature matching is typically accomplished by finding similar feature descriptors. A common measure

of dissimilarity among features is the distance between their descriptors’ vectors.

Several methods for local feature detection and/or description have been proposed such as the

Harris detector [52], SIFT [74], the Shi and Tomasi detector [104], DAISY [115], kernel descriptors [13],

SURF [10], MSER [78, 62], GLOH [80] and normalized cross-correlation [54, 75, 139, 119, 127]. Scale-

invariant feature transform (SIFT) features are detected as the extrema of a difference of Gaussians

function applied to an image scale-space pyramid. Scale-space is a formal theory to model different

image scales using a family of smoothed images. In order to increase the quality of the SIFT features,

locations of low contrast or low edge responses are discarded. SIFT has a high-dimensional descriptor

consisting of a histogram of oriented gradients describing the edge distribution on a region. The

SIFT descriptor, illustrated in figure 2.2, is oriented and normalized to reduce effect of rotation

and illumination changes, and, by construction, is invariant to scale, orientation, illumination, and

partially invariant to affine transformations. See [136, 78] for affine-invariant alternatives to SIFT.

SIFT is therefore not invariant to distortions due to viewpoint changes, however, most descriptors do

not perform well under viewpoint changes of more than 30° [83]. SIFT matching is based on nearest

neighbors and only nearest descriptors whose distance is less than 0.8 times the distance of the

second closest descriptor are considered, while other matches are deemed ambiguous and discarded.

DAISY features [115] present a descriptor that is robust to scale, illumination and viewpoint changes

and is designed to overcome problems in dense wide-baseline stereo where homogeneous areas, large

perspective distortions and occlusions affect feature descriptor windows of significant size. DAISY

and SIFT features produce very similar histograms of oriented gradients, however DAISY computes

them more efficiently, which is suitable for dense-matching. The name DAISY arises from the shape
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Figure 2.2: Interest points detected as SIFT features (images from Lowe [74]). Left: a 233 × 189
pixels original image. Right: 536 detected interest point locations with SIFT descriptor displayed as
a vector indicating scale, orientation and position.

of the descriptor that appears similar to a flower. Similarly to SIFT and DAISY, speeded up robust

features (SURF) is another scale- and rotation-invariant blob detector and descriptor that also focuses

on efficiency, but introduces artifacts that degrade matching when used densely [115].

The Harris and Stephens detector [52], and, the Shi and Tomasi detector [104], are rotation-

invariant detectors that efficiently describe a corner based on the eigenvalues of a matrix via a

function based on the trace and determinant of that matrix without computing the eigenvalues

directly, as introduced in [52]. These detectors are discussed in more detail in chapter 4. The Harris

and Stephens detector [52], one of the most popular interest point detectors, is widely known as

Harris detector.

Normalized cross-correlation (NCC) is one of the simplest descriptors and consists of local

pixel intensities. These intensities are compared statistically via a correlation coefficient, thus the

comparison is robust to linear illumination changes. Heo et al. [54] use an adaptive NCC measure

developed to be insensitive to color radiometric variations using invariant color information instead

of raw intensity (or color) and their method does not suffer from the fattening effect that object

boundaries are not reconstructed correctly due to outliers in the correlation window existing due

to viewpoint change. Fattening effect due to viewpoint change is handled in [54] using a weighting

scheme where the weights are taken from a bilateral filter. An early approach [30] warps correlation
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Figure 2.3: Performance of feature detection and matching for viewpoint change (image from Moreels
and Perona [83]). The curves show stability results on a semi-log scale for several descriptors with
the best performing detector for each descriptor. The hessian affine detector paired with a SIFT
descriptor performed the best. The authors of [83] mention that no detector-descriptor combination
performs well under viewpoint changes of more than 25–30°.

windows according to surface orientation that is estimated directly from stereo image pairs.

NCC is commonly used as a similarity or photo-consistency measure in dense stereo matching [124,

25, 126, 48]. Since NCC is the feature matching method of interest of this thesis, it is discussed

in detail in chapter 3, while an efficient and speedy computation of NCC is proposed in chapter 7.

Color images are converted to grayscale before computing NCC in this thesis.

All detector-descriptor combinations have advantages and disadvantages, therefore evaluation

surveys have extensively tested descriptors in a wide range of conditions [80, 83, 121]. Mikolajczyk

and Schmid [80] present an extensive evaluation of local feature descriptors that shows that SIFT

and their proposed descriptor (GLOH) that is an extension of SIFT, present the best results in most

tests. SIFT and GLOH robustness strength mostly relies on their histograms of oriented gradients,

which are relatively robust to photometric and geometric transformations.

Moreels and Perona [83] explore the performance of feature detection and matching for a variety

of descriptors under a variety of viewing conditions and their evaluation is more general than the one

from Mikolajczyk and Schmid [80]. In [83], more general heterogeneous collection of 3-d objects are

considered, while most transformations between views in the scenes of [80] could be modeled by a

homography, e.g., image rotations or planar geometry. Moreels and Perona [83] find that SIFT is
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Figure 2.4: Dense stereo reconstruction pipeline.

one of the best overall choices and also favors SIFT for the specific case of stereo-vision applications

(see figure 2.3). SIFT is then a natural choice for the benchmark feature use in the comparisons of

this thesis.

Tuytelaars and Mikolajczyk [121] provide an comprehensive survey of stability for many feature

detectors with respect to many properties such as repeatability, localization accuracy, distinctiveness,

quantity and efficiency. SIFT was not surveyed in [121], however, the Harris detector [52] presented

the highest localization accuracy and repeatability among rotation-invariant feature representations in

the many tests performed in [121]. As NCC is a matching tool and not a feature detector, detection of

interest points in this thesis are based on the Harris detector and more details about it are discussed

in chapter 4. Interest points here are features that are easy to track using an NCC descriptor, such

as corners of the same scale as the correlation template. In contrast, textureless regions are very

difficult to match using NCC, or any local feature matching tool, and are not considered interest

points here for the purpose of matching.

NCC is neither rotation- nor scale-invariant, a limitation that this thesis overcomes by assuming

smooth inter-frame camera motion and using image registration techniques, such as rectification

and planar surface tracking (discussed in detail in sections 3.1 and 5.5, respectively). The surveys

of [121, 83] focus on invariant features and do not evaluate NCC. Mikolajczyk and Schmid [80]

investigate cross-correlation and, in their analysis, NCC produces moderate results, i.e., better than

most of the surveyed feature descriptors in the context of matching, except against SIFT, one of the

best performing, and some others similar to SIFT. In addition, the evaluation criterion of [80] is based

only on number of correct matches and number of false matches, while localization accuracy is not

evaluated. Moreover, no significant disambiguation of cross-correlation matches is performed, which

would be fair as NCC has a very simple descriptor and does not benefit from stability enhancements

built-in SIFT such as its invariance, its distinctiveness from its high dimension, and the elimination

of detected points at low contrast or low edge response regions.
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(a) (b)

Figure 2.5: Image rendering from 3-d models learned from multiple aerial images of an urban scene.
(a) An image rendered from a probabilistic volumetric model (image taken from Crispell [26]). The
viewing location was not used when learning the model. (b) Reconstructed surface mesh that was
textured using the learning images (image from Calakli et al. [21]).

This thesis does not revisit the experiments of Mikolajczyk and Schmid, but the proposed

experiments show that the proposed NCC matching methods outperforms SIFT matching quality in

terms of localization accuracy and in terms of number of matched features using the proposed novel

disambiguation criteria (see chapter 4). This was expected by preliminary analysis [6].

This thesis then revisits NCC for its use in feature matching for accurate and real-time camera

estimation applications, which is dominated by widely used SIFT [132, 2, 130, 105, 106, 46], a

feature detection and matching method that has been successfully implemented on GPU [130, 129].

The proposed NCC computation parallel approach demonstrates superior localization accuracy and

quantity of matches than SIFT, and, the associated proposed GPU implementation computes exact

correlation values with phenomenal speedup w.r.t. CPUs.

2.2 Dense reconstruction

Given a set of images with calibrated cameras, most state-of-the-art reconstruction methods rely

on a local measure of similarity to densely correspond pixels across images giving rise to dense 3-d

geometry as point clouds and then impose global geometry constraints to fit a regularized surface

via level sets [22, 63, 35, 89, 86, 61, 107], space carving [19, 65], dynamic programming [9, 73],
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Figure 2.6: The two scenes from the multi-view stereo evaluation of [102]. Left: the “dino” object
illustrated with one image and a shaded ground truth mesh. Right: similarly for the “temple” object.

graph cuts [124, 107, 66, 15, 85], belief propagation [37, 73], PDE [111], digital elevation models [5],

parametric mesh evolution [33, 42, 32] or Expectation-maximization (EM) algorithm [110]. Geometry

is usually estimated via analysis of multiple image pairs or groups. From each reference image and

its neighboring images with an appropriate baseline, depth per pixel is perceived from the reference

image viewpoint generating a depth image, denoted a depth map. The geometry of multiple depth

maps can be pruned and combined into a single viewpoint-free representation by merging them into

a 3-d point cloud such that its points are used as anchors to compute the full surface reconstruction

(see figure 2.4).

Strecha [110] proposes a multiple view stereo (MVS) formulation that uses robust statistics

to model visibility and depth jointly and independently of parameters, and includes a Bayesian

generative model that has a process to generate the inliers and another for the outliers. Pollard and

Mundy [94, 93] developed a probabilistic model that estimate surface appearance and occupancy in a

volumetric framework via Bayesian learning that natively models geometric uncertainty and generates

superior quality synthetic images from novel viewpoints. The discrete voxel model of [94] is extended

to a continuous representation by Crispell [26, 27] using an octree data structure, which is suitable

to reconstruct more detail by modeling the sparsity of the scene efficiently (see figure 2.5a). Miller et

al. [81] provide a real-time implementation of [26]. Liu and Cooper [72, 73] use an optimized belief

propagation algorithm to solve a volumetric Markov Random Field that jointly models all image

formation constraints and returns a surface. The probabilistic optimization of [72, 73] deals well with

matching ambiguities, wide-baseline matching and occlusion, generating fairly complete 3-d models.
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Figure 2.7: Images taken from the twelve scenes of the multi-view stereo evaluation dataset of [112].

Calakli and Taubin [20, 22] use a smooth signed distance function to estimate surfaces as watertight

meshes given oriented point clouds that can be obtained from MVS. The solution has been generalized

to be applied to probabilistic volumes in [21]. Kazhdan et al. [61] also solve the surface fit problem

given oriented points via a level set method called Poisson reconstruction. A benchmark for surface

reconstruction is provided by Berger et al. [11] and show that, among surface fitting methods, the

global ones are very robust to noise, whereas local methods applied to clean data are highly accurate.

Evaluations benchmarks have been created to compare the reconstruction quality of many MVS

algorithms [112, 102] and they have boosted the quality of the proposed algorithms in terms of

computational complexity, accuracy and completeness. Accuracy measures how close a reconstructed

point is to the true one, whereas completeness establishes how much of the true surface is modeled by

the reconstruction. The evaluations of [112, 102] consist of a small number of scenes (see figures 2.6

and 2.7). A more recent setup [58, 57] for large scale MVS evaluation includes eighty scenes with

much higher diversity of objects than the ones seen in [112, 102]. Examples of such scenes are given

in figure 2.8. The setup of [58, 57] provides the ground truth data used in this thesis to obtain

quantitative results to judge the quality of the proposed MVS algorithm. The “ground truth” data

of [58] comes from reference structure light scans that are in fact very dense and accurate physical

measurements showing errors reported to be from 0 to roughly 0.28mm.

2.2.1 Real-time 3-d reconstruction

This thesis is also related to real-time 3-d reconstruction. Commodity graphics hardware has been

used to accelerate 3-d reconstruction from images since the computational complexity of the problem

is considerably high and its optimization space is large. Izadi et al. [56] propose a system that

reconstructs a scene using a depth sensor based on a limited-range infrared structured light. This
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(a)

(b)

Figure 2.8: (a) Images from some of the 80 scenes of the evaluation dataset of [58] illustrating the
variety of objects and surface materials that also includes specular surfaces. (b) Ground truth point
clouds for three of the 80 scenes of [58] with detail to visually illustrate measurement accuracy.

type of method retrieves geometry without need for images, however it is mostly suitable for indoor

environments with little to no feasibility for outdoor scenes and large scale aerial reconstruction.

Zhao and Taubin [140] implemented real-time stereo technique on a GPU that models objects that

move in front of the two-camera stereo setup.

There exists numerous general multiple view stereo algorithms [102], however, the number of

methods that offer real-time performance is relatively small compared to the total number of methods.

Furthermore, algorithm evaluations are often performed in controlled indoor environment with simple

objects [102]. MVS algorithms that run in real-time are typically processed on GPUs [126, 81, 25,

125, 84, 67]. Vogiatzis and Hernández [125] developed a video-based real-time multiple view stereo

reconstruction and show that the denser coverage of the object provided by the video improves

accuracy but lacks completeness compared to similar methods. Vu et al. [126] have a system that

works well on large-scale high-resolution imagery of relatively uncontrolled environments producing

detailed reconstructions, as shown in figure 2.9, and a refined mesh obtained from dense point
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Figure 2.9: Large-scale reconstruction from Vu et al. [126].

clouds using graph cuts and variational optimizations. Similarly, Miller et al. [81] also estimate

a very detailed volumetric model in relatively unconstrained conditions using an efficient sparse

volumetric representation from which a mesh surface can be extracted using the technique from [21]

(see figure 2.5b). Chang et al. [25] introduce a novel MVS method that runs entirely on GPU and

is based on surface elements that are estimated via parallel voting of position and orientation for

multiple depths. Other algorithms [84, 67] are designed for efficiency and their accuracy is slightly

degraded. Evaluations discussed in chapter 8 indicate that the accuracy and speed of the proposed

reconstruction method is comparable to or better than [126, 21, 25].

The design of the real-time MVS method of this thesis is motivated by state-of-the-art methods

originally proposed for CPU [124, 48], which are generalized and combined into a single novel

framework in this thesis that runs on GPU to meet accuracy and speed constraints simultaneously,

and perform well in uncontrolled outdoor or aerial scenes. Vogiatzis et al. [124] propose an MVS

method robust to occlusions that estimates depth based on correlation peaks in a photo-consistency

similarity-function along rays and uses graph cuts to solve for a minimal surface that is a result of

the fusion of several depth maps. Reconstruction via graph cuts is discussed in detail in section 6.7.

Goesele et al. [48] propose a similar MVS framework where only the most reliable correlation peaks

are considered, which tends to increase accuracy and remove spurious reconstructions at a slight risk

of decreasing completeness. These methods are relevant for this thesis goals and contributions since

they offer quality reconstructions according to [101, 102] and a solution based on NCC that can be



23

parallelized given that scene geometry can be learned from images in an online fashion. Additional

improvements are proposed to generalize the proposed method for general large-scale real outdoor

scenes that may have complex geometry and occlusions, such as aerial scenes of urban areas with

tall buildings. Note, the methods described in [124, 48, 134, 25] show results performing only in

indoor or controlled environments, some other real-time approaches are video-based [125, 95], and

the state-of-the-art MVS pipeline of Furukawa and Ponce [41] use a rather sequential region-growing

approach that is not entirely suitable for a parallel implementation.

The implementation of Chang et al. [25] share some similarities with the proposed one since they

describe an MVS step to estimate multiple depth maps taken from [124] and use graph cuts to extract

smooth and clean surface elements from a set that may contain outliers. The several differences are:

(1) their GPU implementation of the method of [124] is faithful to the original method, while the

proposed one modifies [124] to make it even more robust to occlusions; (2) their use of graph cuts for

regularization is completely novel, whereas the proposed one is an improvement over [124]; (3) their

high-performance and feasibility of using graph cuts optimization on a 3-d volume is achieved using

impressive and elaborate implementation using an octree partition of 3-d space and their proposed

parallel graph cuts algorithm for GPU, while the proposed one greatly simplifies the optimization

complexity to achieve fast results using fixed voxel grid and serial graph cuts on CPU; (4) their NCC

operations run on GPU processors via a scalar function that computes the correlation coefficients

independently, whereas the proposed method access images more efficiently and less redundantly

for overlapping correlation patches common in dense MVS and general applications; (5) no tests on

uncontrolled environments such as aerial imagery are reported by [25]; (6) their implementation is

in CUDA, a language that runs exclusively on Nvidia GPUs, whereas the proposed one is written

in OpenCL, a cross-platform framework that runs in Nvidia, AMD, Intel and other chips; and (7)

their GPU pipeline speedup is in the order of 100X faster than their CPU implementation, while the

proposed NCC computation speedup can reach 1000X or more (see chapter 8). NCC is the dominant

computation of the proposed pipeline in terms of complexity, therefore such speedup is important.

The dense NCC matching performed here uses the same general parallel implementation used in

the aforementioned proposed sparse feature matching algorithm (section 2.1). Chapter 4 presents
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the sparse feature matching method, chapter 6 discusses the proposed MVS method and their shared

parallel NCC implementation is discussed in detail in chapter 7.

Another general contribution of the proposed MVS approach w.r.t. alternative methods [124,

48, 25] is the use of weighted NCC such that pixels near the center of corresponding image patches

are weighted more heavily during the matching process, a desired effect since the center is not

affected by geometric distortions. The weighting mitigates a trade-off between bias and variance

on correspondence estimation given the size of the feature descriptor. Small template patches are

more accurate but noisier (more incorrect matches), while larger ones have high discriminative power

but present location bias. This trade-off is discussed in detail in section 3.2.2. The problems are

mitigated by using medium sized weighted correlation patches.

In summary, this thesis presents an MVS method that take advantage of modern GPUs to achieve

real-time dense multi-view stereo matching for general large-scale outdoor scenes generalizing other

algorithms designed for a sequence of still images. Additionally, it uses an efficient graph cuts methods

to fit a surface, on CPU, to the estimated point clouds.

2.3 Disambiguation of NCC correspondences

Correspondences found via NCC matching that are assigned to points with the highest correlation

scores are not particularly reliable as in SIFT matching since the NCC descriptors lacks high

distinctiveness. Some reliability pruning is recommended, e.g. rejecting points in low contrast areas

and considering ratios of distances between the nearest descriptor and the second nearest descriptor

to express match quality. These procedures help disambiguate correspondences and clean them from

outliers.

Disambiguation is often necessary for the case of sparse matching for camera estimation. Normally,

only the epipolar geometry [53] is exploited, as in [125, 103]. Epipolar geometry is discussed in detail

in chapter 3 and simplifies correspondence search to be simply along a line in an image (epipolar line)

associated to the viewing ray of the corresponding feature in another image. For practical purposes,

most existing work merely consider looking for features in a fixed distance from epipolar lines. Unlike

traditional approaches, Fabbri and Kimia [34] propose a distinct correspondence disambiguation
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based on differential curve properties such as torsion and curvature derivatives. Son et al. [108]

disambiguate 3-d curve matching using object global constraints. Bhattacharya and Gavrilova [12]

reject point matches based on the topology of neighboring matches. Almeida and Cooper [4] use

planar models and epipolar geometry to resolve the very ambiguous problem of matching dense

repeating features that are common in urban scenes (discussed in more detail in chapter 5).

This thesis provides two novel disambiguation methods for NCC correspondences: (1) a general

model-free disambiguation pipeline for camera pose estimation (chapter 4), and (2) a model-based

disambiguation for dense repeating features (chapter 5). The proposed model-free procedure of

chapter 4 uses ratio tests, epipolar geometry, three-view geometry and match topology consistency

tests. As in [4, 103], epipolar geometry is estimated from the unambiguous matches and used to

guide matching of other points that may have more than one similar match near an epipolar line.

The main novelty is the adaptive distance threshold used to reject or accept correspondences based

on their distance to an epipolar line. This threshold–computed for every interest point–is based

on data and is iteratively refined. Note, the disambiguation problem when using NCC is different

than when SIFT features are used [106, 103]. SIFT feature points are found independently in an

image, then a set of SIFT points found in one image are compared to all other SIFT points found in

another image. In the proposed NCC matching case, interest points are found in a reference image

and a correspondence search for each point is carried out once in another image using NCC and this

search may be reduced given epipolar geometry. No detection of interest points in the other image is

necessary for matching.

2.3.1 Disambiguating dense repeating features

The proposed disambiguation scheme of chapter 4 is not sufficient to handle very dense repetition

such as windows on large buildings in aerial views of urban scenes. The windows are seen very close

to each other in large dense clusters, as seen in figure 2.10. Duplicated structures are ubiquitous in

urban scenes and handling their inherent match ambiguity has been an important topic in computer

vision. Scene structure duplicates usually consist of man-made objects and are commonly found in

architectural scenes. Facades and windows are among the most common repeating elements in urban
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Figure 2.10: Facades of large buildings, which normally present piecewise planar grids of dense
repeating features (windows).

(a) Grid lattice. (b) Left image. (c) Right image.

Figure 2.11: Typical example of the model-based pairwise matching method of this thesis for
dense repeating features. Correspondences are disambiguated by detecting the underlying planar
grid of features (a), and using its associated global constraints to select the correct matches (b,c).
Corresponding points have identical markers.

scenes and epipolar geometry may reduce ambiguity but does not eliminate it since there is still

numerous match candidates near an epipolar line. In order to deal with general urban scenes, the

author proposes a solution in chapter 5, published in [4], to handle such ambiguous cases under the

reasonable assumption that such dense repeating points are on a planar surface and distributed in a

grid, which is normally true (see figure 2.11). Chapter 8 has experiments showing that this method

improves the accuracy of camera estimation and recover a high number of repeating features from

building windows, a rich set of correspondences that is usually lost by traditional matching.
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Dealing with replicated objects is important in computer vision since they often cause issues

in structure from motion (SFM), the problem of simultaneously estimating camera poses (motion)

and 3-d points (scene structure) from 2-d image correspondences alone [53, 122]. Duplicated objects

often give rise to erroneous or ambiguous matches and their detection and disambiguation must rely

on global consistency measures. For instance, consider a simple scene with two identical oatmeal

boxes, box 1 and box 2, as illustrated in figure 2.12a, and a reference image sees only box 1, as in

figure 2.12b. This scene illustrates two common possible ambiguities types. Traditional matching,

e.g. via SIFT [74], may incorrectly associate the image objects if the sensed image sees only box

2 (type I ambiguity), as in figure 2.12c. SIFT will likely fail to provide correspondences from the

boxes if the sensed image sees both of them, as it cannot disambiguate the nearly identical local

descriptors (type II ambiguity). Note, type I ambiguity causes an error, whereas type II leads to

missing matches (see figure 2.12). These issues have motivated work in scene disambiguation to

determine the correct associations, i.e. matching features that correspond to the same 3-d points.

Most existing work focus on type I ambiguity such that repeating elements are large objects repeating

only a few times in a scene. Progress has been made in terms of detection and matching in the

presence of such objects [98, 77, 113, 51, 138, 59]. Incorrect associations due to type I ambiguity

may cause erroneous 3-d reconstructions, such as phantom surfaces and superimposed structures,

e.g., when all instances of a repeating object is reconstructed only once in 3-d [98, 128]. Such folded

reconstructions may occur if repeating objects produce more features than the rest of the scene and

dominate the SFM process causing complete failure. In the context of robotics, disambiguating

repeating object associations is crucial for autonomous navigation in determining whether a detected

landmark has been previously seen (loop closure) or it is new [51, 97, 47].

Specialized SFM algorithms for handling repeated objects in a scene have been proposed [138, 98,

59, 128, 24] and typically use SIFT matching for finding correspondences. Zach et al. [138] examine

correspondence triplets to find erroneous associations, since triplets allow predicting a feature location

in a third image. Both [138] and [98] note that if a large set of points, located in a foreground object

and the background, match in two views, but not in a third, then the third view may be seeing a

different instance of the object. In [128], repeating architectural features found on large outdoor
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(a) (b) (c)

Figure 2.12: Scene with replicated structures, which typically causes confusion in matching algorithms.
(a) Each red oatmeal box has several distinct features also found on the other oatmeal box. The
image is from [98]. (b) An image that sees the oatmeal box on the left, but not the other. (c)
An image that sees the oatmeal box on the right, but not the other. Traditional matching may
erroneously match several features of the different oatmeal boxes if applied to (b) and (c), or fail to
decide where to match, in image (a), the well-defined features of the oatmeal box seen in (b).

unordered images are disambiguated considering their local visibility structure via a non-geometric

graph-topological model. [24] couples symmetry information with SFM to resolve ambiguities in

matching building facades using an interactive system where the user segments the repeating element.

Another category of similar problems is to parse building facades into semantic regions or to detect

facades [77, 113, 71, 31]. Most existing work [77, 113, 133] exploits facade regularity exclusively

through datasets showing ground level fronto-parallel (rectified) facade views. Mobahi et al. [82]

presents a 3-d reconstruction of urban buildings that relies directly on semi-global or global image

patches and not in traditional local features. Wu et al. [133] exploit facade repetition patterns for

stereo reconstruction directly from a single image of multiple repeating elements. These prior methods

have been applied exclusively to repeating elements found in large objects that appear a few times in

a scene. Thus, the repeating objects are in high resolution and their features also repeat only a few

times in a scene. Moreover, the methods focus on the removal of wrong associations, rather than on

simultaneous stereo matching of multiple duplicates.

In contrast, this thesis proposes a solution for type II ambiguity by tackling repeating elements

displaying massive dense repetition, such as hundreds of nearly identical features in a single image.

The proposed approach robustly match the dense repeating features under viewpoint change, as in

figure 2.11. Additionally, the features are tracked even after very wide-baseline motion through a

sequence of smaller motions (discussed in detail in section 5.5). The features are assumed to be
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Figure 2.13: Automatic detection of deformed lattices in a single image (images from Park et al. [90]).

organized in a planar grid and the grid is distant from the camera such that perspective distortions are

approximately affine, which is realistic in urban scenes. Under these assumptions, viewpoint change

transformations of these features can be modeled by a homography that can be estimated once the

matches are disambiguated. The regularity and topological properties of grids are used for single view

grid detection and also for matching grids in other views. There are no image resolution requirements,

however the method targets small, dense and highly repetitive elements, where match disambiguation

often fails e.g. simply by enforcing the epipolar constraint, and would be very challenging without

reasoning on the global properties of the estimated planar grid lattice. Epipolar constraint and

other spatial cues often suffice to disambiguate matches of sparsely repeating elements. In order to

deal with inevitable occlusions of aerial views, the detection and matching are robust to incomplete

detected grids and also missing matches.

Park et al. [90] relax the planar assumption and detect a deformed lattice from repeated patterns

in a single image, but do not propose stereo matching. Deformed lattice matching is usually achieved

using spatial-temporal tracking assuming negligible inter-frame motion and do not handle significant

baselines [70]. The real-time tracking algorithm of Lin et al. [92] for non-rigid surfaces handles

wide-baselines, but not the ambiguity of repeated patterns, as they cause a serious correspondence

problem. Schindler et al. [100] match 3-d patterns from a pre-existing database of geolocated planar

facades to newly detected facades exploiting the repeating nature of buildings to match the lattice

rather than individual points.

Recent work of Liu and Liu [71] detects and associates facades on unconstrained aerial views and

it is more directly related to this work. [71] uses the regularity of edge maps of the facade windows to

detect lattices via common edge orientations and achieves good results in detecting multiple facades

per image and in associating detected facade regions in different viewpoints, i.e., they match the
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facades but not the repeating points.

Note, in one-shot 3-d scanning with structured-light [60, 123], a similar matching problem exists,

where an object is illuminated by a single set of known color-coded grid lines. Correspondences must

be established between grid points and their location in an image of the illuminated object. This

problem differs from the proposed one in some aspects: (1) the matching is independent of object

appearance and is driven by known grid shape and colors; (2) in general, the grid lines projected onto

the object form no lattice; and (3) it is not suitable for outdoor scenes. Furthermore, the grid pattern

is assumed known as well as the camera and the projector intrinsic parameters and relative pose.

Unlike previous work, the proposed method focuses on dense repeating elements, i.e. type II

ambiguity, and handles detection and matching under viewpoint changes with a significant baseline.

The procedure targets aerial views of tall building facades, where the common repeating elements

are hundreds of windows per facade, but it is not limited to such objects or imagery. Windows are

commonly seen as either corners, short edges or very small parallelograms. A global assumption is

necessary to handle this extremely high level of ambiguity. Thus, the features are expected to be in

a flat lattice only a few pixels away from each other, a realistic on aerial urban scenes.

The proposed pipeline uses regularity constraints to detect a grid repeating-elements and estimate

the hypothesized underlying planar lattice, a single-image process. Grid point correspondences are

then found using NCC and they are extremely ambiguous. Matches are disambiguated based on the

epipolar constraint and global properties of lattice points such as piecewise collinearity, even spacings

and line intersections. Images are assumed to be ordered and only adjacent frames are matched.

No prior information about camera parameters is assumed, yet the aerial views must have enough

unambiguous points to allow estimating epipolar geometry. The framework handles images with

multiple lattices, each lattice with possibly hundreds of nearly identical features, as in figure 1.6.

In summary, the main contribution of this disambiguation strategy is the novel planar lattice

model to handle a very ambiguous image correspondence problem on matching a large number of

similar features, which allows the registration of the planar surfaces via homographies to achieve

straightforward ultra wide baseline matching via NCC, and improve the accuracy of SFM. Experiments

validating these claims are introduced in chapter 8.



Chapter 3

Review of basic algorithms

This chapter reviews fundamental algorithms used throughout the thesis.

3.1 Rectification

Rectification consists of image transformations that simplify implementing a search for corresponding

points in two views of the same scene. In general, the search can be reduced to a slanted line in

the image, which is mapped to a horizontal line (an image row) after rectification. This geometric

constraint is derived from epipolar geometry, which is briefly reviewed in the next paragraph.

Figure 3.1: Side by side rectified views. Matching features lie on the same image row, since epipolar
lines are horizontal and there is no vertical disparity.
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Figure 3.2: Geometric relations between matching points on a stereo pair. Left: pixel in a reference
image. Right: matching point and associated epipolar line in other image. Bottom: 3-d scene showing
camera centers, epipolar lines, image planes, the associated epipolar plane, a 3-d point and its depths
from each camera center.

Epipolar geometry concepts. According to the epipolar geometry of two views [53], baseline is

the 3-d line connecting the two camera centers, epipole is the intersection of an image plane and the

baseline, epipolar plane is a plane containing the baseline, and epipolar line is the intersection of an

epipolar plane and an image plane (figure 3.2). For a given baseline, there is a pencil of epipolar

planes whose intersections with the image plane define a pencil of epipolar lines, all meeting at the

epipole. Geometrically, the image projection of an arbitrary 3-d point in the scene lies on an epipolar

line associated with the epipolar plane defined by the 3-d point and the baseline. Thus, given an

arbitrary image point, its corresponding point in the other view must be constrained to the associated

epipolar line. This property, called the epipolar constraint, reduces correspondence searches from the

entire image to a single line. The fundamental matrix F is a 3× 3 rank 2 matrix that captures this

intrinsic geometry.
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Let xR and xT be corresponding locations in two images represented in homogeneous coordinates:

xR =
[ x
y
1

]
, (3.1)

xT =
[
x′

y′

1

]
. (3.2)

It is well known that the epipolar line of xR is computed by multiplying the fundamental matrix F

by the vector xR. For any xR other than the epipole e, let

l = (FxR) (3.3)

be the epipolar line of xR represented by the three coefficients in l. The epipolar line l′ of xT is

found in a similar way:

l′> = (x>TF) (3.4)

From the definition of epipolar lines, xT lies on l, then

xT l = 0, (3.5)

and similarly, xR lies on l′ implying l′>xR = 0. The epipolar constraint follows from equations (3.3)

and (3.5):

x>TFxR = 0, (3.6)

where F is the fundamental matrix of the image pair where corresponding points xR and xT lie. The

estimation of F is discussed in section 4.4.2). Note, l = (FxR) always contains the epipole e′. It

follows that (e′>F)xR = 0 for all xR, then e′ is the left null-vector of F and similarly, e is the right

null-vector of F . Transposing equation (3.6) gives that F> is the fundamental matrix for the views

in the opposite order with e, e′ as the left and right null vectors, respectively.

Image Rectification. The search for image correspondences would be one-dimensional and along

horizontal epipolar lines, if two cameras were coplanar (placed side by side), with the images horizontal

axes parallel to the baseline. Moreover, the epipoles would be at infinity along the horizontal axis.

Even if two cameras are not coplanar, their images may be warped to emulate this condition by

mapping them to a common plane. This process is called image rectification and is motivated by the
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fact that it is computationally cheaper to search for corresponding points on the a line aligned with

the rectangular image grid [53], as well as the fact that rectification is a much cheaper computation

than the correspondence search.

The rectification process consists of finding the epipoles and defining projective transformations

that map them to infinity along the baseline direction and rotating the images such that this axis is

horizontal. The transformations warp and re-sample the images such that epipolar lines are aligned

exactly to image rows and corresponding points have no disparity in the vertical direction as in

figure 3.1. Note, if an epipole is inside an image, rectification may result in undesired distortions,

since the transformation is continuous and will cause the neighborhood surrounding the epipole to

also tend to infinity, resulting in potentially disconnected mappings (see figure 3.3).

Figure 3.3: Illustration of undesired distortions due to rectification of an image pair where an epipole
is located in the image plane (only one image is shown). Left: a regular image taken from a camera.
Right: a rectification of the image on the left when the epipole is located inside the image. In this
case, the rectified image is disjoint with two components.

3.2 Weighted normalized cross-correlation

Normalized cross-correlation is a popular measure of similarity between the appearance of a feature

point in two different views. It is used in this thesis both for feature matching to estimate camera

poses (chapters 4 and 5) and for dense multi-view stereo (chapter 6). Normalized cross-correlation is

robust to changes in brightness due to lighting and exposure conditions.

The weighted normalized cross-correlation of a template image patch t(x, y) with a subimage

S(x, y) consists of a 2-d array C(u, v) of weighted correlation coefficients computed as t(x, y) slides
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Figure 3.4: Image matching via normalized cross-correlation. A template t(x, y) taken from a
reference image is correlated with a larger subimage S(x, y) from a second image. Arrows depict
the relative 2-d motion of the subimages t(x, y) and S(x, y). For each pixel location the template is
shifted, given by u and v, a new similarity coefficient C(u, v) is computed.

over S(x, y) at one pixel steps. Given a weight function w(x, y), the array C is defined as

C(u, v) =

∑
x,y

{
w(x, y) [ S(x+ u, y + v)− Sw(u, v) ][ t(x, y)− tw ]

}
√∑

x,y

{
w(x, y) [ S(x+ u, y + v)− Sw(u, v) ]2

}∑
x,y

{
w(x, y) [ t(x, y)− tw ]2

} , (3.7)

where tw and Sw, expressed as

tw =
∑
x,y

w(x, y)t(x, y), (3.8)

Sw(u, v) =
∑
x,y

w(x, y)S(x+ u, y + v), (3.9)

are respectively the weighted mean of the template and the weighted mean of the portion of S(x, y)

under the template (see figure 3.4). Subtracting averages and dividing the signals by the weighted

standard deviations as in equation (3.7) normalizes the data to have zero mean and variance one, so

C(u, v) ∈ [−1, 1] are correlation coefficients invariant to brightness changes. The weight function
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w(x, y) satisfies

∑
x,y

w(x, y) = 1, (3.10)

w(x, y) > 0. (3.11)

In this thesis, w(x, y) is chosen as a 2-d Gaussian weight function centered at the template centroid

with a diagonal covariance matrix as follows:

Σw = diag(σ2
x, σ

2
y). (3.12)

The Gaussian function constructed using Σw from equation (3.12) induces the dependency of C(u, v)

in t(x, y) to evenly decay away from the template center (discussed in more detail in section 3.2.2). If

w(x, y) is constant, the weighting is uniform and the similarity measure is simply called normalized

cross-correlation.

3.2.1 Size relations

The sizes of the template image t(x, y), the subimage S(x, y) and the correlation array C(u, v) are

such that

� t(x, y) size is tx × ty,

� S(x, y) size is Sx × Sy,

� C(u, v) size is Cu × Cv,

� Sx ≥ tx and Sy ≥ ty,

� Sx = Cu + tx − 1,

� Sy = Cv + ty − 1.

3.2.2 Why is weighting important?

Weighting normalized cross-correlation admits a simultaneous reduction of bias and noise in image

matching. When comparing the correlation patches centered at two perfectly matching points in

two distinct viewpoints, the only truly matching pixel is usually the center, due to distortions from

viewpoint change. Pixels away from the center may cause location bias, expressed as a small shift of
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the correlation peak (apparent match location) away from the true match position. Smaller templates

exhibit smaller biases, but more noisy correlation values, whereas large templates exhibit more

bias and less noise. Isotropic Gaussian-weighted correlations achieve a reduction in bias of smaller

templates due to the decay away from the center, while preserving the smaller noise levels from larger

templates. An isotropic Gaussian kernel is not necessarily optimal, but probably suboptimal for

weighting correlation, and an example of the good empirical benefits of using an isotropic Gaussian

weight function is given in figure 6.2.

3.2.3 Why is normalization important?

The coefficient C(u, v) computed in equation (3.7) is normalized by subtracting the means of the

signals and dividing by their standard deviations. The coefficient is used as a measure of similarity

between two signals. The higher C(u, v) is, the more correlated the signals are. Since C(u, v) is in the

range [−1, 1], thresholding reliable matches is as simple as C(u, v) > τ , for some quality parameter τ .

If the similarity function was only the numerator of equation (3.7), the range of values would

be undefined and vary with the amplitude of the variances of the signals. In this unnormalized

case, it would be difficult to distinguish low similarities due to wrong matches from the ones due to

true correspondences that have smaller variances. Similarly, high-variance unnormalized signals may

present high scores even if highly uncorrelated. The normalization of C(u, v) is stable for a broad

range of variances, except for extremely low ones where there may not be enough numerical precision

to represent signal fluctuations. Nevertheless, the instability of C(u, v) on very low variance cases is

due to signal representation and not the normalization, which still guarantees a coefficient in the

range [−1, 1].

In general, normalization is crucial for template matching in real-world scenes. Surface reflectance

can be approximated by a Lambertian model with an albedo. The albedo is the actual signal of interest

one tries to match as it is an intrinsic property, invariant to viewpoint and illumination. However, the

albedo is not measured directly by pixel intensities, but it is coupled with illumination, which affects

observations in different ways depending whether the illumination has direct or diffuse components.

Illumination of outdoor scenes is often a mixture of a broad spectrum of direct sunlight, diffuse
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skylight and interreflections. In a dynamic scene where images are collected sparsely, illumination

components may change locally or globally from one image frame to the next, including image

brightness, contrast and saturation. Shadows arise from blocking a direct component reducing the

magnitude of the signal. An unnormalized similarity measure is not suitable for matching in these

aforementioned cases.

In the case of high frame rate video sequences, where illumination and viewpoint are essentially

constant on adjacent frames, other similarity measures are recommended, such as sum of squared

differences (SSD). When illumination is fixed, both normalized cross-correlation and SSD provide

high matching scores to true corresponding points. However, SSD will assign a low matching score

to features that are not views of the same 3-d point, but are similar and are seen under distinct

brightnesses. Normalized cross-correlation would provide a high matching score for such similar

features, generating incorrect matching candidates that could be avoided by using the computationally

cheaper SSD if illumination is known to be fixed.

In this thesis, the focus is on scenes where data is captured sparsely, with noticeable viewpoint

changes, with possible illumination variations and with possible time-lapses between adjacent frames,

including, but not limited to, high-resolution imagery from satellite and aerial vehicles. Radiometric

factors such as imaging device changes, illumination color and illumination direction may affect

intensity consistency between images [54] and normalized cross-correlation is robust to different

radiometric conditions, unlike SSD. For instance, surfaces that are considered primarily Lambertian,

may in practice still exhibit significant specularity effects and reflect more light in some directions

than in others, causing noticeable radiometric variations if seen from viewpoints along such directions.

3.3 Delaunay triangulation

A 2-d Delaunay triangulation consists of a subdivision of a plane into triangles and it is the dual

of the 2-d Voronoi diagram, which partitions a plane into polygonal regions. These subdivisions of

space operate in a set of points, called seeds. For every seed, the Voronoi diagram assigns a unique

region consisting of all points that are closer (in Euclidian metric) to the given seed than to any

other seed (identical to decision boundaries of the nearest neighbor classifier). These regions are



39

Figure 3.5: A Delaunay triangulation and its corresponding Voronoi diagram. Seed points are shown
as black dots. Left: Delaunay triangulation shown in black with circumcircles in gray and their
centers in red. Right: the corresponding Voronoi diagram shown in red produced by connecting
centers of the circumcircles.

denoted Voronoi cells and each cell has a unique seed. The Delaunay triangulation is constructed by

connecting the seeds in adjacent Voronoi cells. The Delaunay triangulation has unique properties

when compared to other possible triangulations:

• The Delaunay triangulation maximizes the minimum angle of the triangles in the triangulation.

• The union of all triangles in the triangulation is the 2-d convex hull of the seeds.

• A circle circumscribing any Delaunay triangle contains no seed in its interior.

• The centers of Delaunay triangles circumcircles are the vertices of Voronoi cells.

• The Delaunay triangulation is unique assuming no degeneracies.

• Each seed has 6 surrounding triangles on average (for large number of seeds).

Delaunay triangulations and Voronoi diagrams are widely used in mathematics, computational

geometry and other fields, e.g. in modeling terrains from a set of points or deriving capacities in

wireless networks.

In this thesis, Delaunay triangulations are used to represent an array of points and their neighbors

in chapters 4 and 5. The tasks from these chapters require connectivity graphs that supply neighbors
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vertices in all directions and disfavor skinny triangles. The Delaunay triangulation is chosen since

it discourages narrow triangles, due to its minimum angle maximization, and provides surrounding

neighborhoods.

3.4 Camera estimation

A camera denotes a mathematical object that models an image sensor and how an image is formed

via a projection of a 3-d scene into the plane of the image sensor. A camera is represented by a set of

parameters that define the spatial position, spatial orientation and a set of intrinsic properties of an

actual physical camera. The camera focal length, radial lens distortion, tangential lens distortion,

the aspect ratio of image pixels, the geometric image center and the pose of the image sensor w.r.t.

the lens are among common intrinsic camera parameters. The camera extrinsic parameters are the

position and orientation of the camera, also denoted as camera pose, which define a coordinate system

for the camera w.r.t. a reference frame called the world coordinate frame.

Camera calibration is the process of determining the camera intrinsic and extrinsic parameters.

Common solutions to estimate intrinsic parameters, e.g. the one from Bouguet [14], use calibration

objects. Some techniques denoted self-calibration use no calibration objects and rely on the rigidity

of the scene to use only image information to calibrate cameras. The applications of this thesis

use moving cameras where no information is known a priori about the camera parameters of each

acquired image and where calibration objects are not practical, as in aerial views. Such cameras

are called uncalibrated cameras. For such applications, self-calibration techniques are employed to

calibrate cameras using an iterative nonlinear optimization called bundle adjustment.

3.4.1 Bundle adjustment

Bundle adjustment retrieves camera parameters and 3-d points in the scene from image correspon-

dences. The reconstruction of the scene and camera geometry are up to a similarity transformation [76].

Common software packages to perform bundle adjustment are Bundler [105] and VisualSFM [130, 132].

Bundle adjustment consists of minimizing the reprojection error, which is the Euclidean distance

between a projected point and a measured one. In general, the method reconstructs correspondences
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in 3-d given camera parameters, forward projects the 3-d points back in the images, compute the

errors of how far the projections are from the measured correspondences and finally refine the cameras

parameters to reduce the errors, then repeats. The outcome is globally optimized camera parameters,

in addition to a reconstruction of sparse 3-d points.

3.4.2 Reprojection error

Bundle adjustment consists of estimating camera parameters to find a local minimum of the reprojec-

tion error of all image correspondences, which is the Euclidean distance measured in image pixels

between a projected point x̂ predicted by image correspondences and the measured correspondences

x. The reprojection error quantifies how closely imperfect image correspondences x represent the

true projection of the 3-d point X estimated from the correspondences. The projection of a 3-d

point X into a 2-d image coordinate is in general a nonlinear function of all the camera calibration

parameters, where the linear part of the projection is encapsulated by the projection matrix [53] P.

Disregarding nonlinearities, the projections are given by

x = PX. (3.13)

The squared reprojection error R2 of a correspondence xR ↔ xT is given by

R2 = ||xR − x̂R||2 + ||xT − x̂T ||2, (3.14)

where ||.|| represents Euclidean distance, and, x̂R and x̂T are location vectors obtained by projecting

(via projections PR and PT ) an associated 3-d point X back into the images giving rise to x̂R = PRX

and x̂T = PTX. The point X, which is the scene location observed at xR and xT , is computed by

intersecting the 3-d rays emanating from respective camera centers and going through respective

pixel locations xR and xT in a reference and target images. Since rays in three dimensions estimated

from approximate pixel locations often do not exactly intersect, the best approximate ray intersection

is defined as the 3-d point that minimizes the distances from itself to the rays. The mean squared

reprojection error MSE of all correspondences of all images pairs of an image sequence is given by

the average of the reprojection errors of the correspondences:

MSE = 1
N

N∑
i=1
R2
i (3.15)
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The MSE quantifies the deviation of the measured correspondence locations to the true locations.

Bundle adjustment minimization simultaneously refines camera parameters and the 3-d coordinates

representing scene geometry giving rise to the associated predicted image coordinates, which are

preferably near observed coordinates. The smaller the MSE is, the more accurate the estimation of

camera parameters is expected to be.



Chapter 4

Near Real-time Camera Pose

Estimation

Camera estimation is the first step in an image-based surface reconstruction pipeline to allow

incoming images to be registered and analyzed together. The most general case is addressed, where

no information is known a priori about the cameras, except that inter-frame camera motion is

small. Image correspondences are required to estimate cameras. This chapter proposes a novel set

of matching tools using normalized cross-correlation that achieves higher accuracy then SIFT

matching in terms of reprojection error of 3-d points computed from estimated matches and cameras.

In addition, the number of correspondences found by the proposed system is higher than the ones from

SIFT matching. The estimated camera parameters are optimized by publicly available multi-core

bundle adjustment software [132]. The proposed implementation is partially GPU-accelerated and

reaches near real-time performance, but if totally optimized, it should achieve similar computational

throughput to real-time state-of-the-art SIFT features detection and matching running on a GPU.

The term real-time used here refers to a system capable of matching images as quickly as they are

acquired.

43
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4.1 Matching overview

The matching process automatically assigns correspondences to points of interest seen in images that

are processed one pair at a time. Assume the images are from a video sequence and taken from a

moving camera having small baselines between adjacent frames. The image sequence may be an

indefinitely large stream, hence consider a sliding window W of size Rf adjacent frames. Within

W, the narrowest baseline pairs are matched first, followed by increasing baselines. Interest points

are selected in the views from a given W and matched to their subsequent views. After all pairs

in a window W are matched, it slides one image forward in the timeline and the process repeats.

For instance, if Rf = 4, the matching order for W = {1, 2, 3, 4} is {1-2, 2-3, 3-4, 1-3, 2-4, 1-4}, then

the window shifts to W = {2, 3, 4, 5} and unmatched pairs are processed analogously. The narrowest

baselines are matched first since their matching is easier and likely provides enough correspondences

to estimate accurate fundamental matrices, which are essential for match disambiguation. Growing

baselines are increasingly harder to match, but matching becomes easier if a fundamental matrix is

given prior to matching. The matrix for wider baseline frames is estimated from the sequence of

narrower baseline matches using method discussed in section 4.4.8.

The matching is performed via normalized cross-correlation (NCC). The matching pipeline for

an image sequence is summarized in flowchart in figure 4.2. For every image pair in all W, feature

correspondences are assigned through the matching process subroutine. After all correspondences

are computed among the views, bundle adjustment [118] is performed by feeding matches into the

optimization subroutine of the VisualSFM application [132].

The matching process subroutine is specified in figure 4.3 flowchart. Interest points are detected

in one image of a pair, IR, and a search for their corresponding points is carried out on the second

image, IT . These images are denoted reference and target, respectively. In addition, auxiliary images,

IA, which have been matched to IR in advance, will be used to check for geometric consistency of

matches between IR and IT . The scope of an image as being a reference, a target or an auxiliary

view changes as the sliding window moves (see figure 4.1).

Often multiple matching candidates arise. In order to disambiguate the matching, several tests are

performed, e.g., to enforce geometric relations and spatial consistency of matches. The disambiguation
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Figure 4.1: Feature matching process and the scope of images taken from a sliding window moving
through adjacent frames of a sequence. The matching process establishes image point corresponds
in the target image for interest points located in the reference image. Auxiliary images are nearby
views used to assist on match disambiguation when multiple match candidates exist. The scope
of an image changes as the matching process window moves. Auxiliary images are matched to the
reference image in advance, in which case, they were reference and target, respectively.

process subroutine encapsulates these tests and is summarized as a flowchart in figure 4.4.

This chapter will discuss in detail the proposed feature matching pipeline from figure 4.3: detection

of interest points (section 4.2), matching using normalized cross-correlation (section 4.3) and a series

of multiple matches disambiguation steps (section 4.4).

Tables 4.1 and 4.2 provide a quick reference for the notation and parameters appearing in this

chapter along with default parameter values. A method description may specify the values of its

parameters, otherwise default values from table 4.2 are used.

4.1.1 Displaying image matches

A common way to display image matches is to display two images side-by-side and connect the

matching points with a straight line. An alternative is to display the matches with a distinctive

unique marker. Connecting lines are unambiguous, but can become very cluttered for thousands of

matches. The markers are chosen for this thesis to prevent clutter.

Matching points are shown with identical markers sharing the same shape, width and color, which

are picked randomly from predefined sets. The randomness does not guarantee uniqueness of the
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(VisualSFM)
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Loop for all IP ∈ W.

Loop for all W ∈ IS .

Figure 4.2: Matching pipeline for an image stream. See figure 4.3 for “Matching process” subroutine.
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Figure 4.3: Matching process for an image pair. NCC stands for normalized cross-correlation
matching. See figure 4.4 for “Disambiguation process” subroutine.
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Figure 4.4: Disambiguation process block from figure 4.3.
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Notation Description

W Sliding window of adjacent frames.
IR A reference image, a source of interest points to be matched.
IT A target image, where a search for matching features is performed.
IA An auxiliary image, used to test match geometric consistency.
S(x, y) A rectangular correlation search area in IT .
C(u, v) A rectangular array of correlation coefficients.
Um The subset of interest points with unique estimated matches.
Mm The subset of interest points with multiple match candidates (Uc

m).
xR An interest point location in IR.
xT A putative matching location of xR in IT .
xA A putative matching location of xR in IA.
xR ↔ xT A correspondence between IR and IT
xR ↔ xT ↔ xA A correspondence triplet between IR, IT , IA, respectively.

Table 4.1: Notation for proposed feature matching pipeline.

Parameter Default value Description

Rf 4 Number of frames in W.
κ 0.04 Sensitivity parameter for Harris-Stephens corner detection.
Qc 0.01 Quality level for corner detection.
ta 5 pixels Radius of square template patch (11× 11 patch).
Qm 0.85 Quality level for correlation-based matching.
Ch 21 pixels Height of correlation search area on rectified images.
Cw width(IT ) Width of correlation search area on rectified images.
τc 5 Highest ratio of matching points corner scores.
τhsr 1.1 Lowest correlation ratio for highest scores ratio module.
τratio 1.5 Lowest ratio of lowest distances for ratio-inequalities test.
τglobal 2.0 Distance threshold for ratio-inequalities test.
τf 0.2 Sampson distance threshold for fundamental matrix estimation.
ch 7 pixels Height of correlation window for epipolar transfer module.
cw 31 pixels Width of correlation window for epipolar transfer module.
nm 1 Threshold for match topology module.

Table 4.2: List of proposed feature matching pipeline parameters.
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markers allowing occasional ambiguities that are fairly easy to discern. See figure 4.5 for an example

of a pairwise matching displayed with random markers and obtained with the proposed method of

this chapter. Figure 4.6 shows details of figure 4.5.

4.2 Interest points

In order to estimate camera geometry for images in a dataset, a number of features must be tracked

from frame to frame. This section describes the proposed method to find interesting features for

further matching using normalized cross-correlation.

Corner detection. Interest points in an image are locations that have expressive texture and

are easy to match on other images due to high distinctiveness, unlike textureless locations. It is

desired that a matching descriptor of an interest point is invariant under changes in illumination

and viewpoint. Common interest point detectors used in the literature are the ones from Harris and

Stephens [52], Shi and Tomasi [104] and Lowe [74].

In this thesis, point tracking will be carried along frames where the inter-frame motion is smooth

and not very large, i.e., parallax due to viewpoint changes may be noticeable, but scale of features may

be considered constant and camera motion is dominated by translation. The Shi-Tomasi algorithm is

slightly slower than Harris-Stephens algorithm, but tends to detect faint corners better and proved

adequate for region matching over longer time spans, which corresponds to wider baselines and more

parallax. Thus, a variation of the Shi-Tomasi algorithm is chosen as corner detector for the proposed

matching system since the target motion model expects some parallax. Lowe has a robust detector

that finds keypoints over scale and space. SIFT keypoints and SIFT matching are used for evaluation

and comparison in chapter 8.

Since the Shi-Tomasi detector is more sensitive then the Harris-Stephens detector, it tends to

find more spurious corners that are in fact edges (unidirectional texture patterns). These responses

are in fact outliers and are difficult to accurately match in practice. Unlike the Shi-Tomasi detector,

the Harris-Stephens detector is a combined corner and edge detector that can differentiate between

edges and corners in its signed metric. In order to eliminate the spurious edge responses from the
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Figure 4.5: Typical example of the pairwise matching method proposed in this chapter. Matching
points are shown with the same marker shape, width and color, which are picked randomly. Marker
shapes can be dots, circles, stars, crosses, squares, triangles etc. Colors used are blue, red, green,
yellow, black, among others. Occasionally, different matches may have an identical random marker
due to small finite number of distinct possible markers. However, ambiguities are often not confusing.
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Figure 4.6: Detail of the same example as figure 4.5 with estimated matches shown using only small
dot markers, which provide better visualization of match accuracy.
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Shi-Tomasi detector while keeping the interesting faint corners it detects, the two detectors are

combined.

The two detectors and the proposed combined detector are described here for comparison. The

Harris-Stephens detector is based on a structure tensor ST (per pixel) in which elements are local

averages of a function of image gradients:

St =
∑
u

∑
v

w(u, v)

 ( ∂I∂x )2 ( ∂I∂x
∂I
∂y )2

( ∂I∂x
∂I
∂y )2 ( ∂I∂y )2

 (4.1)

where w(u, v) is a rotationally symmetric Gaussian averaging function. The size of the two eigenvalues

of the tensor matrix λ1, λ2 (which can be ordered λ1 ≥ λ2 ≥ 0), indicate whether the intensity in

the pixel is varying in more than one direction:

Case 1: no features are found if λ1 ≈ 0 and λ2 ≈ 0,

Case 2: an edge is found if λ2 ≈ 0 and λ1 is large and positive,

Case 3: a corner is found if both λ1 and λ2 are large and positive.

Given that the computation per pixel of the eigenvalues of the structure tensor ST is expensive,

cornerness functions were designed to avoid the eigenvalues computation directly:

MHarris-Stephens = λ1λ2 − κ(λ1 + λ2)2 = det(ST )− κ trace2(ST ), (4.2)

MShi-Tomasi = min(λ1, λ2) = trace(ST )−
√

trace2(ST )− 4 det(ST )
2 , (4.3)

where κ is a tunable sensitivity parameter, here set to κ = 0.04. Negative scores for MHarris-Stephens

indicate edges, small magnitudes suggest featureless regions, and larger positive values suggest corners.

Large positive values also suggest corners for MShi-Tomasi, which otherwise display small nonnegative

magnitudes at noncorner regions.

Harris-Stephens corners are defined as local maxima (using 8 nearest neighbors) of the metric

in equation (4.2) computed over the image space that satisfy the minimum quality condition in

equations (4.4) and (4.5). Analogously, Shi-Tomasi corners are defined in terms of the local maxima
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Figure 4.7: Edge responses on two aerial images of urban scenes. The red regions are the locations
where the Harris-Stephens detector has negative cornerness value, indicating the likelihood of an
edge. The proposed interest point detector rejects corners on red regions according to equation (4.8).

of equation (4.3) and conditions in equations (4.6) and (4.7):

MHarris-Stephens(x, y) > τ
HS
, (4.4)

τ
HS

= Qc ·max
x,y

MHarris-Stephens(x, y), (4.5)

MShi-Tomasi(x, y) > τ
ST

, (4.6)

τ
ST

= Qc ·max
x,y

MShi-Tomasi(x, y). (4.7)

where Qc is scalar quality level parameter 0 < Qc < 1 specifying a minimum score for corners with

default value Qc = 0.01.

Regarding the combined detector, (x, y) is an interest point if it is a Shi-Tomasi corner and its

Harris-Stephens cornerness measure satisfy the following edge rejection condition:

MHarris-Stephens(x, y) > 0. (4.8)

Therefore, the combined detector is in fact a Shi-Tomasi corner detector that uses the Harris-Stephens

metric to eliminate edge responses, as illustrated in figure 4.7. The combined detector metric MSTHS

is given by

MSTHS(x, y) =

 MShi-Tomasi(x, y) : MHarris-Stephens(x, y) > 0

0 : MHarris-Stephens(x, y) ≤ 0
, (4.9)
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and the interest points are every (x, y) such that

MShi-Tomasi(x, y) is a local maximum, (4.10)

MHarris-Stephens(x, y) > 0. (4.11)

Figure 4.8 provides a comparison of the three described corner detectors. There are a total of 1749

Harris-Stephens corners (green circles), and 5062 Shi-Tomasi corners, from which 179 are considered

outliers (larger red dots) and the remaining 4883 are the result of the combined detector (blue dots).

Some corners in figure 4.8 appear as edges at the displayed resolution, however they are true weak

texture corners noticeable only in detail. This is a desirable result as such weak corners can be

tracked, and when some are in fact edges, they are often ignored at the matching stage. Edges are

ambiguous to track as they can match anywhere along themselves, causing the proposed matcher to

often fail to estimate a single matching location for them.

4.3 Matching process

Given a set of interest points found in an image, normalized cross-correlation is the matching tool

used to find their matches in a target view.

The matching paradigm used here is different from the one in SIFT matching [74]. In [74], a

database of interest points is computed independently for each image and their descriptors are

compared to find a match. In this chapter, an interest point is a corner and its match can be

anywhere in a search region in IT assigned to the corner. Normalized cross-correlation provides a

similarity score for each interest point in IR and all possible locations inside its own search region.

No corners are estimated in IT .

The normalized cross-correlation similarity measure is not salient enough to pinpoint a true

match by simply locating a global maximum, but empirically the true match lies at a local maximum.

Section 4.3.1 describes how to choose potential matches of a point as local peaks of C(u, v).
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Corner detectors:

Harris−Stephens

Proposed and Shi−Tomasi

Shi−Tomasi only

Figure 4.8: Interest point detection. Top: an aerial image. Bottom: detected interest points from
corner detectors. Harris-Stephens corners are shown as circles and Shi-Tomasi corners are shown as
“dots” (blue or red). Larger dots, displayed in red, are Shi-Tomasi corners that the proposed detector
rejects as spurious edge responses using its combined metric from Harris-Stephens and Shi-Tomasi
detectors. The remaining dots, in blue, are the combined detector responses and include legitimate
corners the Harris-Stephens detector does not find, e.g., the ones at the windows of the building and
road surface markings.
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4.3.1 Correlation peaks

This section is implemented on a GPU (see chapter 7 for details). For each interest point xR = (x, y)

in a reference image IR, a search for a match in the target image IT is carried out using normalized

cross-correlation, as defined in equation (3.7) with uniform weights.

The template t(x, y) is a square centered at xR with side ts = 2ta + 1, where ta > 0 is the the

template apothem, an integer template radius. The default apothem of 5 pixels yields a template

size of 11× 11, which empirically provides a good trade-off between the bias in large sizes and the

variance in small ones, as discussed in section 3.2. The search window is a rectangular subimage

S(x, y) of IT presumably containing the matching feature of xR. S(x, y) could be at any location

and be of any shape. Two rectangular shapes are considered:

• Full image. If no prior knownlege of the scene is known, S(x, y) is the entire target image.

• Epipolar strip. If a fundamental matrix is known, according to epipolar geometry, S(x, y) is

reduced to a strip around epipolar lines (group of adjacent rows after rectification). The strip

height is thin, but it is as wide as the rectified image IT .

A correlation coefficient is computed for each location aligned with the pixel grid where the

template fits inside S(x, y). The result is a 2-d array of correlation coefficients C(u, v) of size Cu×Cv,

denoted as correlation scores. Note, interest points lying too close to the reference image borders

are discarded if a template patch centered on them does not fit inside the image. Moreover, the

size of S(x, y) is controlled by the desired size of the correlation window C(u, v) and the size of the

template t(x, y) (see section 3.2.1).

In the typical image matching scenario, corresponding features are observations of a 3-d point

from distinct viewpoints. Ideally, the observations would be identical and their correlation score

would be C = 1. In practice, they are not, but the matching location is a local maximum of the

correlation array with peak score C ≤ 1. Moreover, often a peak in C(u, v) with the highest score

γmax = max
i,j

C(i, j) (4.12)

is not the true match and any local maximum could be a potential match candidate. Furthermore, the

highest peak (and the true match location) may sometimes present a relatively low correlation score
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Figure 4.9: Distributions of the correlation scores of all estimated matches of an aerial urban scene.

due to viewpoint changes, quantization and noise. Figure 4.9 shows the distributions of correlation

scores of uniquely estimated matches of two scenes, one with 26 images and the other with 46. The

matches are estimated and disambiguated by the framework of this chapter. Both scenes are aerial

views or urban areas and were matched using a window of Rf = 4 adjacent frames. The distributions

suggest that the majority of matches present correlation scores from 0.7 to 1.0 in one scene, whereas

the range for the other is 0.6 to 1.0. Note, true match scores tend to decrease with increasing baselines

and are affected by partial occlusions.

In order to detect matches in all quality ranges, matches of an interest point are pruned according

to the best score of all peaks. Analogously to the pruning of detected corners in equation (4.5), a

scalar quality level parameter 0 ≤ Qm ≤ 1 specifies a minimum peak score. Peaks with correlation

scores C(u), u = (u, v), such that

C(u) ≥ γmaxQm (4.13)

are preserved, others are discarded. Note, allowing low score peaks through equation (4.13) may

include false matches that will be discarded at later stages of validation and disambiguation.

A peak location in C(u) is associated with an image coordinate in IT (xT ), xT = (x′, y′), using

the natural change of coordinates

xT = m(u) (4.14)

from the domain of C to the domain of IT . m(·) is defined as in figure 4.10 in terms of the relative

positioning of the correlation windows.
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Figure 4.10: Domains of correlation windows. t is a small subimage of IR, S is a subimage of IT and
C is the resulting correlation window. The location (u, v) in the domain of C is associated with the
underlying location (x′, y′) in IT if C(u, v) was computed with t centered at (x′, y′). This means the
correlation coefficient between the patch t(x, y) and the patch around IT (x′, y′) is C(u, v), and, the
natural change of coordinates m(·) between domains is m(u, v) = (x′, y′).

For a given interest point xR in IR and its correlation array C(u), let hp(xR) be the set of all

remaining correlation peaks of C(u) that satisfy equation (4.13):

hp(xR) = {u | C(u) ≥ γmaxQm is a peak of C(u)} . (4.15)

Hence, hp(xR) includes the highest peak location and possibly other peaks with high confidence

scores according to Qm and γmax. However, the peaks are sampled at the pixel grid. A refinement

is required for subpixel accuracy and it is preformed using a bivariate quadratic function bû fit to

the local 3× 3 pixel neighborhood of each peak û ∈ hp(xR). The bivariate (two variable) quadratic

function is a second-degree polynomial of the form

b(u) = Au2 +Bv2 + Cu+Dv + Euv + F. (4.16)

The subpixel refinement updates a peak location û and its value C(û) to the ones from the peak of
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bû , as follows:

û 7→ û′ = arg max bû , (4.17)

C(û) 7→ C(û′) = max bû . (4.18)

With this notation, let rp(xR) be the set of refined peaks of xR, where the crude peaks were taken

from hp(xR):

rp(xR) = {xT = m(u′) | ∃u ∈ hp(xR) such that u 7→ u′} . (4.19)

Here, xT = m(u′) is the change of coordinates presented in equation (4.14). Consequently, rp(xR)

stores refined match locations in IT for an interest point xR in IR, while hp(xR) was storing integer

peak locations from C(u, v).

4.3.2 Weak corner removal

Intensity fluctuations in homogeneous patches are mainly dominated by noise and normalized cross-

correlation enhances such noise of homogeneous regions by normalizing the patch signal subtracting

its mean and dividing by a small standard deviation. As a result, it is possible a noticeable corner

becomes highly correlated with homogeneous points by coincidental resemblance of the normalized

intensities, as shown in figure 4.11. Such matching points have weak corner scores since they are in

fact not even near corners. In order to avoid these false matches, every match candidate xT ∈ rp(xR)

is required to have similar corner scores to xR. Match candidates xT are rejected if

RM (xR,xT ) = MSTHS(xR)
MSTHS(xT ) > τc (4.20)

whereMSTHS is the corner metric defined in equation (4.9). Note, no corners are detected in the target

image. Detected corners are interest points in the reference image and normalized cross-correlation is

used as the matching tool. The matched points are not necessarily corners, which would be located

at metric peaks (see section 4.2). As the corner metric can be computed anywhere, its values at

matched points are analyzed in equation (4.20) for pruning purposes only, rejecting matches that

have corner metric value very low in comparison to its match. Let pm(xR) be a subset of rp(xR)
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(a) A feature location.

(b) Peaks of the correlation function along an epipolar line.

Figure 4.11: Illustration of normalized cross-correlation peaks at homogeneous locations. (a) A
feature location that is a strong corner of the edge of a white stripe. (b) Correlation peaks associated
with the feature are presented in a new viewpoint. While the true correspondence is at the center
and other plausible matches with similar texture are found, many others located in homogeneous
regions are clearly erroneous and are discarded based on relative corner scores.

that successfully pass equation (4.20) test:

pm(xR) = {xT ∈ rp(xR) | RM (xR,xT ) ≤ τc} . (4.21)

Therefore, pm(xR) is the set of all putative matching feature locations established in IT for an interest

point xR from IR.

4.3.3 Collection of sets of match candidates

Denote Mc(IR) the collection of all putative matches sets pm(xR) for every interest point xR detected

in IR:

Mc(IR) = {pm(xR) | xR is an interest point of IR} . (4.22)

The sets have potentially multiple matches. Figure 4.12 illustrates the distribution of the cardinality

of these sets for a given image pair and the two types of investigated search windows: full image

and epipolar strip (see section 4.3.1). Figure 4.12 shows the benefits of searching for peaks around

epipolar lines versus the entire image. The experiment is in native image resolution. Interest points

are colored according to the number of putative matches (cardinality of elements of Mc). Interest

points such that their true match is not visible in the target image are expected to have no peaks.

A full image search presents high-level of match ambiguity given very few points are unambiguous
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(single peak), and essentially every point has peaks, except the ones unprocessed due to proximity

to an image border where the template patch does not fit. The epipolar strip search not only is

faster, but it presents a higher quality result, e.g., in the distribution on the bottom-right corner of

figure 4.12, the majority of matches are unambiguous. In addition, most points that have no peaks

do not actually have a true matching point visible in IT .

In conclusion, very distinct points will have a single match candidate under a restricted window,

but multiple potential matches may very often exist for others. This suggests that disambiguation

processes are crucial. Section 4.4 describes the use of several geometric relations and confidence

tests to unveil a reliable match estimate when there are multiple choices. In addition, a fundamental

matrix F must be available in order to search for matches around epipolar lines. F can be computed

either from estimated cameras or matches, however no information is known ahead of time. This

problem is solved with an initial low-resolution matching step discussed in detail in section 4.3.4.

4.3.4 Initial low-resolution matching

According to discussion at the end of section 4.3.3, can the full image search be avoided? In the sense

of finding the fundamental matrix without any prior knowledge of the scene, it is unavoidable, but

it can be expedited by preprocessing downsampled images. Since no prior information is known, a

low-resolution full image search is first performed to find match collections, followed by disambiguation

(section 4.4). This search and disambiguation is actually the complete matching pipeline of this

chapter running on downsampled images. The only matched points are low-resolution features, which

are regularly not ambiguous as the ones in high spatial frequencies. Then, the unambiguous matches

are used to estimate a fundamental matrix F to drive the iterative disambiguation process, which

finds more matches and refines F . Since the images are smaller, the additional processing time is

negligible compared to the time of a native resolution full image search (roughly 20-100X slower,

depending on data and GPU architecture).

In summary, low-resolution matching is performed to estimate F and avoid inefficient full image

search at native resolution. The disambiguation (section 4.4) increases the number of matches, which

augments the accuracy of F to allow an efficient epipolar strip search with a thin strip.
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Figure 4.12: Comparison of spatial distribution and density of normalized cross-correlation function
peaks. Left images: search window is the full image. Right images: search window is a strip around
the epipolar line. Top row: reference image interest points colored according to the legend based on
the number of peaks they are highly correlated with in the target image. Center row: associated
target image peaks for selected interest points. The density of unambiguous points, which have a
single match (red circle markers), increases drastically when performing an epipolar strip search.
Unambiguous points are useful for initial estimates of fundamental matrices essential to the matching
process. One point with relatively high match ambiguity (triangle marker) is shown for each search
type. Bottom row: illustration of the distributions of number of peaks per interest point for the two
search cases.
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4.3.5 Native resolution matching

After low-resolution preprocessing, the matching returns to the original scale. The estimated F

is scaled back to native resolution to rectify and perform matching on the original images. This

is illustrated in the flowchart in figure 4.3. The epipolar strip search is then used for normalized

cross-correlation. The resulting collection of matches in native resolution is disambiguated through

the processes described in section 4.4, identically as it was done for low-resolution matching.

4.4 Disambiguation process

4.4.1 Overview

Once a collection of sets of match candidates Mc(IR) is found, the disambiguation process analyzes

each set and determines which matches are ambiguous. This process runs in both low and native

resolution matching and is identical in both cases. When only one match candidate exists for an

interest point, the single candidate is chosen as a correspondence, except in the very rare event its

score is not positive. These matches represent preliminary matches. The interest points are then

partitioned into two groups according to match ambiguity:

• Group Um: group of interest points xR such that the disambiguation process has found a

unique match candidate xT ∈ pm(xR) to be feasible as an estimate of the true match of xR.

• Group Mm: is the complement of Um. Mm stores the interest points such that multiple

matches are a feasible correspondence.

Each element of Um represents a unique correspondence estimate xR ↔ xT . Denote these

correspondences Ũm. Preliminary matches are the initial correspondences in Ũm and are mainly

unambiguous matches. In low-resolution matching, preliminary matches represent the very first

estimated matches of an image pair, providing the first estimate of F between downsampled IR and

IT . F is required for the disambiguation process, which iteratively refines F (see figure 4.4). In

native resolution matching, preliminary matches are the unambiguous epipolar strip matches and the

fundamental matrix estimated from them replaces the one computed at low resolution, used solely
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for the epipolar strip search and rectification of native images. The new F drives the disambiguation

at native resolution. The estimation of fundamental matrices uses RANSAC and is described in

detail in section 4.4.2. The inliers from the RANSAC estimation are kept in Um, and outliers are

assigned to Mm, even though they have a single match in pm. The matching pipeline is designed to

only allow matches that tightly satisfy the epipolar constraint.

The disambiguation process launches by running an iterative series of disambiguation modules and

outlier rejection modules, as shown in figure 4.4. Disambiguation modules succeed when specifying a

match xT ∈ pm(xR) for xR ∈Mm, in which case, xR moves to Um, xR ↔ xT is included in Ũm

and xT is removed from pm(xR). There are two outlier rejection modules: one analyzes pm(xR)

and removes elements that do not satisfy a minimum quality condition for the epipolar constraint,

while the other module moves some points from Um back into Mm according to its inconsistency

criterion. Interest points xR that rejoin Mm return to the disambiguation process with one least

match candidate in pm(xR), due to the removal that happens when xR moves to Um. The removal

guarantees the iterative process converges even though points moved to Um may return to Mm. It

is possible that some points may end up with a single putative match in pm. This special case is

handled only by a modified version of the epipolar constraint module, described in section 4.4.5. As

a second special case, pm(xR) may become empty for some xR, which is then promptly removed

from the matching process and marked as having no match in IT .

As more matches are found, the fundamental matrix F is refined and the process repeats, as in

figure 4.4, with predominantly increasing efficiency. At any given time, the unique correspondences

associated to Um indicate the current set of estimated matches from which F is recomputed. The

iteration ends when the disambiguation process fails to assign a new match for all xR in Mm. At this

time, a non-iterative final stage of the disambiguation process employs a more accurate multi-view

module and a final pruning. The resulting Ũm is the final set of correspondences for the proposed

matching method and the fundamental matrix F estimated from Ũm is used in subsequent image

pairs matching where the current IR is used as an auxiliary view.

The remainder of this section is structured as follows. Two methods that are commonly used

throughout the disambiguation process are first presented in detail, namely the fundamental matrix
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estimation in section 4.4.2 and the ratio-inequalities test in section 4.4.3. Other procedures are

organized in the order of appearance in figure 4.4. The two basic disambiguation modules are

discussed in sections 4.4.4 and 4.4.5. Sections 4.4.6 and 4.4.10 present the two outlier rejection

methods. Section 4.4.7 gives an overview of the two multi-view disambiguation modules (described

in detail in sections 4.4.9 and 4.4.11), which adopt a third view and use a method denoted indirect

matches (section 4.4.8) to extend pairs of correspondences into triplets.

4.4.2 Fundamental matrix estimation

A fundamental matrix F between two views is computed using RANSAC [38] and a set of correspon-

dences xR ↔ xT expected to satisfy the epipolar constraint

x>TFxR = 0. (4.23)

At each iteration, a sample of 8 randomly selected correspondences are chosen to compute F using

the normalized eight-point algorithm and the number of trials necessary to ensure a sample is free

from outliers (algorithm termination) is computed adaptively by probing the data [53].

Sampson distance. In general, the correspondence pair xR ↔ xT does not satisfy equation (4.23)

and the estimation depends on the choice of an error model measuring the gap between corresponding

points and epipolar lines. The cost function chosen to enforce the epipolar constraint is the Sampson

distance, which complexity lies between the algebraic and geometric distances. The geometric distance

is the gold standard error model and it is defined and used at the epipolar transfer module (see

equation (4.33) and section 4.4.11), a final one-time disambiguation step. However, for RANSAC

estimation of F , the geometric distance is relatively expensive to compute several times. The Sampson

distance is preferred for providing a close first-order approximation of the geometric distance yielding

excellent estimation results with a much simpler implementation [53]. The Sampson squared distance

for a correspondence pair xR ↔ xT is given by

(x>TFxR)2

(FxR)2
1 + (FxR)2

2 + (F>xT )2
1 + (F>xT )2

2
, (4.24)

where (FxR)2
j is the square of the j-th component of the vector FxR. The distance is zero for true

matches and expected to be small for estimated ones. The default threshold for finding RANSAC
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inliers is the Sampson distance upper bound τf = 0.2.

4.4.3 Ratio-inequalities test

Many matching confidence tests comprise of the ratio of a given quality measure involving a feature

and its best two matching features from a set of possible match candidates. A ratio test increase

the confidence on the choice of the best candidate by ensuring it is much better than any other

alternative. For instance, in attempting to match 128-dimensional SIFT feature descriptors in [74],

the author notes that a global threshold in the distance to nearest descriptor did not perform well

for establishing a match, and a more effective measure is to compare the ratio of distances of the

two nearest neighbors. In another example, ratio tests were used to match adjacent jigsaw puzzle

pieces [44].

In the context of feature matching for this thesis, ratio tests are widely used. In addition, in the

low-dimensional 2-d image space of feature coordinates used here, a global threshold is also used to

enforce matching errors are within a few pixels or less.

The ratio-inequalities test requires defining a cost function for pairs of feature locations, e.g. the

Euclidian distance or the Sampson distance. The costs between a point in question and a set of other

possibly corresponding points is computed. Three operations on the lowest cost, d1, and the second

lowest cost, d2, are performed:

d2

d1
> τratio, (4.25)

d1 < τglobal, (4.26)

d2 > τglobal. (4.27)

If all three inequalities are satisfied, the candidate with lowest cost, d1, is chosen as the matching

point. The ratio constraint in equation (4.25) guarantees the best candidate is much better than any

other. The other inequalities are important to ensure the effectiveness of the ratio constraint in two

cases: when the lowest distances are either both too small or both too large. When both are too

small, the ratio constraint is unreliable as both costs indicate a possible true match regardless of

the ratio. When both are too large, the true match was probably not detected and choosing any
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candidate would likely be a mistake. The value τglobal represents the threshold between suitable and

ineligible matches.

4.4.4 Highest scores ratio module

Let xR be a feature with multiple matching candidates. The candidate with the highest correlation

score is accepted as the correspondence of xR if the ratio of its score and the second highest score is

larger than a threshold τhsr.

4.4.5 Epipolar constraint module

This test analyzes the proximity of the match candidates to the epipolar line associated to their

interest point. The candidate with the lowest Sampson distance is accepted as the true match if its

distance passes a ratio-inequalities test with threshold τratio = 10 and τglobal = 0.2. If there is only

one candidate left, a complete ratio-inequalities test is not feasible given at least two candidates are

required. Instead, only equation equation (4.26) is used in this case.

4.4.6 Epipolar sectors module

This section proposes an outlier rejection approach that does not use a threshold. The epipolar

sectors module rejects potentially false matching candidates by enforcing that they must lie very near

their associated epipolar lines, which are computed from the fundamental matrix F . As discussed in

section 4.4.1, F is estimated from Um, the set of estimated matches at some given time.

A Delaunay triangulation Dt (see section 3.3) is constructed on the image plane of IR from the

point locations in Um and its triangles are used to define the concept of proximity to the epipolar

lines. Note, F and Dt are computed from the same set of points Um leading to a connection between

higher spatial accuracy of F where Dt has smaller triangles, discussed later in detail.

This module complements the imposition of the epipolar constraint by a search for correlation

matches exclusively on a strip around epipolar lines, since the strip is relatively thick (21 pixels) and

has constant size. Note, correlation matches are strictly defined as local peaks in a 3×3 neighborhood,

then border correlation pixels are never considered peaks, and the effective strip thickness becomes
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Figure 4.13: Elimination of outlier matches from the epipolar sectors module, which is based on the
epipolar constraint. Matches not within a certain region around their associated epipolar lines are
discarded, reducing match ambiguity. The bounds are determined by geometric relations involving
a given point in the match disambiguation process and its surrounding points that have matches
already established. The surrounding points are vertices of a Delaunay triangle.

19 pixels. Thus, refined peak locations are at most 9.5 pixels away from the epipolar lines.

The rejection method is shown in figure 4.13 and defined as follows. Extract from Dt the enclosing

triangle of an interest point xR ∈Mm that has multiple match candidates. The reference image

camera center and the enclosing triangle define a triangular cone Ct in the 3-d scene. Let the image

of Ct in the target image be the epipolar sector, a circle sector centered at the epipole. Note, the

edges of the solid Ct are three optical rays emanating from the camera center and passing through

the enclosing triangle vertices and the epipolar sector is the silhouette of Ct seen from IT . Compute

the epipolar lines for each one of the three corners of the enclosing triangle. Since the lines all meet

at the epipole in IT , one of the lines will be in between the other two, which are outer lines defining

the boundary of the epipolar sector. Geometrically, since xR is inside the triangle, its associated

optical ray (in 3-d) lies inside Ct. Consequently, the epipolar line from xR (and likely its true match)

must lie within the sector. Therefore, all candidates outside the sector are discarded. The strength

of this test is three-fold:
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• No threshold needs to be defined.

• The rejection intensity is proportional to the spatial accuracy of the fundamental matrix

F . For instance, if matches are denser in a region, the spatial accuracy of epipolar lines

derived from F is higher on the associated part of the scene. This yields smaller enclosing

triangles, narrower epipolar sectors, and tighter bounds, since the sectors define the tolerance

for violating the epipolar constraint. Analogously, on regions of sparse matches, the bounds

are relaxed.

• Finally, the Delaunay triangulation depends on the coordinates of the matched interest points

in the reference image, but the correctness of the correspondences is basically unimportant,

since the geometric relations described do not depend on the match locations. False matches

can only affect the choice of enclosing triangles in their local neighborhood and their negative

effect on the estimation of F is negligible since the epipolar constraint is enforced on them by

the matching pipeline.

4.4.7 Multi-view disambiguation modules

Unlike the basic modules described above, multi-view disambiguation modules use an additional

third view, the auxiliary viewpoint or IA, to check for the geometric compatibility of matches using

point transfer methods. Given a correspondence in two views, which is the image of an unknown 3-d

point X, determining the image location of X in a third view with no use of image content is a point

transfer problem. This may be possible if enough geometric information is available regarding the

three views, e.g. the placement of the cameras or the fundamental matrices.

When an interest point xR on the reference view, IR, has multiple possible correspondences in a

target view, IT , that no other simpler tests were able to disambiguate, multi-view disambiguation

modules attempt to choose the correct match, if any, in one of two different ways:

Method 1: if a match has been estimated for xR on the auxiliary view, the winning candi-

date must be the closest one to the corresponding transfered point and pass a

ratio-inequalities test (section 4.4.3). This method is used by the affine transfer

modules (section 4.4.9).
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Method 2: if a match on the auxiliary view is unknown, the point transfered to it from the

winning match must be the only one to share some common appearance properties

with the interest point xR. This method relies on the low probability that a

transfered point from a wrong match would also have the common appearance, and

uses the intensity content from image IA to validate the transfered point. This

method is used by the epipolar transfer module (section 4.4.11).

The two multi-view disambiguation modules accomplish similar tasks. The main difference is that

the affine transfer modules use an approximation and are faster, whereas the epipolar transfer module

can operate without estimated correspondence triplets and uses image content. As seen in figure 4.4,

the affine transfer modules are used inside a loop, as they are faster, and the approximation used

does not disrupt the quality of disambiguated matches. The epipolar transfer module is used once at

the end of the disambiguation process when the quality of estimated fundamental matrices is the

highest, which is essential for a module designed to address matches all others fail to disambiguate.

4.4.8 Indirect matches

As seen in figure 4.14, if a point xR, in one image, matches to a point xT , in a second image, and

xT matches to a point xA, in a third image, then xR matches to xA through the pair of known

matches without actually performing a match search, defining an indirect match. Indirect matches

are a means to quickly extend two pairwise correspondences into a match triplet:xR ↔ xT

xT ↔ xA
⇒ xR ↔ xA ⇒ xR ↔ xT ↔ xA. (4.28)

In practice, one may have instead xR ↔ xT and x̂T ↔ xA, with xT 6= x̂T . One may extend these

matches into xR ↔ xT ↔ xA (or optionally xR ↔ x̂T ↔ xA) if xT ≈ x̂T :
xR ↔ xT

x̂T ↔ xA

xT ≈ x̂T

⇒ xR ↔ xA ⇒

xR ↔ xT ↔ xA

xR ↔ x̂T ↔ xA
. (4.29)

The criterion to determine if there is a unique x̂T satisfying xT ≈ x̂T among all estimated matches

from IT to IA is via a ratio-inequalities test using the Euclidian distances from xT to all points
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Figure 4.14: Illustration of matches xR ↔ xT from IR to IT and xT ↔ xA from IT to IA. xR ↔ xT
and xT ↔ xA are established through a search using the matching framework (direct matches), which
together imply an indirect match xR

IT←→ xA from IR to IA established through a common matching
point in IT without a matching search.

x̂T ∈ IT from the given correspondences. Cases where xT 6= x̂T , but xT ≈ x̂T , arise when xT is a

subpixel location matching some xR via correlation and x̂T is an interest point of IT detected as a

corner (section 4.2).

The indirect matches are used by disambiguation modules to acquire rough estimates, e.g. a

fundamental matrix between IR and IA without matching them directly.

4.4.9 Affine transfer modules

Given three views and their cameras, rays back-projected from corresponding points in two views

intersect in a 3-d point. The forward projection of the 3-d point onto the image plane of the third

view results in the corresponding point in that view. This type of transfer can rule out many false

correlation matches found in a view that are far from the transfered point.

The affine transfer modules are multi-view tests that analyze the geometric consistency of triplets

of correspondences in 3 views via estimated affine cameras, which have (0, 0, 0, 1) as the last row

of the projection matrix. The cameras are estimated using the factorization method [117, 53].

Only correspondence triplets are used. The solution is not unique and up to a full continuum of

affine transformations, yet any solution can transfer points and attempt to disambiguate matches.

Correspondences between the auxiliary and reference views must have been estimated prior to this

test. This disambiguation test is fast but approximate and is complemented by a similar method,
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the epipolar transfer module in section 4.4.11, which trades speed for accuracy.

Finding match triplets. In order to proceed, one must extend the pairwise matches into triplets

for the three views in question. This extension depends on the arrangement of the views (see

figure 4.1):

Arrangement 1: auxiliary is the prior view, followed by the reference and then the target views.

The matching order is auxiliary into the reference followed by reference into

the target.

Arrangement 2: auxiliary is a posterior view, so that the reference image interest points are

matched into it, and also into the target.

In arrangement 2, interest points from IR are matched into both IA and IT . Since the set of interest

points is exactly the same in both cases, triplets are trivially defined by the interest points matched

twice. In arrangement 1, there are in IR two sets of points: a set of correlation matches from interest

points of IA and a set of interest points of IR itself. Note, these points may not be identical and the

pairs of correspondences are extended to triplets using indirect matches (section 4.4.8).

Affine camera estimation via RANSAC. Given match triplets extended from pairwise matches,

a measurement matrix W is constructed and affine cameras are estimated using the factorization

method to decompose W into a motion matrix and a structure matrix, as described in [53] in more

detail. The decomposition is very efficient since it only uses the SVD of W = UDV > truncated to

rank 3, i.e. Ŵ = U2m×3D3×3V
>

3×n, where m denotes the number of views and n denotes the number

of triplets. Since three views are used, m = 3. The affine cameras are taken from U2m×3.

Given the estimated cameras for the 3 views, affine transfers are carried out for all estimated

triplets by triangulating corresponding rays (in pairs) into 3-d points and projecting these back into

the views to compute reprojection errors. Since the rays do not meet in space, the intersection is

taken as the point of minimum distance from both rays, i.e., the midpoint of the line segment that is

perpendicular to both rays and also join them. Given a reprojection error threshold τaffine, outliers

can be determined. This process is repeated a few times to estimate a final set of inliers and cameras

via RANSAC using a minimum of 4 random triplets at each iteration. Since the affine model is an
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approximation of the actual camera model, average inliers errors are expected to be higher than a

pixel. A threshold of τaffine = 10 pixels is chosen empirically.

Disambiguation. The reprojection error of correct matches are expected to be within the range

of the inliers errors. Multiple matches are then disambiguated based on the highest inlier error τMAX.

Given an interest point xR in the reference view that has a match xA on the auxiliary view, the

correspondence is transferred to the target as xT . Note, a match xA exists when it can be established

as in the preceding via indirect matches or intersection, respectively for arrangements 1 or 2. Given

that xR has multiple matches in the target, a winning match is chosen as the one which passes a

ratio-inequalities test on its distance from transferred point xT using threshold τglobal = τMAX and

default τratio, otherwise a match remains unknown.

4.4.10 Match topology module

Even under a careful disambiguation process, some wrong estimated matches exist due to small

inaccuracies throughout the matching procedure. This module rejects inconsistent matches based

on other neighboring matches. Given a set of corresponding points distributed in two images, the

detection insight is based on nearby points Nx
R
(defined below) of a given point xR and the nearby

points Nx
T
of its estimated match xT . The neighbor set Nx

T
tends to correspond to the set Nx

R
,

when xR indeed corresponds to xT . This relationship is expressed by the notation

Nx
R
←→ Nx

T
=
{
r ↔ l | r ∈ Nx

R
and l ∈ Nx

T
are estimated matches

}
(4.30)

representing all estimated correspondences found in the neighboring sets. If xT is a false match away

from the true match of xR, it is probable that Nx
R
←→ Nx

T
= ∅ and many of these false positives

can be easily detected assuming they are isolated within a reasonably denser set of true correct

matches. Under occlusion and in the neighborhood of false matches the cardinality of Nx
R
←→ Nx

T

is reduced even if xR ↔ xT is a true match, yet a large fraction of points in the neighboring sets

still regularly corresponds. The match topology module rejects inconsistent matches that show little

evidence of correctness via small cardinality

|Nx
R
←→ Nx

T
| ≤ nm, (4.31)
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for nm = 1. The threshold nm could be a percentage of neighbors instead, however empirical

observation suggests that enforcing at least 2 matches being the same regardless of |Nx
R
| and |Nx

T
|

produces better detection.

If equation (4.31) is satisfied, xT is discarded as a match candidate and the disambiguation

process for xR starts over. In this case, xR moves back from Um into Mm, but xT is no longer in

pm(xR).

Choosing the neighborhood structure. The k-nearest neighbors algorithm could be used to

express neighborhood, but the choice of the good parameter k is not obvious as match density varies.

The use of a 2-d Delaunay triangulation of the matched points in Um is preferred as there is no

parameter to choose and also it provides nearby matches in all directions (when available) ensuring a

surrounding neighborhood for both xR ∈ Um in IR and its match xT in IT . There is one triangulation

for the reference image and other for the target. In average, |Nx
R
| = |Nx

T
| = 6 since the sets are

computed from a Delaunay triangulation (see section 3.3), so the threshold nm = 1 corresponds in

average to 16.7% of the nearby points. Figure 4.15 exemplifies a 2-d Delaunay triangulation used by

this outlier rejection method in a pair of images.

Note, this method is a simplification of the spatial consistency method from [12], which also

takes into consideration the ratios of distances of the corresponding features xR and xT to their

corresponding neighbor matches. The proposed simplification is more suitable for real-time goals.

Moreover, the input data used here has already been pruned by other disambiguation modules and

has lower ambiguity than the data used in [12].

4.4.11 Epipolar transfer module

Given 3 views, their pairwise fundamental matrices and a pair of corresponding points in two views,

epipolar geometry dictates the matching point in the third view must lie at the intersection of the

associated epipolar lines. If no occlusion happens, the transfered point must have similar appearance

when seen in either view. Based on this evidence, the epipolar transfer module is a photometric and

geometric multi-view test that attempts to resolve ambiguous matches from an image pair using the

image content of a third view. It is performed as a last resort at the final stage of the matching



76

Figure 4.15: Illustration of match topology module disambiguation steps operating in two views of
the “templeRing" dataset. The top row shows estimated matches for the image pair. Matching points
are shown with the same marker shape and color, which are picked randomly (see section 4.1.1). The
center row displays the Delaunay triangulations computed on matching points of each image. The
triangulations are used to define the neighboring matches for each point in each view. The bottom
row presents correspondences rejected as false matches using the match topology module.
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process, applied to the most challenging points that all other attempts failed to disambiguate. Thus, it

must be more effective than the affine transfer modules, and in fact, it is theoretically more accurate

since the highest number of matches are available to encode the scene geometry via estimated

fundamental matrices. Furthermore, match location refinements are performed and there is no use of

approximations such as affine cameras.

The disambiguation is based on the similarity of the appearances of corresponding points, measured

by normalized cross-correlation. A point xA in a given view, transfered from a match candidate

xR ↔ xT in a pair of other views, must lie in the intersection of the epipolar lines associated to xR

and xT . Note, this point transfer method is called epipolar transfer [53] and it becomes increasingly

ill-conditioned as the 3-d point associated to the matches lies closer to the trifocal plane defined

by the three camera centers. In this case, the epipolar lines are coincident. In the special case the

camera centers are collinear, the trifocal plane is not uniquely defined and epipolar transfer fails for

all points. According to the proposed problem assumptions, camera geometry is unknown and the

proposed disambiguation method does not attempt to detect these degenerate conditions, it is simply

designed to provide no match under such circumstances.

Another feasible way to obtain the transfers is to compute projective cameras and project 3-d

points. The camera parameters would have to be optimized via bundle adjustment [118] to achieve

similar results as this module, but it is possible to be trapped in a bad local maximum due to small

baselines. Moreover, the optimization would be driven by the already estimated match triplets,

whereas the epipolar transfer module performs an optimization in transferring the ambiguous matches,

which are the ones requiring attention. Hence, the epipolar transfer module method is preferred

based on previous insights. The desambiguation is carried out as follows.

Estimating fundamental matrices. Let IR be a reference view, IT be a target view and IA be

an auxiliary view. Let the matching process between IA and IR be successfully finished and the one

between IR and IT be the one in progress and at the final stage. Therefore, matches between IA

and IR are already estimated, as well as many between IR and IT . If images IA and IT were never

matched, correspondences among them are quickly computed using indirect matches (section 4.4.8)

through IR. Given the three sets of pairwise matches between the views, let F10, F20 and F21 be the
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associated fundamental matrices, obtained independently as described in section 4.4.2.

Point transfer and refinement. Given an interest point in IR with several match candidates in

IT , take any of the possible putative matches xR ↔ xT . In practice, this match does not satisfy the

epipolar constraint relation

x>TF10xR = 0. (4.32)

A refinement is required to increase the disambiguation success rates under near degenerate conditions.

An optimized match would be one such that the refined points are as close as possible to the

original match but satisfy equation (4.32) relation exactly. This is accomplished in terms of the

geometric distance [53]. The geometric distance Gd(xR,xT ) minimizes the Euclidian distance of the

correspondence xR ↔ xT w.r.t. all matches x̂R ↔ x̂T that perfectly satisfy the epipolar constraint

x̂>TF10x̂R = 0 and is given by

Gd(xR,xT )2 = min
x̂>

T
F10x̂

R
=0

[
d(xR, x̂R)2 + d(xT , x̂T )2], (4.33)

where d(·, ·) is the Euclidian distance. Minimizing the geometric distance is equivalent to minimizing

reprojection error since, given projection matrices compatible with F10, the points x̂R ↔ x̂T can be

perfectly triangulated into a 3-d point X, i.e., the associated rays will meet precisely in 3-d space.

Note, the test does not need to triangulate the match into X. The minimization can be solved either

by a numerical minimization, or it can be reduced, using elementary calculus, to a more efficient

non-iterative computation of the real roots of a sixth-degree polynomial [53]. The refined match

x̂R ↔ x̂T is computed via the more efficient method involving the six-degree polynomial and it is

transfered to IA as the intersection of the epipolar lines F20x̂R and F21x̂T :

xA = (F20x̂R)× (F21x̂T ) . (4.34)

Image content analysis. The image content is now analyzed to check if x̂R and xA have similar

appearance. If not, the candidate xT is rejected as a match for xR. The image content is analyzed

via normalized cross-correlation on the rectified views IR and IA. It is sufficient to know it there is

a supporting feature on xA or its surroundings. Hence, the normalized cross-correlation operation
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is restricted to a small rectangular search window around xA with the quality parameter from

equation (4.13) set to Qm = 1 to return only a global peak, if exists. The window size is chosen

to return a correlation image of size cw × ch (see table 4.2) correlation pixels centered in xA. cw

is chosen larger to accommodate larger errors along the direction of the epipolar lines, the x−axis

after rectification. This type of error typically increases as baselines become small or camera centers

become collinear (ill-conditioned trifocal plane), both leading to shallow angles between the epipolar

lines. Small baselines and approximately linear motion are typical in computer vision applications,

as well as in the image datasets used in this thesis experiments. Nevertheless, this disambiguation

module accurately produces a decent number of matches.

Pruning and disambiguation. The above process is repeated for all putative matches xR ↔ xT

of xR. Some pruning is necessary. Transfered points with weak corner scores are discarded using the

the weak corner removal method in section 4.3.2. Moreover, similarly to equation (4.13), low-quality

peaks are also eliminated if their correlation score is not within the quality level Qm of the highest

score among of all putative matches of xR and all transfered points xA. A match xT is established

among all possible candidates if xT is the only one that has a valid supporting match around its

transfered point xA, otherwise the disambiguation fails.

4.5 Conclusion

This chapter presents a novel framework for feature matching using a GPU implementation of NCC

(presented in chapter 7), and includes a disambiguation step that runs on CPU and performs a broad

analysis of geometric relations to establish more matches. The pipeline uses no prior information

about scene geometry. The following contributions are provided:

• Combines Harris-Stephens and Shi-Tomasi corner metrics to get interest points avoiding edge

responses.

• Uses multiple ratio tests to disambiguate matches (ratios of correlations, ratios of corner scores,

ratios of distances to epipolar lines).

• Rejects outliers based on epipolar circle sectors and without using a threshold.
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• Typically does not find matches to points that are out of the target image field of view.

• Uses 3-view geometry to disambiguate matches.

• Enforces spatial consistency of matches.

• Works on environments with limited acquisition control such as aerial urban scenes.

• Achieves higher accuracy than SIFT matching (see chapter 8).



Chapter 5

Planar grid matching

Duplicated structures are ubiquitous in urban scenes and handling their inherent match ambiguity

has been an important topic in computer vision. Scene duplicates usually consist of man-made planar

objects and are very common in architectural scenes. In this chapter, planar models are introduced to

improve ambiguous matching of interest points exhibiting dense repetitive similar texture and enable

wide-baseline normalized cross-correlation matching when applicable. The planar model targets

man-made planar surfaces having a high density of nearly identical features arranged in periodic

grid patterns forming lattices, such as the windows in large tall building facades seen in figure 5.1.

Such features are difficult to disambiguate due to their density and periodicity. The algorithm deals

with significant viewpoint changes between images, multiple repeating patterns and features of a

pattern exhibiting almost identical appearances in any given image. Most existing appearance based

algorithms cannot handle densely and highly repetitive textures due to the match location ambiguity.

The target structure provides a rich set of repeating features to be matched and tracked across

multiple views, improving camera estimation. Wide-baseline tracking is possible using normalized

cross-correlation by compensating perspective viewpoint changes from frame to frame for each planar

surface. The compensation is possible via image warping through estimated planar homographies

induced by the planes of each set of tracked features. Such tracked planar objects provide a first step

in the geometric interpretation of a 3-d scene at a stage where cameras and scene geometry are still

unknown.

81
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Figure 5.1: Examples of facades of large buildings. All buildings present planar grids of densely
repeating features. In the top-right image, a small portion of the visible facades bends and does not
qualify as planar. In the bottom-right image, the grid features are only piecewise planar.

The main ideas of this chapter have been published in [4] and it is organized as follows. An

outline of the matching approach is given in section 5.1. A method for detecting planar grid points is

discussed in section 5.2. Section 5.3 describes the estimation of a lattice that fits the grid points.

The estimation of a corresponding lattice in a different image is discussed in section 5.4. Finally, a

method for tracking a lattice through multiple images for achieving wide-baseline lattice matching is

discussed in section 5.5.

Grid features are notably seen in urban scenes often as windows of large buildings. It is assumed

the depth of the plane from the camera is much larger than the variation in the depth of the planar

grid such that its image projection is approximately affine. As a consequence, it is assumed that

nearby parallel lines in the grid remain parallel in the images and spacing between adjacent features

in a given direction is constant.
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Figure 5.2: Matching pipeline for dense repetitive features, which assumes given epipolar geometry
estimated from matches of non-densely repeating features found via method of chapter 4, or via
other traditional matching method.

5.1 Overview

Appearance based matching algorithms typically fail to establish a unique correspondence between

two views of a highly repetitive texture due to the fact that the appearance is duplicated at multiple

locations in both images. Highly repetitive textures mostly occur on planar man-made objects,

especially in urban scenes with repeating structure, i.e. a homogeneous facade of windows. However,

by introducing a planar geometric constraint, the algorithm proposed in this chapter establishes a

correspondence between two views of the same repetitive structure by exploiting the global planar

geometry to disambiguate features with identical appearance.

The pipeline is illustrated in figure 5.2 and the proposed solution block is expanded in more

detail in figure 5.5. In a reference image, potential grid points are detected as features that have

many surrounding replicas in their local neighborhood found via normalized cross-correlation, and

are defined as a grid seeds. After selecting one grid seed point (figure 5.5a) a larger neighborhood

is searched for image locations with similar appearance (figure 5.5b). A Delaunay triangulation

provides edge connectivity among these similar points (figure 5.5c) which may include outliers, points

that are similar to the seed in appearance, but do not lie on the same planar object. After removing

outliers from the original Delaunay triangulation (figure 5.5d), a regular lattice is inferred from the

refined triangulation based on common edge lengths and orientations. A regular lattice is a repeating

arrangement of points in space defined by a point and two generator vectors. A planar lattice

can be seen a regular tiling of the plane by a parallelogram primitive cell (figure 5.3). Regularly

repeating features in building facades define planar lattices in 3-d space and their approximately affine
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Figure 5.3: Definition of planar lattice: a repeating arrangement of points in space defined by a point
p and two generator vectors, e1 and e2, resulting in a regular tiling of the plane by parallelograms.

projections define planar lattices in 2-d images. The aforementioned triangulation is in image space.

The estimated lattice grid points are the vertices of the refined triangulation and the two lattice edge

directions are inferred from the refined triangulation common edge orientations (figure 5.5e). Unlike

the triangulation, the lattice provides a genuinely regular topological structure to the grid features

(compare connectivities of figures 5.5d and 5.5e).

Grid points are matched individually in a target image via normalized cross-correlation while

imposing the epipolar constraint. Epipolar geometry is estimated from unambiguous matches found

elsewhere. Essentially all the grid matches are still highly ambiguous when only considering appear-

ance, due to the repetitive nature and density of the grid. Then, no planar homography mapping

can be computed to correspond the underlying planar object in two views. A homography may be

estimated using all possible matching candidates and RANSAC [38], but the search for inlier samples

is prohibitive when the ambiguity is high due to large outlier percentage. The lattice is computed

solely on the reference image and matched on the target image. One alternative approach to solve

the matching problem would be to estimate a lattice in the target view as well and match the two

lattices. In this solution, the grid points may change due to phenomena such as occlusion or specular

reflection and edge connectivities may be completely different as a lattice that fits the grid points is

not unique. Therefore, this alternative solution may be complex since the learned lattice structure is

not preserved under viewpoint change and will be considered in future work. However, other spatial
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(a) Left image. (b) Right image.

Figure 5.4: Typical example of the model-based pairwise matching method proposed in this chapter.
Corresponding points have identical markers (see section 4.1.1).

regularity constraints of lattices are preserved. Then, such constraints are used to disambiguate the

point matches and are applied in two stages. First, let a lattice line consist of a set of collinear points

along one of the generator vectors of a lattice, as the lines in figure 5.3. Constraints are applied to

lattice lines such that the sequence of corresponding matches of a sequence of lattice line points must

preserve collinearity, ordering and spacings. These constraints drastically reduce point correspondence

ambiguity simplifying the problem to disambiguating line matches (shown in figure 5.5f). Finally,

the intersection of two lattice lines must have a common corresponding point defined individually

from their line match candidates. This property of lattice lines, denoted intersection consistency, is

an important concept ensuring every grid point has a common correspondence from the two lines

it belongs to. This concludes the model-based disambiguation pipeline, resulting in disambiguated

matches (figure 5.5g). The way matches are displayed is discussed in section 4.1.1 and other examples

are given in figures 4.5 and 5.4.

After processing a lattice estimated from a seed point, a new seed is selected to process other

lattices of the same image and this new seed does not belong to a previously learned or analyzed grid,

as shown in figure 5.6. The system only returns a corresponding lattice when both the learning and

matching procedures succeed in estimating a structure conforming with a proper planar lattice. Thus,



86

 

 

Seed point

(a) Seed point.
 

 

Seed point

Clones set

Augmented clones set

(b) Seed clones.
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(c) Outlier removal. (d) Inliers triangulation.

(e) Grid lattice. (f) Unambiguous line matching. (g) New viewpoint grid matching.

Figure 5.5: Overview of the planar grid matching pipeline. In a reference image, a grid seed point
is found (a), similar features are detected as potential grid points (b), outliers are removed (c),
inliers are triangulated (d) and a lattice is estimated from the triangulation structure (e). Global
lattice spatial constraints are imposed on point matches and the problem of matching ambiguous
grid points from the reference to the target image is reduced to a line matching problem (f). The
lattice points are matched one line at a time in images taken from different viewpoints establishing
correspondences (g).

estimated corresponding lattices must present simple canonical properties derived from definition

in figure 5.3, such as line parallelism, no lines intersect more than once, every node has no more

than four neighbors, the grid points are not all collinear and the correspondences satisfy a planar

homography. These sanity checks prevent erroneous matches arising from false seed points or from

degenerate lattices. Multiple lattice correspondences are presented in figure 5.7.

Limitations The proposed method does not provide a correspondence for lattices of very skewed

facades where the grid corners are starting to merge due to narrow viewing angles (see figure 5.23),

and also for camera configurations where epipolar lines and lattice lines coincide leading to multiple

possible solutions. The method works well for large lattices and the smallest ones it handles in

experiments have in the order of six to eight points (see figure 5.6). Note, matching features in very

oblique views is difficult in general and is not a particular problem of the proposed algorithm. The
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limitation of alignment of grid lines and epipolar lines is addressed in section 5.5 through three-view

geometry.

5.1.1 Motivation for modeling planar surfaces

Planar geometry is very common in urban scenes and, under viewpoint changes, it preserves

Property 1: the collinearity of features,

Property 2: the relative ordering of a set of collinear features, and,

Property 3: the local neighborhood.

The local neighborhood represents the surrounding features of points on a plane, which are

invariant to viewpoint changes, in ways unlike on surfaces with 3-d relief. These preserved properties

are exploited to match a rich set of strong essentially identical features that are too ambiguous to

match individually without a region model.

The model-free proposed matching pipeline of chapter 4 reliably matches repeating features only

if they are not too close together as building windows are in figure 5.1. The topological constraints

of the match topology module in section 4.4.10 is not enough to handle such cases, as illustrated in

figure 5.8a. Although there are several correct matches in the ambiguous grid structure of figure 5.8a,

many are also incorrect or missing, especially for grid points in the interior of the grid, where matching

is more ambiguous and therefore more sparse than at the borders. Estimated matches of a subset of

features can be incorrectly shifted together on the grid and still preserve neighborhood topology, as

seen in figure 5.8a. The match topology module is not designed for such sparsity of correct matches,

and, as it is highlighted with a dashed red ellipse, some matches moved together to a wrong location

while preserving neighborhood topology. An incorrect shift of a match is possible due to match

sparsity causing poor neighborhood estimation, in addition to an isolated wrong match that attracts

others when enforcing match topology.

The challenge of matching a grid of dense similar features is the location uncertainty that can

only be resolved via global constraints. Note, matching similar features can be disambiguated using

the method of chapter 4 if the repetitive features are not very dense, i.e., nearest features are not

within a few pixels away from each other. The matching problem can be even more challenging
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Figure 5.6: Multiple estimated lattices of a reference image that produce correspondences in a target
image. The two processed images have equal sizes of 1280× 720 pixels and the matching results are
given in figure 5.7. Other detected lattices that have no visible correspondence in the target image
are omitted, as the one from the tall building in the top-left corner, whose estimated lattice is shown
in figure 5.19. A building facade may have multiple lattices, one for each distinct repeating corner
from windows because windows are seen as small blobs with possibly multiple corners.



89

Figure 5.7: Multiple lattice correspondences found in a single image pair. The smallest matched
lattice dimensions are 2× 4. The largest ones comprise hundreds of matches.
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under major occlusion since shifted solutions become possible even under global constraints. For

instance, a dense grid of building windows can be erroneously matched to a location shifted by two

windows, as illustrated in figure 5.8b. Note, the building facade has more points than the ones shown

in figure 5.8b because some were deliberately removed to simulate the effect of a partial building

occlusion and illustrate the possibility of incorrectly shifted grid matches. The true match of the grid

is shown in figure 5.8c. Both solutions approximately satisfy the epipolar geometry. It is difficult to

disambiguate a point independently, but is easier to detect a global biased mean error on the shifted

grid. Detecting the bias then requires the grid to be estimated and matched.

The proposed matching of dense repetitive features that uses a planar model, illustrated in

figure 5.8c, succeeds for an entire grid of repeating points under simulated occlusion and justifies the

use of a distinct plane-based matching method tailored for this type repetition.

5.2 Grid points detection

A grid denotes a collection of nearly identical feature points called grid points or clones originating

from a planar lattice in a 3-d scene. The clones in the planar grid lattice are evenly distributed

displaying evident collinear subsets. Any clone can be a seed to a procedure that detects the grid for

which it is a point. A result of the proposed grid detection method is shown in figure 5.5e.

Note, notation from tables 4.1 and 4.2 are used in the following sections.

5.2.1 Finding grid seeds

Interest points are detected in an image as in chapter 4. In order to find an interest point that is

a potential grid seed, correlate every interest point xR in the reference image with its own local

neighborhood (in the same image) using normalized cross-correlation as in section 4.3.1 with the

quality level parameter set to a high value Qm = 0.9. Qm is presented in equation (4.13). The

returned matching peaks are nearby features resembling the interest point, i.e., clones of xR. The

search areas are small squares around each interest point. The size of the square Ssq is chosen as

Ssq = 0.05 ·min (width(IR),height(IR)), (5.1)
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(a)

(b)

(c)

Figure 5.8: Matching results for highly repetitive urban scene features. (a) Proposed model-free
matching using epipolar geometry, multiple view disambiguation and match topology module of
chapter 4. Matching is sparse everywhere on the dense grid region and is reliable only at the borders.
(b) A possible incorrectly shifted match of an entire patch of features. Some interest points were
deliberately removed to allow illustrating shifted matches. (c) Matching using proposed planar model
of this chapter. Matching is correct even when a shifted solution is possible.
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Figure 5.9: Illustration of two grids with grid seeds and clone sets. The grid seed points are in blue,
their clones, composed of nearly identical features, are in green, and the augmented clones sets are in
red. Not every true clone is detected and outliers are present both within and outside the grid area.
On the left, clones are detected despited specular reflections disrupting their appearance.

which is a small fraction of the image size. Points with a high number of clones (at least 9 within

the square) are putative repeating grid features and potential seeds for an underlying grid structure.

The small size of Ssq is effective in finding potential seeds and at very low computational costs.

5.2.2 Augmented clones set

A grid seed is a point that presents a large number of clones in its local neighborhood. In order to

find the entire grid, a new correlation search is performed for the seed only, this time in a larger

neighborhood. The new search area is a square 5 times larger than the one in equation (5.1), a large

portion of the image. The quality level parameter is relaxed to

Qm = 0.75 (5.2)

to find clones under illumination changes such as specular reflectance and other variabilities. The

matching peaks are then points in the reference image that compose a planar grid and some outliers.
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The new set is denoted the augmented clones set and includes potentially more clones than the

original clones set, as shown in figure 5.9. Not every clone is necessarily detected and outliers exist,

some also forming a secondary and less evident grid on nearby buildings. Outliers exist within and

outside the grid region.

In figure 5.9a, bright surfaces of the scene reflect off the glass windows of the taller building where

clones are detected. A different viewpoint is shown on the top-left image of figure 5.1 illustrating the

reflection motion. Nevertheless, most clones are found even when specular illumination is reducing

feature contrast, possibly due to the normalization of the correlation matching.

The augmented clones set has outliers, is unordered and unorganized. The method for detecting

true grid points and grid structure is explained next and must be robust to outliers and some missing

features.

5.2.3 Lattice model

A Delaunay triangulation Dt of the augmented clones set is computed and there is likely outliers

present in the set, as in figure 5.10. Delaunay triangulation is discussed in section 3.3.

On inlier regions, the edges of the triangulation are expected to be periodic as the lattice and

therefore predictable, however this is not guaranteed since a Delaunay triangulation is sensitive

to some point configurations and present multiple periodic patterns, as shown in the left image of

figure 5.11 (one diagonal edge has different orientation than the others despite point regularity).

Nevertheless, the proposed grid detection method is robust to a few distinct regular patterns. Near

outliers, the triangulation edges are often in an irregular spatial configuration (see figure 5.11).

Outliers are filtered out by learning the periodic patterns of the triangulation edges and removing

points that do not fit these patterns.

Lattice feature. The learning of the lattice structure is based on the feature vector

E =
(
θ

l

)
(5.3)
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Figure 5.10: Example of Delaunay triangulation of grid features. Letf : a triangulation of the
augmented clone set of a grid seed showing potential grid points and some outliers. Right: triangulation
of estimated inliers.

Uncommon edges:  
long, random orientation. 

Common edges:  
short, 4 typical orientations. 

Figure 5.11: Example of common triangulation edges due to actual repetitive and periodic features,
and example of uncommon edges due to outliers, where all edges were taken from the left image in
figure 5.10.

composed of the orientation θ and the length l of an edge of Dt. The orientation angle and the length

of an edge e, given by the vector e = (ex, ey)>, are illustrated in figure 5.12 and defined as

θ = arctan ey
ex
, (5.4)

l =
√
e2
x + e2

y. (5.5)
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Figure 5.12: Illustration of feature vectors of Delaunay triangulation edges of a grid lattice point
shown in gray at the center. Six edge vectors are shown: ei for i = {1, ..., 6}. The orientation
components of the edge feature vector E are displayed for the first three edges as θ1, θ2 and θ3. The
length component is represented by the arrow lengths. By definition, the orientation feature for e1
and e4 are approximately the same small negative angle θ1. Similarly for e2 and e5 orientations as
θ2, and for e3 and e6 as θ3.

Therefore, −π/2 ≤ θ ≤ π/2. Thus, edge vectors for neighbors that are in approximately opposing

directions, e.g., Θe and π + Θe, are represented by a single orientation, which is desirable, since

opposing directions are interchangeable for representing a single lattice edge direction.

Lattice distribution. In order to derive the lattice structure from the triangulation Dt, assume

the distribution of the edge feature vectors E follows a 2-d mixture of Gaussians density function,

f(X|Θ). The vector Θ represents the mixture parameters: Gaussian weights wk, mean vectors µk

and full covariance matrices Σk (k indexes Gaussian mixture components). The mixture f(X|Θ) is

given by

f(X|Θ) =
K∑
k=1

wk g(X|µk,Σk), (5.6)

g(X|µ,Σ) = 1
|2πΣ|1/2 e

− 1
2 (X−µ)>Σ−1(X−µ), (5.7)

K∑
k=1

wk = 1. (5.8)

The mixture parameter vector is

Θ = {θ1, . . . , θK ,K} , (5.9)

where θk = {wk,µk,Σk}.
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The mixture component parameters and the unknown number of components K are learned

incrementally according to online update equations based on [68, 96]. The update equations given an

observation Et are as follows:

wk,t+1 = (1− αt)wk,t+1 + αtqk,t, (5.10)

µk,t+1 = (1− ρk,t)µk + ρk,tEt, (5.11)

Σk,t+1 = (1− ρk,t)Σk + ρk,t
[
(Et − µk,t+1)(Et − µk,t+1)>

]
. (5.12)

where the time-varying gain αt, the posteriori probability qk,t of the k-th mixture component and

the learning parameter ρk,t are

αt = 1/t, (5.13)

qk,t = pk,t/
∑K
j=1 pj,t, (5.14)

ρk,t = αtqk,t
wk,t+1

. (5.15)

where the likelihood pk,t is

pk,t = wk,t g(Et|µk,t,Σk,t) ∀k=1,...,K . (5.16)

Note, αt = 1/t is chosen for an even contribution from each sample, integrating them over time

through the update equations. If αt was constant, it would emphasize more recent samples of E over

older ones, which would be undesirable since all edges are equally important and their ordering is not

meaningful. The number of mixture components K does need to be provided because it is adaptively

learned and updated throughout the online learning, i.e., new components are generated when current

ones cannot explain a new observation. The online update equations update all Gaussian components

simultaneously based on their posterior probability w.r.t. to each sample [68], hence use no thresholds

to determine which Gaussians are updated at every iteration.

Learning the lattice. The truly periodic features must be very common and produce strong

Gaussian components, while the outliers are normally random and generate none. If there are

multiple periodic patterns on Dt, they are also learned.

An initial pruning is performed prior to the learning. Triangulation edges define triangulation

neighbors. The number of edges connected to a vertex xR in Dt defines its number of neighboring
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Figure 5.13: Distribution of the number of neighbors of a vertex of a Delaunay triangulation of a
typical facade. Border vertices tend to have an unusually high number of neighbors (zoom in for
details).

vertices, which is often 6 for a Delaunay triangulation (see section 3.3 and figure 5.13). To reduce

the amount of outliers on the training samples, only the edges connected to vertices that have the

most common number of neighbors Nn (computed as the mode) are used and Nn is often 6. The

number of Gaussians components learned is up to K = Nn.

Only the Gaussian components with highest weights that jointly have at least 80% of the weight

are preserved, others are discarded and weights renormalized. Hence, when multiple periodic patterns

arise in Dt, all the common contributions are retained and spurious ones are discarded. Experiments

show that Nn neighbor edge orientations profiles are frequently learned, but essentially only three

are genuine and preserved with enough joint weight, representing one periodic pattern with an

emblematic hexagonal shape as in figure 5.12.

5.2.4 Iterative outlier removal

Given the learned mixture of 2-d Gaussians, each vertex xR in Dt is tested to check if all its edges

are in accordance with the mixture. The most common variety of nongrid outliers are detected to

clean the triangulation from abnormal vertices that do not conform with the learned lattice.

A discriminant value Ze is computed for each edge e of xR as the minimum of the Mahalanobis



98

distances of the edge feature to each mixture component:

Ze = min
k

√
(e− µk)>Σ−1

k (e− µk). (5.17)

The discriminants are used in an iterative pruning procedure that finds and removes highly inconsistent

outlier vertices a few at a time, update Dt and repeat. The Ze quantity expresses standard deviations

away from the mean. In theory, Ze < 2.5 represents approximately 95.6% of the volume under the

2-d normal density function used here.

An outlier on the triangulation interior affects the triangulation on its surroundings potentially

causing any of its neighbors to also appear as an outlier. The triangulation must be updated to reflect

the removal of outliers. The simple removal of outliers is not a final solution since they may still leave

holes in the lattice causing new abnormal edges due to missing grid points. The proposed procedure

copes with this problem to prevent an outlier from iteratively spreading its outlier condition outward

as Dt is updated, an issue denoted outlier proliferation. The solution is provided below.

Finding nongrid outliers. At each iteration, vertices such that a minimum number of their edges

agree with the Gaussians mixture by having a discriminant less than 2.5, i.e.,

Ze < 2.5, (5.18)

are considered inliers. The number of agreeing edges must be at least Nn/2, which often means

3 or more as the average number of edges Nn is often 6. Vertices at the borders and corners of

the lattice need special treatment as some of their edges differ from the edges of interior vertices.

To preserve border vertices and avoid outlier proliferation, some neighbors of the inliers are also

considered inliers and protected from removal at each iteration. The protected inlier neighbors are

the ones associated with edges such that their discriminant is less than 2.5. Remaining vertices are

nongrid outlier candidates and are not promptly discarded, but must satisfy an inconsistency test to

be considered an outlier.

A candidate is an outlier if 60% of its edges discriminants (Mahalanobis distances) are greater

than 5, i.e.,

Ze > 5. (5.19)
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This condition is based on the insight that outliers usually have many abnormal edges that are

statistically away from the learned model. However, some true lattice points may also have a few

abnormal edges in case of neighboring outliers or missing neighboring lattice points, as seen in

figure 5.10. In addition to nongrid outliers, another type of outlier is also detected and removed, the

redundant immediacy outliers described next.

Immediacy outliers. Small image perturbations may induce the correlation matcher to detect

a repeating feature point twice in a location only a few pixels apart, giving rise to another type of

outlier, the immediacy outlier. These outliers are noticeable on the left image in figure 5.9 and are

detected by a proximity test: if the nearest vertex is closer than a minimum distance, the point

(or maybe the neighbor) may be an immediacy outlier. The minimum distance threshold lmin is

extracted from the learned mixture of Gaussians as the lowest second component of all mixture

means. The component is the typical length component l in equation (5.3), then lmin is the minimum

average distance among lattice points. In order to detect immediacy outliers, the bound lmin must be

reduced further to handle statistical variations, given that lmin is just a mean. Let τimo, such that

τimo = lmin − 5σ(lmin), (5.20)

be the decision boundary, where σ(lmin) is the standard deviation associated with lmin. σ(lmin)

is taken from the mixture as the square root of the second diagonal component of the covariance

matrix associated with lmin. Then, it is reasonable to assume that points within τimo pixels from

each other are immediacy outlier candidates. When points are deemed too close together according

to τimo, they must be removed except for one. Keeping all points around would be problematic for

subsequent processing on the grid lattice. Furthermore, the correctness of the preserved point in

representing the most accurate lattice node is unimportant, as the accuracy of matching it in another

image is what actually matters and the lattice estimation is robust.

Among any cluster of immediacy outlier candidates, nearby points according to τimo, a vertex is

unconditionally considered an immediacy outlier (regardless of being considered an inlier by other

criteria) if its average discriminant is larger than that of its nearest neighbor.

Figure 5.14 displays the iterative outlier removal method, showing inliers, outliers and the
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triangulations. Outlier candidates that are not deemed to be estimated outliers are labeled “undefined”.

Many immediacy outliers are shown in green in the top-left image of figure 5.14 in the interior of the

grid next to inlier points.

Termination condition. After each outlier removal iteration, the structure of Dt is locally

rearranged with the outliers removed and the procedure repeats until none is left, as shown in

figure 5.14, resulting in estimated inlier triangulations as in figure 5.15. Note that nearby identical

facades may exist causing multiple grids to arise, as in the bottom of figure 5.14. In order to remove

similar nearby grids, consider ignoring all edges not in accordance with the learned model as in

equation (5.19), and keeping only nodes connected to the seed via remaining valid edges.

5.2.5 Defining grid main directions

The main directions are any two directions in the grid where a lattice can be defined by connecting

sets of collinear points parallel to each other. The directions are taken from the Gaussian mixture

learned means µk, discussed in section 5.2.3, since µk has two components and the first represents

a triangulation edge direction. There are multiple possibilities for the choice of directions, as can

be seen in figure 5.15. The main directions are chosen as the two orientations from µk such that

their relative angle is closer to 90 degrees (in the image). Note, the main directions follow from

the structure of a Delaunay triangulation in image space and need not be identical to the world

horizontal and vertical directions. In fact, relating scene and image directions is irrelevant for the

feature matching purposes of this chapter.

5.3 Grid lattice estimation

Given estimated grid points, they must be connected in a consistent way in order to form a 2-d lattice,

which consists basically of finding straight line connections along two main directions. Lattice lines

must be estimated since the grid points alone are not useful to ease image matching disambiguation.

As discussed in section 5.1.1, matching becomes more constrained and easier to disambiguate when

the neighborhood topology is estimated for a planar surface. The topology includes the grid lattice
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Figure 5.14: Iterative detection and removal of non-lattice points based on learned lattice spacings
and angles. The process starts with the augmented clones set of a grid seed point. The removal
process for the two buildings from figure 5.9 is illustrated in the top and middle rows, where the
last iteration is shown on the right. Note, on the top row, the feature windows on the top floor are
removed from the grid since those windows are larger and their spacing does not agree with the rest
of the grid. The bottom row displays the three outlier removal iterations of a building that has a
nearby identical facade and only the grid near the seed is preserved.

lines in two predominant directions, their ordering and the ordering of points within a line. This

regular spatial topology provides grid point neighborhoods similar to that of image pixels: up, down,

left and right neighbors.

To estimate lines from grid points, adjacent vertices are first connected in the two main grid

directions, forming line segments (section 5.3.1). A single grid line can be broken into multiple
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Figure 5.15: Examples of Delaunay triangulations computed from pruned estimated grid points,
shown as red dots, with grid seeds shown as green circles. The triangulations, displayed as blue
edges, depict the structure of the grid lattice.

segments if there are missing vertices or local statistical variability. Second, the segments are

iteratively merged into complete grid lines (section 5.3.3).

5.3.1 Connecting vertices into line segments

In order to connect points into line segments in one of the main directions v, as in figure 5.16, every

point is visited once. Given the first visited point p1, find its surrounding points according to Dt

and assign the neighbors along the direction v to be the two which are roughly in such orientation.

One neighbor will be in one side of p1 and the other on the opposite side, i.e., towards v and −v,

respectively. These neighbors are found via computation of the discriminants Zn(v) of their edges en

according to the mixture component associated to v, denoted µv and Σv:

Zn(v) =
√

(en − µv)>Σ−1
v (en − µv). (5.21)

In order to be considered a neighbor point along v, the associated edge must satisfy

Zn(v) < 2.5. (5.22)
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Note, this decision process is very similar to outlier removal in equations (5.17) and (5.18). If there

is more than one neighbor in each side, the ones with lowest discriminants are selected. This process

iteratively repeats for the neighbors of p1, for their neighbors and so on, growing into a line segment

of roughly collinear points. The growth ends at the borders of the triangulation or once no valid

neighbor along v is detected.

Once a line segment is found, each one of its points, must not belong to any other line parallel to

v. Thus, points assigned to a line, need not to be visited again. The segment estimation continues

at other vertices that remain unassigned, until all have been visited and assigned a line segment.

Isolated points are considered a line segment on their own (see figure 5.16a for examples) and may

be merged to other segments in the merging stage (section 5.3.3).

The entire segment detection is repeated for the second main direction of the grid. Thus, every

vertex is visited twice, once per main direction. The result of line segments detection is shown in

figure 5.16. Note, the segment estimation is robust to small distances between the grid lines as shown

in figure 5.16d.

5.3.2 Defining line segments neighborhood

The line segments provide a rough structure of the grid that is enough to find line-to-line neighborhoods.

Given a line segment sl in one direction, the two neighbor parallel segments, sl−1 and sl+1, can be

found by traversing through the other main direction, as shown in figure 5.17a. For each point in sl,

take which segment it belongs to on the other direction of the grid and traverse to its immediate

neighbors. The majority of points in sl will traverse to the same two parallel lines, which are

immediate parallel neighbors of sl. If more than two lines exist, the ones that occur more often are

chosen as neighbors of sl.

5.3.3 Merging line segments

Once all segments and their neighbors are established, they are merged to form longer and complete

grid lines. The merging is based on distances from points to lines. Let s be line segment. From the

points in s, a line is fit using SVD, resulting in a line ls. The distances from the points in s to ls are
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(a) (b)

(c) (d)

Figure 5.16: Line segments estimated for distinct grids of windows of two buildings. Segments are
presented with random colors and in two learned grid directions that are roughly perpendicular.
(a,c) Line segments in one main direction, and, (b,d) in the other main direction. In (d), the lines
are much denser and not following the world vertical direction. A segment is estimated connecting
neighboring grid points through edges of their Delaunay triangulation in a given direction. A single
lattice line may split into multiple segments and their breaking points are due to missing features,
missing triangulation edges connecting them or small statistical deviations from their associated
learned straight line model.
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(a) (b)

Figure 5.17: (a) Illustration of parallel neighbors of a line segment sl and three approximately
perpendicular segments (dashed). (b) Illustration of the decision threshold τs for points to belong to
a given fit line ls, and related variables, namely the within-line and neighbor-lines distances.

computed and their median is the within-line distance, dw(s). The distances between neighbors of s

and ls are also computed and their median is the neighbor-line distance, dn(s). These distances are

illustrated in figure 5.17b. The mean of the two aforementioned median distances is a threshold τs,

τs = dw(s) + dn(s)
2 , (5.23)

representing the half-distance between a line and its neighbors, and τs is used to determine whether

a point belongs or not to ls. The threshold τs is also used for matching lines in section 5.4.3.

The distance from a segment to ls is defined as the highest of all distances to ls from the points

composing the segment. Computing the distances from all segments to ls, the ones such that the

distance is at most τs are then merged to segment s. This process runs from the largest segments to

the smallest ones incrementally merging them into larger sets of collinear points. Once a first pass

through all segments finishes, the merging repeats to combine merged segments into even bigger ones

until nothing can be combined anymore.

Singleton-point segments. Segments with a single point can be naturally assigned to merge with

other larger segments of the same underlying grid line via the proposed merging method, but no line

can fit to them. If all segments of an underlying grid line are of singleton points, merging would fail

for lack of a fitting line. However, this is resolved by borrowing line slopes from neighbor segments

and fitting a line with such slope to the singleton-point segments. This is illustrated applied on two
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grid lines near the lower left corner of figure 5.16a that have only two singleton-point segments, but

are successfully connected as seen in figure 5.18c.

5.3.4 Organizing lines into a 2-d lattice

The iterative segment merging process of section 5.3.3 is performed once in each main direction of the

grid providing complete lines. The lines can be straightforwardly ordered given the estimated parallel

line neighborhoods (section 5.3.2). The result is an estimated 2-d lattice, as shown in figure 5.18,

where the ordering of lines is color coded: each line has a position-dependent color taken from a

gradient changing smoothly from red to yellow. In addition, the ordering of points in each line is

illustrated by connecting adjacent points with a straight line segment. Note, the merging is robust to

a sequence of missing grid points as shown near the bottom-left corner of figure 5.18a. More results

are shown in figure 5.19.

5.4 Grid matching

After a grid lattice has been established providing grid neighborhoods, the next step is to match

the grid on a target image enforcing properties of planar surface projection to disambiguate the

matching, as motivated in section 5.1.1. It is possible to either design a Markov Random Field or

heuristics to do the matching. In this section, a grid matching method using heuristics is proposed

to enforce neighborhood topology. A number of geometric constrains of planar lattices are enforced

to disambiguate the matching and essentially eliminate match ambiguity.

5.4.1 Selection of grid points to match

Section 4.2 proposes to use corners as interest points to be matched via normalized cross-correlation

in chapter 4. The reference image grid points detected in section 5.2 are different than the corners

found via method in section 4.2, yet some of these interest points can be very close to each other,

originating from the same world features. These corners at grid points are known to have poor match

quality due to high ambiguity, as shown in figure 5.8a and are then discarded together with their

existing unreliable matches from method in chapter 4. More precisely, any corner within a two pixel
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(a) (b)

(c) (d)

Figure 5.18: Grid lines detection from merging line segments. (a) Building 1 and lines in first main
direction. (b) Building 1 and lines in second main direction. (c) Building 2 and lines in first main
direction. (d) Building 2 and lines in second main direction. The sequence of dots within each line is
shown through connected adjacent segments. The sequence of lines within the grid is shown through
a colormap gradient changing in adjacent lines from red to yellow.
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Figure 5.19: Examples of estimated 2-d planar grid lattices found in images from figure 5.1 using
method proposed in section 5.3. Grid lines from two main grid directions, as the ones displayed in
figure 5.18, are shown in a single image to depict the 2-d grid structure.
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Figure 5.20: Histograms (center and right) of the number of correlation matches of repeating grid
points (displayed in the reference image on the left). The correspondences are in a target image
(not shown). The average number of matches within a 2 pixels Euclidean distance from associated
epipolar lines is 15, and the average within 0.5 Sampson distance is 4 (see equation (4.24)).

distance to any grid point is discarded. Removed corners are replaced by the estimated grid points

that can be matched reliably using the global constraints of a lattice.

5.4.2 Match grid points independently

Individual grid points are first matched from a reference to a target image using the same normalized

cross-correlation procedure described before in section 4.3.1, retaining all high correlation peaks

along epipolar lines. The same quality level used in equation (5.2) for the augmented clones set is

used here, and the search area in rectified images is a band around the epipolar lines with 7 pixels of

thickness. The epipolar geometry is estimated from other non-grid matched points from the image

pair, estimated from method in chapter 4. Note, correlation matches are strictly defined as local

peaks in a 3× 3 neighborhood, then border correlation pixels are never considered peaks, and the

effective strip thickness becomes 5 pixels. Thus, refined peak locations are at most 2.5 pixels away

from the epipolar lines.

The average number of matches per grid point is high due to periodicity of the grid (see figure 5.20).

The points are pruned, by keeping only the ones with maximum Sampson distance of 0.5. Sampson

distance is defined in equation (4.24). Illustration of some point matches is provided in figure 5.21.

5.4.3 Reduce ambiguities by matching grid lines

Given that collinearity, ordering and neighborhood properties are preserved under viewpoint change

in the case of planar surfaces (see section 5.1.1), these constraints can be used to rule out wrong
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(a) (b)

(c) (d)

Figure 5.21: Examples of grid point matches computed individually. (a) Arbitrary feature points in
a building, where the red, green and blue are collinear. (b) Matches of previous points in a different
viewpoint. Note, the collinearity of points may be preserved even on incorrect shifted matches due to
high periodicity of the grid and narrow angle between epipolar lines. (c) Arbitrary grid points on
another building, where two subsets of points are collinear. (d) Matches of previous points in another
viewpoint showing that collinearity alone does not completely disambiguate the line matching.

matches of grid points. Given all matches of all grid points, it is possible that there is only one

matching configuration among all possible combinations that preserves the topology of the estimated

grid. However, trying every possible combination is prohibitive. In figure 5.20 example, the grid

has approximately 400 points with an average of 4 matches per point, i.e., there are 4400 distinct

match combinations for the grid. In practice, only one or a few configurations will be valid under the

discussed planar constraints, but its infeasible to test them all. This search is reduced by assuming that

the collinearity, ordering and neighborhood of grid points, which are already established in a reference

image lattice, are preserved in the corresponding lattice. However, at this stage no information about
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lattice structure in a target image is known. A solution for the lattice correspondence problem is

found by attempting to reconstruct the reference lattice properties in the target image. For instance,

match ambiguity is reduced by several orders of magnitude by first matching straight lines (collinear

points) taken from the grid lattice.

Outline of line matching constraints. It is tractable to find valid matching lines by simply

incrementally analyzing the matches of every estimated grid line point in the sequence in which they

appear. Three constraints are implemented to reduce ambiguities and each require at least three

matching points: collinearity, ordering and spacing. Let an estimated grid line have one endpoint

with N1 possible matches. Note, the grid line may have missing points due to occlusion or other

phenomena, and, the endpoints of the estimated line are not necessarily the endpoints of the true

complete line. Any of the N1 matches of the given endpoint are feasible, according to the constraints.

Any of the N2 matches of the next point along the line are also feasible given the previous point,

forming N1N2 possible line segments. Then, the only valid matches of a third point are the few that

jointly satisfy all three constraints with some of the N1N2 segments, resulting in just a few viable

match triplets. Repeating this process up to the other endpoint, the constraints may reduce the

number of possibilities to essentially one, for a lattice line with a large number of points.

The proposed matching constraints are discussed in detail next and line matching results are shown

in figure 5.22, illustrating the robustness of the matching to missing lattice points and to missing

matches. Multiple line matches may exist, yet affecting mainly short grid lines. Disambiguation of

multiple line matches is discussed in section 5.4.4.

Overview of collinearity and ordering constraints. Points from a planar grid lattice line in

a reference image must appear in the same relative order in the target image, in addition to being

collinear. It is possible that some may not appear due to occlusion or failure to match, but the

ordering and collinearity constraints are still preserved for the visible ones.

Overview of spacing ratio constraint. In order to enforce stronger geometric constraints besides

collinearity and ordering, the spacing of the matches must also agree with the spacing of the grid

points. The use of the spacing constraint may be redundant for long lines when collinearity and
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Figure 5.22: Illustration of grid line matching. (a) Views of an aerial stereo pair showing grid lines
in different colors on the left and their associated line match candidates on the right. The color of
multiple matching candidates is the same color as that of the associated reference grid line. (b) Detail
of the yellow horizontal grid line on the left image and (c) detail of its matching line on the right
image. The numbers uniquely represent a line point and its match showing the match is pointwise
correct. The line detector and matcher are both robust to local straightness perturbations on both
images, robust to missing grid points as in going from point 13 to 14 and robust to missing matches
(in sequence) as points 23, 24 and 25 exist in the grid line, but have no line matches. The absence of
matches for line points is represented by disconnecting the line at such locations. In this example,
missing matches are due to specular reflections from glass windows and are correctly skipped based
on the spacing constraint.
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ordering are already enforced. However, constraining the spacing is very useful for reducing match

ambiguity during early stages of incremental line matching when lines are still short, reducing

processing and increasing speed. Note, matching of short grid lines (up to 5 grid points) may fail to

disambiguate without the spacing constraint.

Spacing denotes the distances between adjacent grid line points. In general, under perspective

projection, spacings and their ratios are not preserved, except for the cross-ratio, an invariant number

associated with an ordered set of four collinear points. Nevertheless, as neighbor grid features are

very close together, locally their projection is approximately affine, so one may assume adjacent

spacing ratios are invariant and neighbor grid lines are parallel.

Defining the geometric constraints. The tolerance level for the collinearity constraint of a

corresponding lattice line is borrowed from the estimated lattice in the reference image and modeled

using τs from equation (5.23), a decision threshold portraying the half distance of a line to its neighbor

lines. Let t = 1, 2, 3, ..., be a parameter indexing ordered points of a grid line, xR(t) be a point of

the line and xT (t) be a matching candidate. Hence, xR(1) is the first point of the line. Let l(t) be a

line constructed by simply connecting xT (t− 1) to xT (1) and ds(t) be the signed distance of xT (t)

to l(t) computed via the dot product of xT (t) with a unit normal of l(t) in some consistent direction.

Then, as new points are incrementally matched, the inclusion of every new point xT (t) satisfies the

collinearity constraint if

|ds(t) + ds(t− 1)| < τs. (5.24)

The expression in equation (5.24) provides satisfying results. Other collinearity constraint

expressions were tested, such as the cumulative sum |
∑t
u=1 ds(u)| or, similarly, the cumulative sum

of angle displacements, or even simply |ds(t)| < τs. However, these allowed some drifting of the

estimated matches into curved lines, in part due to the fact that l(t) is not constant.

The ordering constraint simply checks if the vectors v1 = xT (t)− xT (t− 1) and v2 = xT (t− 1)−

xT (1) are pointing in the same direction via a dot product,

v1 · v2 > 0, (5.25)

which means the points are arranged in the expected order: xT (1), xT (t− 1), xT (t).
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The spacing constraint is performed by comparing ratios of distances among neighbor points

along a line. Let xT (t) be a match candidate for xR(t) and

sr(t) = ||xR(t)− xR(t− 1)||
||xR(t− 1)− xR(t− 2)|| (5.26)

be the ratio of neighboring segments that have xR(t− 1) as a common point. Analogously, for the

matching line denote s′r(t) as

s′r(t) = ||xT (t)− xT (t− 1)||
||xT (t− 1)− xT (t− 2)|| . (5.27)

Then, xT (t) satisfy the spacing constraint if sr(t) and s′r(t) are approximately equal values. A slack

of δ = 1.1 pixels chosen empirically is allowed in each segment and, in worst case, the deviations are

in opposite directions, designating a range of values for s′r(t), namely smin < s′r(t) < smax defined

by changing the numerator and denominator of equation (5.26) as follows:

smin = ||xR(t)− xR(t− 1)|| − δ
||xR(t− 1)− xR(t− 2)||+ δ

, (5.28)

smax = ||xR(t)− xR(t− 1)||+ δ

||xR(t− 1)− xR(t− 2)|| − δ . (5.29)

Note, when smax < 0, it is replaced with the more meaningful value smax =∞, but this is essentially

unimportant as the chosen slack threshold is δ = 1.1 pixels, in which case a replacement happens only

when the grid resolution is higher than of the image and a grid would not even be easily detectable

or maybe detectable but not easy to match (see figure 5.23). In addition to relative spacing ratios,

the absolute distances of matching neighbor points is only allowed to change by a factor of 1.5

between adjacent images. This constrain in scale is in accordance with the limitations of normalized

cross-correlation matching, which does not support large scale changes. Thus, lattice matches that

violate this constrain are likely to be erroneous, as the one shown in figure 5.24.

Handling occlusions. One must deal with occlusions and missing true matches, which indistinctly

demand a procedure that estimates when it is necessary to skip one or multiple matches. When all

match candidate of a grid point xR geometrically disagree with the grid topology, then xR is allowed

to have no match and the analysis continue with the next grid point, taking into account the absence

of xR (and its match) when measuring new spacings and collinearity.



115

Figure 5.23: A grid seen from an oblique viewing angle. The resolution of the grid points is too
high for the image resolution and adjacent corner features are merging into edges. Reasonable grid
structure is still detected, however a regular lattice cannot be estimated.

The proposed geometric constraints require at least three points to be computed. It is then only

possible to detect missing matches when a line is partially matched. Then, it becomes a problem

to have the first two (or more) line points occluded in IT as there would be no true match among

candidates and there would be not enough information to detect it. The line matcher will likely still

match those points at some arbitrary location. Shifted solutions can then exist, typically of small

size due to probable inconsistency with the geometric constrains once the number of points increase.

In order to find the correct line matches under these aforementioned cases, the line matching is

always repeated starting at every line point (as if it was the starting endpoint) and moving towards

the other endpoint. When starting from a point that actually has a true match, the line is likely

to be matched correctly and be longer than other line matching candidates. The constrained line

matching robustly handles occlusion by tolerating missing grid points and skipping unmatched ones,

as illustrated in figure 5.22. Figures 5.26c, 5.26g and 5.26h provide matching results under occlusion

of the reference and/or target images.
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Figure 5.24: Erroneous corresponding lattices that would arise if neighbor point spacing scale was
allowed to change drastically. Left: a lattice detected in a reference image that is not visible in the
target image. Right: a target image erroneous lattice match correspondence that agrees with all
epipolar and lattice constrains of the proposed model-based matching except that the spacing along
horizontal rows of windows changes by a factor of roughly 2.

Handling the multiple grid line matches. For each starting endpoint, there is a line match

solution. Among all solutions, assume the line with highest number of matched points is the correct

one and discard other lines. If multiple lines have the highest number of matches, both are kept

as possible solutions and are disambiguated based on grid line topology validations discussed in

section 5.4.4.

5.4.4 Topology-preserving incremental line matching

The matching procedure discussed in this section solves a similar problem as the disambiguation

steps in chapter 4, which enforces some spatial and topological global relations into the feature

matching process. In chapter 4, features were matched individually, whereas in this section features

are disambiguated in groups, i.e., grid lines composed of a set of collinear points. Figure 5.22a has

examples of line matches, some of which require disambiguation. Note, the ambiguity of line matches

seen in figure 5.22a is smaller than is the ambiguity of matching individual points (c.f . figures 4.12

and 5.20).

Grid topology is enforced using estimated grid line neighborhoods and line intersections. The

matching process starts by attempting to match a grid line using procedure in section 5.4.3.
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Matching the first line. The initial line match must be unambiguous and/or highly reliable.

The longer the line, the more reliable its matching line is given all points must satisfy geometric

constraints. Therefore, the grid lines with the largest number of matched points are matched first

using method in section 5.4.3. The top line may have multiple matches, which are disambiguated if

the top line has only one line match that satisfy an additional validation geometric constraint, the

epipolar validation discussed next. If the disambiguation of the top line fails, the search continues

attempting to match the second highest ranked line and so on, until one match is established.

Epipolar validation of matching lines. The epipolar validation used for individual points is

different than the one used for lines. The bounds used to enforce epipolar constraint on individual

point correspondences, given in section 5.4.2, are relaxed w.r.t. line matching since the estimated

fundamental matrix may have isolated spatial inaccuracies that would sporadicly rule out true point

matches on tight bounds. A line consists of a group of points and true corresponding lines must in

average satisfy the epipolar constraint better than individual points. Therefore, when line matches

are wrong and shifted, some bias is expected in the mean Sampson distance of their group of points.

A putative line match is considered valid if most of its composing points satisfy the epipolar constraint

with the tighter bounds used in chapter 4 for fundamental matrix estimation, i.e., a maximum

Sampson distance of

τf = 0.2. (5.30)

Thus, the percentage of points of a valid line match such that their Sampson distance di is lower than

τf is greater than a minimum probability value pmin = 0.6 and no Sampson distances are higher

than 1.5. In probabilistic terms:

P (di < τf ) > pmin, (5.31)

P (di > 1.5) = 0. (5.32)

Match intersection consistency. An additional spatial property used to match grid lines is

intersection consistency, which is a very important concept. When two grid lines intersect at a grid

point, their matching lines must also intersect at a common point, which is presumably the match
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of the intersection. Two intersecting grid lines are consistent if the intersection grid point has, on

both lines, a common match location that satisfies all collinearity, ordering and spacing geometric

constraints. The lines are inconsistent if the intersection matches in different locations. If one of the

two intersection matches is missing and undefined, consistency is undefined.

Matching a second line. After the first line match has been established, a second line in the

other main direction is matched in the same way. The two matches are independent of each other. At

least one of the matches is wrong if the two lines do not satisfy the intersection consistency, and the

algorithm keeps searching for other lines in the same manner until a pair of consistent intersecting

lines is found. Since these corresponding lines were matched independently and are consistent, the

match is significantly reliable.

Matching more lines. More line matches are established in the same way as the first two

(section 5.4.3) except that, in addition to other validation constraints, the intersection consistency

is strictly enforced. In fact, the intersection constraint is the main spatial property driving the

line matching disambiguation. If intersection consistency is preserved, the topology of the grid is

preserved on the target image. New grid line matches are incrementally incorporated to corresponding

grid in the target image. The incremental method expanding the matching grid is described next in

more detail.

Incremental match expansion. The matching expansion tries to add one line at a time to the

matched grid, alternating between lines of the two main grid directions. The method attempts to

incorporate larger lines first. The expansion relies heavily on the consistency of intersecting points

between matching grid lines. As new line matches are being incorporated, they must conform, in the

context of intersections, with all lines matched prior to them. Thus, the larger the matching grid, the

more constrained the matching of subsequent lines given previously matched lines, reducing match

ambiguity and processing time. The matching using intersection constraint is basically unaffected by

match ambiguities since there is essentially one coherent matching line or none because if two satisfy

intersection consistency at a point, it is likely that one is abnormal and does not satisfy consistency

on the rest of the grid. Abnormal lines are usually the small ones, so they are matched last. Note,
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(a) (b) (c) (d) (e)

Figure 5.25: The solution of the proposed lattice correspondence problem is not unique under a
degenerate configuration where an epipole and a lattice vanishing point coincide. Even applying the
global constraints of an estimated lattice (a), a grid of points (b) in a reference image exhibits a
feasible correspondence (c) and a reflected one (d) in a target image. A see-through object that has
a lattice that can realistically agree with a reflected solution (when seen from two different sides of
its plane) is illustrated in (e).

the last lines to be matched already have most of their point matches estimated ahead of time by

enforcing consistency. This process repeats until no more lines can be appended to the grid, resulting

in matched grids as in figure 5.26, which shows robustness to occlusion and oblique views useful in

wide-baseline matching (discussed in detail in section 5.5.1).

Reflected match ambiguity. A lattice has two edge directions and each one has a vanishing

point. Epipolar lines and lattice lines are coincident if an epipole coincides with a vanishing point,

leading to a degenerate configuration of the proposed planar matching model where two solutions are

possible. In the context of urban scenes, one solution is feasible, whereas the other is a reflection

of the planar surface of the lattice (see figure 5.25). The reflected solution would require cameras

located at opposite sides of the planar surface and also the features to be visible in both cameras.

However, surfaces of building facades present no such property due to self-occlusion. In addition,

seeing the object from behind would require a very large viewpoint change, which is out of the scope

of this thesis. A see-through object that could physically exhibit a reflected solution is a thin fence

(see figure 5.25e). In order to detect which solution is feasible, three arbitrary non-collinear points

{p1,p2,p3} and their matches {q1,q2,q3} are selected and the cross product (p2 − p1)× (p3 − p1)

is in the same direction as (q2 − q1)× (q3 − q1) only in the feasible solution.
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(h)

Figure 5.26: Examples of pairwise matches of building facade grid features seen from distinct angles.
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Figure 5.27: A lattice connectivity estimated in an image (right) is transfered to another image (left).

5.5 Wide-baseline matching via lattice tracking

The proposed lattice matching of method of section 5.4 is applicable for adjacent frames with

appropriate baseline, which must be relatively short. This section describes how this method can be

used in a sequence of adjacent frames to track a lattice over longer spans. The goal is to achieve

ultra wide baseline matching of planar lattices to obtain high-quality matches that improve structure

from motion.

At this stage, the algorithm assumes cameras are estimated and optimized via bundle adjustment

using image matches found via method of chapter 4. A corresponding lattice may be transfered to a

third view using three-view geometry (as in section 4.4.11) if cameras were not given. Lattice transfers

is an essential step towards wide-baseline matching as it does not require additional correspondences

search and does not suffer from the limitation of the lattice matching method described in section 5.1

(failure under alignment of lattice lines and epipolar lines). Thus, the tracking is relatively fast and

without theoretical limitations. Assuming known cameras, lattice points are actually transfered using

triangulation of matching pixel rays and forward projection of reconstructed point in a third image.

The use of camera geometry for the transfers provided better localization accuracy than the use of

three-view epipolar geometry. Note, the lattice structure and its connectivity estimated in a reference

image can be straightforwardly transfered line by line to matching lattices in other images and only

needs be estimated once per lattice track (see figure 5.27). A track is a list of corresponding locations

of a 3-d point in multiple images. A lattice track is a set of tracks for the grid points of a lattice.
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Figure 5.28: Illustration of facade registration. A planar homography estimated from a planar lattice
correspondence is used to take and image (left) and warp it (middle) such that the lattice region is
registered with respect to a second image (right). The homography is estimated from matched grid
points as shown in figure 5.27. Note, the registered grid points statistically share the same coordinate
and the unoccluded regions of the facade in the middle image is shown as if it was seen from the
viewpoint of the camera of the right image.

5.5.1 Tracking lattice planes

Matching on wide-baselines typically require tracking points among multiple short-baseline frames.

Normalized cross-correlation is still used here for wide-baseline matching since the perspective distor-

tions of large viewpoint changes can be compensated for planar surfaces using planar homographies.

The homographies are estimated from the matching grid features and used to warp images and

register associated building facades, as in figure 5.28.

Given a sequence of images, a track is initialized with a lattice correspondence in first two adjacent

views via lattice matching method of section 5.4. The lattice connectivity estimated for the first image

is transfered to the lattice in the second image. To find the correspondence in the next view, the

lattice points may be transfered then refined via normalized cross-correlation. However, the transfer

is based on geometry alone and not image intensities so it may not be accurate. When dealing with

dense repeating features, a transfer of a grid point that has an error of just a few pixels may coincide

with another grid point. A local refinement of such incorrect match does not fix it. The transfer is

instead used as a guide to reduce grid point correspondence search of the method of section 5.4 from

an epipolar line to the vicinity of the transferred point. Thus, the method of chapter 5 is then applied

on the adjacent second and third views, which returns a corresponding lattice on the third view and

a homography between them. A track has been established between the first, second and third views,

however, an error may accumulate in feature locations since there were two correlation matches
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Figure 5.29: Result of the proposed wide-baseline matching of dense repetitive features showing
robustness to occlusion and multiple planar surfaces.

between a point in the first image and its corresponding location in the third image. In order to

prevent this type of error accumulation, a refinement is performed by first warping the third image to

register the lattice region with the first image, as the warping illustrated in figure 5.28. This warping

transformation is given by the composite homography from the homographies of the two adjacent

image pairs. Second, a new correlation matching is performed directly using the intensities of the

first image and warped third image. The search region is simply the small neighborhood around the

already coarsely estimated matches, returning refined matches that are not affected by viewpoint

distortion because the facades are registered, therefore the matching is very accurate. A refined

homography between the first and the third views is also computed. Thus, error does not accumulate.

By induction, this tracking process repeats visiting subsequent views. In general, tracking advances

starting from estimated matches between the first (reference) and the n-th view and then extending

the match to the (n+ 1)-th view via adjacent lattice matches between the n-th and (n+ 1)-th views

followed by a refinement. Results of the tracking process are shown in figures 5.29 and 5.30.

The quality of the matches is validated during tracking using 3-d geometry of reconstructed grid

points. When tracks are correct, triangulated 3-d points associated to the grid features are near each

other regardless of which views were used for estimating them. If at some point the reconstructed

grid is off in 3-d space, the tracking process stops.
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Figure 5.30: Example very wide-baseline tracking of a planar facade. Top: a facade lattice detected
in a reference image. Bottom: the reference image facade lattice tracked on subsequent frames
of increasing baseline. Track is lost only when viewing angle is too oblique and grid point corner
features are not observable anymore. At such stage, tracking is no longer reliable since corner features
have merged with neighbor corners exhibiting a smooth edge feature instead, and the algorithm
automatically stops.
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The approach described here using multiple view geometry resolves the remaining limitation of

the two-view lattice matching method of section 5.4 (see limitations described in section 5.1), and is

then robust to aligned epipolar and lattice lines. Note, not every grid point is necessarily tracked on

every frame and some grid points to which track was lost can be rediscovered in further frames. This

is useful to cope with occasional specular reflections seen on glass building windows, which provide

common lattice features, among other factors that may disrupt the observed features.

5.6 Conclusion

The feature matching method presented in this chapter assumes the existence of grids of repeating

features with planar geometry in the scene and exploits this global spatial information to resolve a

highly ambiguous correspondence problem. The procedure handles the very ambiguous matching of

very repetitive features common in urban scenes, such as building windows. Matching is solved via

fitting of multiple planar models to subsets of features in an image pair assuming the subsets are

piecewise planar. The procedure is fully automatic and assumes no prior knowledge of the scene. The

correspondences estimated via such planar models can be used to track planar regions under very

wide baselines, which improves the accuracy of structure from motion (see experiments in chapter 8),

by tracking regions among successive short-baselines pairs using homographies. The proposed method

uses the real-time normalized cross-correlation matching GPU implementation presented in chapter 7

to accelerate processing. The following are the major contributions of the proposed approach:

• the estimation of grid points, the fitting of lattices to grid points and the search for lattice

correspondences;

• the use of global spatial constraints to resolve a very ambiguous correspondence problem;

• the detection of multiple grids of similar features in a single image;

• the tracking of lattices that yields very wide-baseline matches; and

• the handling of occlusions.

Experiments in chapter 8 demonstrate that the accuracy of correspondences found with this

proposed system achieve accuracy much higher than the one of SIFT matching.



Chapter 6

Real-time Depth Estimation

Figure 6.1: Estimated depths computed in 1.1 seconds. A total of 550,000 rays and 75 million depth
candidates along the rays are processed using five images, one reference view and 4 others, three of
which are shown on the right column.

This chapter presents a parallel implementation of multiple view stereo for depth estimation

inspired by the sequential methods of [124] and [48]. Similarities are discussed througout the chapter

and proposed contributions are summarized in section 6.5. The entire multiple view stereo pipeline

is GPU accelerated and Gaussian-weighted normalized cross-correlation scores are robustly combined

from multiple views based on local peaks of a correlation function along epipolar lines. The insights

regarding the peaks will be used to define the depth continuously along each ray in the presence of

uncertainties.

126



127

Section 6.7 presents a complementary approach to fit a surface to the estimated 3-d points using

the implicit volumetric representation of [124]. The problem is formulated an solved through energy

minimization via graph cuts. The solution of this volumetric approach is a volume and the surface is

its boundary. This surface meshing method is a more efficient extension of the approach from [124]

and runs on CPU.

6.1 Algorithm description

The input to the system is a set of calibrated images and a 3-d finite bounding box defining a volume

of interest within which the object lies. The volume can be estimated at the camera calibration

stage as the bounding box containing all reconstructed features used in bundle adjustment (see

section 3.4.1). The approach consists of two steps: estimating a depth map from each input view, and

fusing the maps into a volumetric model to extract a surface mesh. In the first step, reference camera

rays are backprojected into the scene and depth is estimated using robust template matching based

on weighted normalized cross-correlation and a few nearby views. In the second step, the results

of learned depth, occupancy and visibility are merged into a volumetric voxel grid. A graphical

model is constructed such that an associated cost function optimal solution is a watertight surface

approximating the true observed surface and filling the gaps where there is no data. The following

sections of this chapter describe the first step of the algorithm in more details.

6.2 The ray grid

For a given image ray, the depth defines the location of the associated observed surface point. In

following sections, multiple view stereo is used to estimate depth along each ray independently. This

section describes the choice of such rays.

Rays in question are 3-d lines back-projected into the scene from a reference camera center passing

through given points in the volume of interest. The choice of these points define a pencil of rays of

interest, the ray grid. These points may be chosen as the center of a pixel (aligned with the image

grid) or as the center of a voxel (aligned with the voxel grid). As estimated 3-d points will be later
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converted into an implicit volumetric representation, the voxel aligned grid (VAG) is chosen, instead

of the pixel aligned grid. This choice is justified by two reasons:

Reason 1: The size of the problem is easily adjusted by a voxel grid resolution parameter.

Reason 2: Unlike pixel alignment, VAGs guarantee that every voxel is visited once by a ray.

The first reason allows for quick reconstructions if the volume has low resolution. The second

motive is important for embedding dense visibility and occupancy information throughout the entire

volume, in addition to the surface location (depth), regardless of image resolution.

One disadvantage of voxel aligned rays is that a voxel grid of size N × N × N produces N3

rays with inherent redundancy, as many rays essentially overlap. A solution is discussed in detail

in section 6.6, providing a smaller subset of the voxel aligned rays that still visits all voxels of the

rectangular volume. The reduction brings the number of rays to O(N2), suppressing redundancy

and satisfying the two reasons above.

6.3 Rectification

The first step prior to depth estimation is to rectify a stereo pair. Rectification is an image

transformation process based on epipolar geometry, the instrinsic projective geometry of stereo

vision that defines a number of geometric relations among corresponding points in 2-d images (see

section 3.1).

Motivation. Normalized cross-correlation is not invariant to scale changes, or rotations, or per-

spective distortions. In general, a square patch in a reference viewpoint corresponds to a non-square

patch on another. The motivation for using rectification for GPU-accelerated multiple view stereo is

then two-fold:

• High performance for correlation computations to search over horizontal epipolar lines, since

contiguous GPU memory access is very efficient (cached), as opposed to strided access along

vertical or tilted epipolar lines (discussed in detail in section 7.1.2);

• Invariance to vertical image scale changes and image rotations as the image rows are aligned

after rectification.
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After rectification, general perspective distortions between small correlation patches are reduced

to non-isotropic scalings and deformations that essentially only affect the horizontal direction (e.g.

skew transformations). According to Bradley et al. [17], the skew is negligible for moderate baselines

(up to 45◦ between viewing rays) and moderately horizontally slanted surfaces (up to 60◦ between

surface normal and epipolar plane). Therefore, skew is an issue mostly on wide-baseline multi-view

stereo setups, which is not the case for image sequences with small inter-frame motion, such as the

ones used in this thesis. For datasets where horizontal scaling may be present, a search over scale

factors may be necessary. There is a trade-off between computational cost and accuracy in choosing

the frequency of sampling in scale. Experimental results show that scale factors of
√

2, 1 and 1√
2

(half an octave steps) present a good balance for matching relatively small baselines, which has little

effect on an algorithm performance [17]. In this thesis, only the scale factor 1 is used.

The following sections explain the process of estimating range images from given rectified

viewpoints.

6.4 Multiple view stereo matching

The proposed multiple view stereo approach for depth estimation is discussed in this section. Table 6.1

summarizes the most important notation used in the proposed method. Some notation dependencies

are considered intuitive and omitted for clarity.

6.4.1 Similarity score along a ray

Let an arbitrary reference image i be chosen along with its M neighboring images N(i), and V be

the volume of interest in the scene. These views are expected to have small baselines and observe the

same scene from slightly different viewpoints. The images share roughly the same scale, which is

important for normalized cross-correlation methods. Let ci be the camera center of image i and ri

an arbitrary ray from ci through the volume V . The ray is uniformly sampled at a set Pr ⊂ V of

surface candidate points, each one associated with a depth. By construction, the samples do not

have to be at voxel centers. A good sampling rate along the ray can be chosen as half the size of a

voxel. The points in Pr are constrained to the volume V and project onto a single pixel in rectified
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Notation Description.
i or j Index of an image.
N(i) Set of closest images to image i.
M Number of elements in set N(i).
V Volume of interest for depth estimation.
ci Camera center of image i.
ri An arbitrary ray from ci through V .
Pr Set of uniformly sampled points (depths) along a ray r .

ej(V, r) Epipolar line segment in j associated with a ray r ∩ V .
γw A correlation coefficient from weighted normalized cross-correlation.

Sj(ej) Discrete correlation scores γw along pixels of an epipolar line ej .
Cwj (ej) Real, continuous and peak enhancing function derived from Sj(ej).
Qj(p) Backprojection of scores Cwj from image space back into p ∈ Pr.
τ Minimum correlation score Qj(p) for p to be a valid depth candidate.

Qr(p) Set of all images j ∈ N(i) such that Qj(p) > τ is valid for a ray r.
|Qr(p)| Number of elements in set Qr(p).
Q(p) Mean score of the valid values Qj(p) of p.

Table 6.1: Notation for proposed depth estimation method.

image i and onto a segment of an epipolar line in rectified image j ∈ N(i). The segment is denoted

ej(V, r), or ej for simplicity.

No information of the scene geometry is known a priori and camera models are estimated

using proposed method in Chapter 4. In order to estimate depths along rays, a photo-consistency

score must be associated to points in Pr. A location in 3-d space is photo-consistent if it displays

similar appearances under viewpoint change. In general, surfaces are often photo-consistent, while

interior or exterior of objects are not. The photo-consistency similarity score used is Gaussian-

weighted normalized cross-correlation, computed for the entire epipolar line segment ej and defined

in equations (3.7) to (3.12). Template patches t(x, y) have size tx × ty and the Gaussian weight

function w(x, y) has a diagonal covariance matrix Σw = diag(σ2
x, σ

2
y). As discussed in section 3.2.2,

the use of a Gaussian weight function is to simultaneously reduce matching bias and noise for a

given template size. In the proposed stereo reconstruction, the bias manifests itself as surfaces waves

illustrated for a scene in figure 6.2.

The correlation is carried out on image space centered at each pixel of ej , and Sj(ej) ∈ [−1, 1]

denotes these scores. These computations are very efficient on GPUs, but what is ultimately required

are the correlation values at points Pr in voxel space. A mapping is defined between these spaces
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(a) (b)

(c) (d)

Figure 6.2: Comparison of normalized cross-correlation (NCC) with Gaussian-weighted normalized
cross-correlation (WNCC) w.r.t. bias and noise effects on a dense and textured point clouds. The
points are extracted from a single reference viewpoint and four nearby views as a result of the 3-d
reconstructions from sections 6.4.6 and 6.4.7. The resolution of the points is high enough that it
may resemble a continuous surface. (a) One of the five images used from the “capitol” dataset. (b)
Reconstruction using NCC (constant weight function) with a template of size 11× 11. A significant
amount of ripples is noticeable on the planar surfaces of the building walls and ground plane. (c)
Reconstruction using NCC with a template of size 6× 6 showing that the biased waves are reduced
but many noisy spurious reconstructions appear. (d) Reconstruction using WNCC with a template
of size 11× 11 displaying the same bias reduction of a smaller template as in figure 6.2c with as little
noise as of a larger template as in figure 6.2b.
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(section 6.4.3) using a continuous representation of Sj(ej) based on its peaks (Section 6.4.2). Then,

the scores from the multiple views j are merged into a single score (Section 6.4.5). And finally, a

depth is estimated from the combined score (Section 6.4.6).

6.4.2 Peak representation

This section is performed as in [124], except that their normalized cross-correlation function was

not weighted. Assuming a Lambertian surface, if p∗ ∈ Pr is the true surface point visible at the

image associated pixel, it will in general have a high value of Sj . However, these photo-consistency

measures are noisy due to unmodeled uncertainties such as occlusions, highlights and perspective

distortions. Often, the global maximum of Sj does not correspond to the surface point p∗.

The key observation of [124] is that p∗ does show at least a local maximum in Sj . In order to

exploit this fact, a new continuous function Cwj (ej) is defined such that the local maxima neighboring

p∗ from multiple views will enhance each other, while meaningless scores between the peaks are

ignored. This is accomplished by defining Cwj (ej) as the sum of weighted Gaussian kernels centered

at each one of the peaks djk
of Sj , for all j. The weights are the values Sj(djk

) at the peaks:

Cwj (x) =
∑
k

Sj(djk
) ·G(x− djk

), (6.1)

∀ djk
: Sj ′(djk

) = 0 and Sj ′′(djk
) < 0.

where Sj ′ and Sj ′′ are the first and second derivatives of Sj . Sj is defined in discrete image space

and the Gaussian G(x) is continuous with variance σ2
g . Hence, Cwj (x) is defined in continuous image

space. The domain of its parameter x is the projection of ri in image j. The peak representation is

sparse w.r.t. storing all correlation scores Sj . Only peaks are required to evaluate the continuous

function Cwj (x). This sparse continuous representation is important for GPUs due to their relatively

smaller memory sizes.
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6.4.3 Score mapping from 2-d to 3-d

The scores Qj for each 3-d point p ∈ Pr are computed by evaluating Cwj at xj in image space, where

xj is the projection of p onto image j. The backprojected score Qj is defined below:

Qj(p) = Cwj (xj), for j ∈ N(i) (6.2)

6.4.4 Background rays

Background rays are the rays that intersect the surface in a point outside of the volume of interest.

The intersection may happen before or after the ray traverses the volume. These rays are not properly

modeled by the proposed approach and the scores associated to them are not meaningful. In general,

the normalized cross-correlation scores for background rays are expected to be relatively small with

peaks that do not often align in space. Under this assumption, background rays are filtered out, as

desired, by having invalid scores as described in section 6.4.5.

6.4.5 Score fusion

For robustness, the measures Qj(p) must be combined into a single and more consistent score. The

authors of [124] suggest combining by summing Qj(p) over all neighboring views and choose the

depth along a ray as the global maximum of the sum. This function naturally captures the peaks

reinforcement idea described in section 6.4.2, but its magnitude varies with occlusions and other

uncertainties depending on how many local peaks are missing. This suggested fusion method also

inadvertently estimate depth for all background rays.

In order to increase robustness, a more consistent combining method, similar to [48], to merge

scores based on their confidence is used. Figure 6.3 compares the proposed fusion method with the

one from [124]. In [48], the merged scores are the raw non-weighted correlations Sj and not the

robust peak reinforcing Qj scores derived from a Gaussian sum used here. First, the proposed fusion

Q(p) of the scores for a given point (or depth) p is considered valid if at least two neighboring views

present Qj(p) higher than a threshold τ > 0. The set of valid views for a ray ri in question is denoted
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Qr(p):

Qr(p) = { j ∈ N(i) | Qj(p) > τ }. (6.3)

Thus, the fused score Q(x) is valid if the cardinality of the Qr(p) set

|Qr(p)| ≥ 2, (6.4)

where |Qr(p)| denotes the number of elements in the set Qr(p). Then the number of neighboring

views defined in section 6.4.1 is limited to M ≥ 2. Finally, a valid Q(p) is defined as a normalized

score as follows:

Q(p) =
∑
j∈Qr

Qj(p)
|Qr(p)|

. (6.5)

The valid values ofQ(p) share the same range as a normalized cross-correlation function, |Q(p)| ≤ 1.

Furthermore, Q(p) ≥ τ . This function has more consistent values in the presence of highlights,

structure out of an image field of view, occlusions and background rays. These problems are common

in aerial views of tall buildings and other cluttered scenes. The pruning performed by equation (6.4)

removes many erroneous depth estimates, especially the ones along background rays, while essentially

preserving the correct ones. Figure 6.3 illustrates some interesting cases where the point being

matched is occluded, or leaves the image borders, or is on the background or is an edge.

6.4.6 Depth estimation

The depth along the ray ri is set at the global peak of a valid Q(p). A valid peak is a point pk such

that Q(pk) is larger than of its neighbors and both itself and its neighbors have valid Q(·) scores

according to equation (6.4). The depth of the surface point is estimated as

q = arg max
valid peak p

Q(p). (6.6)

If the global maximum of Q is at a extreme, given by the volume of interest boundary, it is

ignored. If no peak is valid, no geometry is reconstructed for the ray in question. The outcome of

this is a dense point cloud for each reference image that handles background rays (figure 6.4).
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(a) Point is occluded in 1 image.
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(b) Point is not on field of view of 2 images.
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(c) Point is background.
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(d) Point is an edge.

Figure 6.3: Results of fusion methods for combining similarity scores along rays from multiple
viewpoints. Thin lines show the similarity scores Qj(p) (sums of Gaussians centered at correlation
peaks) from nearby views of a reference camera. Thicker lines with circle markers show the proposed
merged score based on consensus of multiple views, which is only plotted when it is valid according
to equation (6.4). The ticker line with no marker is the merged score from the averaging method,
which magnitude decreases away from ideal 1.0 at the true match for the following cases. (a) Shows
partial occlusion of a point in one out of four views, which shifted one peak. (b) Displays the absence
of a matching point inside the borders of two nearby images rendering no scores for two views. (c)
Presents a case of a background ray where the point is not modeled by any of the nearby images and
the proposed method is nowhere valid, as desired. (d) Shows the case where a point is an image edge
roughly aligned with its epipolar line, so the locations of true matching peaks are inaccurate in two
of the four views, but the proposed score was not affected.
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Figure 6.4: Estimated depths from a given reference viewpoint of the “capitol” dataset displayed as
a point cloud from different angles. Only points with scores higher than τ = 0.6 are shown. The
points on the top and middle rows are textured with intensities from the reference image. In the
bottom row, point intensities represent the correlation score as a confidence measure. Scores within
the range τ = 0.6 to τ = 1.0 are linearly mapped to grayscale intensities from black to white. Note,
spurious points have the lowest scores.
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Parameter Default value Description
M 4 views Number of neighboring views used for multiple view stereo.
tx 11 pixels Number of columns of the correlation template patch.
ty 11 pixels Number of rows of the correlation template patch.
σx tx/6 pixels First parameter of Σw.
σy ty/6 pixels Second parameter of Σw.
Σw

( σ2
x 0

0 σ2
y

)
Covariance of Gaussian weight function for weighted correlation.

σg 3 pixels Standard deviation of Gaussian kernels in Cwj
τ 0.6 Minimum value of Qj(p) for p to be a valid depth candidate.

Table 6.2: List of depth estimation parameters used by proposed method.

6.4.7 Peak refinement

The approach described previously depends on image peak detection in sections 6.4.2 and 6.4.6. A

local peak is detected in a discrete space 1-d function f(·) as a value f(dk) that is larger than its two

neighboring values, f(dk − 1) and f(dk + 1).

Due to discretizations, an exact peak location may not have been sampled. In order to approximate

it better, a quadratic function (concave down) is fit to the peak locations dk − 1, dk and dk + 1. A

refined peak is given by the parabolic interpolation:

dpeak = dk −
b

2a, (6.7)

f(dpeak) = − (b2 − 4ac)
4a , (6.8)

where
a = 1

2f(dk + 1)− f(dk) + 1
2f(dk − 1), (6.9)

b = 1
2f(dk + 1)− 1

2f(dk − 1), (6.10)

c = f(dk). (6.11)

This refinement is applied to peaks defining Gaussian centers in section 6.4.2 and also to the

highest peak of each Q (section 6.4.6) in order to increase accuracy of estimated depths.

6.4.8 Parameters

There are a number of free parameters in the method description. The default values are presented

in table 6.2 and are chosen empirically. The entries of Σw in table 6.2 are chosen such that half of

the sides of the template patch t(x, y) match 3σx and 3σy.



138

6.5 Contributions

The proposed multiple view stereo method is inspired by [124] and the proposed fusion of similarity

scores is motivated by ideas from [48]. While the high level ideas are similar, many details are new,

e.g., the proposed method

a) explicitly handles background rays;

b) combines multiple view scores using a more consistent method similar to [48];

c) uses Gaussian-weighted correlation operators, instead of uniform weights;

d) proposes a real-time GPU implementation of the pipeline, meaning the GPU receives images,

cameras and parameters as inputs, and returns estimated depths.

These details are all important. If background rays are not explicitly handled, many incorrect

spurious points may be reconstructed. The proposed way of combining multiple view scores is

more robust to occlusions. Gaussian weighted normalized cross-correlation presents more accurate

reconstruction results reducing inherent wave patterns in estimated surfaces. The proposed framework

is a depth map estimation from a reference image. Each image in a dataset can be used as a reference

independently of other reference views and the computations for each ray are also independent from

each other. Therefore, this method is online and suitable for parallelization on a GPU. Without a GPU

implementation the method would take hours to run, instead of seconds. The GPU implementation

is presented in section 7.5 of chapter 7.

6.6 Volume far sides

Section 6.2 presented the construction of the set of rays where depths are computed for a given

volume of interest. The rays go through voxel centers (voxel aligned), as opposed to pixel centers. The

construction advantages are listed in section 6.2, but a redundancy drawback arises from ray overlaps.

This section proposes a solution to suppress redundancy assuming a convex rectangular volume of

interest, V , divided into a fixed grid of cubic voxels. This is especially useful when converting the

representation from a 3-d point cloud into a volumetric representation.
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Figure 6.5: Two-dimensional illustration of the far side of two convex shapes from a given viewpoint.
The shapes are represented by solid black lines and the far sides by dashed green lines. Left image:
the far side of a pentagon V1 from viewpoint vi includes 3 sides of the polygon. Right image: the far
side of a circle V2 from viewpoint vj is an arc. The far sides are always occluded by the shape from
the corresponding viewpoints. The lines of sight, from the viewpoint through a point p of a far side
F , always intersect the shape somewhere else first, except if p is in the border of F .

It is possible to learn dense visibility and occupancy information on all voxels of a convex volume1

V by shooting rays only at the voxels on the far sides [39] of the volume w.r.t. each viewpoint.

Definition A far side of a convex volume V with respect to a viewpoint vi (the camera center of

reference image i) is a subset F of the boundary of V such that, for all points p ∈ F , V and vi lie on

the same side of the plane defined by the tangent space at p.

Intuitively, when vi /∈ V , the far side of V are its self-occluded boundaries from vi. Figure 6.5

illustrates far side boundaries.

Remark As a consequence of the definition, a far side patch is always occluded by V from the lines

of sight from vi.
1A convex solid is a solid whose interior is a convex set. Every line segment between two points of the convex set
remains inside or on the boundary of the solid.
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Figure 6.6: Two-dimensional representation of the far side of a rectangular grid V and how it varies
if the viewpoint changes. The grid elements that belong to the far side are shown in red. Rays are
drawn from the viewpoint through the center of far side elements for each one of three different
viewpoints, showing that all elements are traversed by these rays.

Proof. Let p be a visible far side point from the viewpoint vi. Hence, vi and the interior of V are

separated by the tangent plane at p, which is a contradiction of the definition.

It is shown below that analyzing the rays through the far side provides the information needed to

estimate the visible observed surface from vi, i.e. a depth map seen from vi.

Remark The lines of sight L from vi through the far side set Fi ∈ V traverse the entire convex

volume V .

Proof. Assuming the statement is false, there would be a nonempty subset A 6= ∅ of V , such that

A is not intersected by any l ∈ L. Drawing an arbitrary ray r /∈ L from vi that intersects A and

leaves the volume at a point p, the tangent plane at p does not intersect the volume interior due to

convexity. Thus, the volume, vi and the segment from vi to p are on the same side of the tangent

plane, so p is at the far side Fi by definition, which is a contradiction.

Remark The far side of V is its entire boundary if vi is inside V .

Proof. The tangent plane of any boundary point p of V separates the space into two parts and V is

entirely contained in one part since V is convex. As V contains vi, they are both on the same side of

the plane. Hence p belongs to the far side.
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Figure 6.7: Two-dimensional representation of the far side of an axis-aligned rectangular grid showing
the dependency of the location of the viewpoint relative to the bounding box limits in each dimension.
For a dimension where the viewpoint coordinate is interior to the box limits, two sides are included,
otherwise only the opposite side from the viewpoint is included.

6.6.1 Far side of a voxel grid

If a bounded convex volume is discretized into voxels, the finite number of lines of sight from a given

viewpoint vi through the voxels on the far side Fi also intersect every other voxel. As they intersect

the voxels on the far side, where the density of rays is lower, they must also intersect the ones in the

interior and other sides, where the rays are more concentrated. Hence, if one learns depth for all

rays going through voxels v ∈ Fi, all voxels are visited during the process as in figure 6.6. Thus, the

estimated depth map is as dense as the voxel grid with occasional holes on regions of low confidence.

6.6.2 Far side of a rectangular volume

In this thesis, the volume of interest is defined as a rectangular bounding box with sides aligned with

the coordinate axes (figure 6.7). The volume is then bounded and convex, as required to define a far

side, which computation is as follows: let the volume be defined as

xmin ≤ x ≤ xmax, (6.12)

ymin ≤ y ≤ ymax, (6.13)

zmin ≤ z ≤ zmax, (6.14)



142

and the camera projection matrices be given by

Pi = Ki[Ri Ti], (6.15)

where the viewpoints are the camera centers

vi = −Rti Ti. (6.16)

Then the faces of the box that belong to the far side Fi are defined as follows. First the x dimension

is analyzed independently:

if −∞ < vix ≤ xmin, then the face at x = xmax ∈ Fi, (6.17)

if xmax ≤ vix < +∞, then the face at x = xmin ∈ Fi, (6.18)

if xmin < vix < xmax, then both faces at x = xmin ∈ Fi and x = xmax ∈ Fi, (6.19)

then analogously for y,

if −∞ < viy ≤ ymin, then the face at y = ymax ∈ Fi, (6.20)

if ymax ≤ viy < +∞, then the face at y = ymin ∈ Fi, (6.21)

if ymin < viy < ymax, then both faces at y = ymin ∈ Fi and y = ymax ∈ Fi, (6.22)

and z,

if −∞ < viz ≤ zmin, then the face at z = zmax ∈ Fi, (6.23)

if zmax ≤ viz < +∞, then the face at z = zmin ∈ Fi, (6.24)

if zmin < viz < zmax, then both faces at z = zmin ∈ Fi and z = zmax ∈ Fi. (6.25)

Note, for a cubic volume with N3 voxels, the number of rays through far side voxels is O(N2),

since the far side include only boundary elements. Computation complexity can be reduced even

further by visibility reasoning on the far side (Section 6.6.3).

6.6.3 Far side visibility

Not every far side face needs to be processed to extract all the information from a reference image.

Faces that are behind the camera, or not in the camera field of view, i.e. not within the image
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borders, do not require processing since they do not project onto valid pixel observations on the

image plane.

A way to check if a face is behind the camera is to check the sign of the z-coordinate of its Nv

vertices in camera coordinates. If Vj are the vertices in world coordinates, then check if

sign(zj) ≤ 0 for j ∈ {1, ..., Nv}, (6.26)

where

zj =
(
RiVj + Ti

)[ 0
0
1

]
. (6.27)

Checking for the visibility of a far side face is also simple and efficient, yet not as simple as in

equation (6.26). Only the vertices and the camera projection matrix are needed. Breaking the planar

rectangular face into two triangles leads to simpler implementation. A face is considered visible if

any triangular part is visible. A triangular face is composed of vertices, edges and a planar patch.

Emphasizing the camera may be inside the volume, there are 3 different ways a triangular face can

be visible, as illustrated in figure 6.8:

1. Vertex visibility: at least one vertex projects onto the image.

2. Edge visiblity: no vertices project onto the image, but at least one edge partially does.

3. Interior visibility: no vertices nor edges project onto the image, but the image borders lie

inside the projected face.

Any portion of a triangle that lies behind the camera must be removed. Cropping is necessary to

prevent non meaningful projection of these vertices. For this new possibly cropped triangle, project

the vertices Ṽj onto the image as

ṽj = Ki

(
RiṼj + Ti

)
(6.28)

and check if at least one of the 3 conditions above holds true.

In summary, if at least one of the conditions above holds true for at least one of the triangular

parts of a far side face polygon, then the face is visible. Using visibility helps reduce unnecessary

processing when the camera is close to or inside the volume, or if the volume is not entirely in the

camera field of view.
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Figure 6.8: Three-dimensional representation of the far side of a rectangular bounding box illustrating
how it changes as the viewpoint moves towards the volume. The bounding box has six faces, but
only the far side faces are displayed for clarity. Faces are displayed as two coplanar triangles. Left:
the volume far side faces from three different viewpoints and associated viewing cones. Viewing
cones are plotted as transparent gray objects from the viewpoints towards the volume and intersect
the far side borders. Right: rendered images of the far sides from the left column projected at a
camera located at the associate viewpoints. At the top and center rows, the viewing cones contain
the volume, meaning the rays through the far side traverse the entire volume. At the bottom row,
only one far side face is considered important since others are out of the cameras field of view and
may be ignored, as described in section 6.6.3.
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6.7 Surface reconstruction

This section presents a method to reconstruct surfaces taking as input the point clouds obtained

from multiple view stereo method of this chapter, which was entirely implemented on a GPU (see

section 7.5). However, the algorithm of this section is implemented on a single-core CPU.

In order to get a complete geometric representation of a scene, an algorithm is required to fit a

surface to the points, however this is an ill-posed problem with multiple solutions. State-of-the-art

methods impose global constrains in order to specify a solution according to a criterion. In general,

such methods define a binary cost function with an unary term and a smoothness cost that favors

piecewise smooth objects. In this thesis, we employ an extension of the method of [124] where the

smoothness is expressed in terms of fitting a surface that locally minimizes its area subject to a

constraint (minimal surface). The chosen constraint is that the surface must be encourage to be near

the estimated point cloud. This type of meshing favors fitting planar surfaces to regions where there

are no points, since area must be minimized, otherwise the surface take other shapes supported by

3-d points and lies near them. The solution is defined through energy minimization via graph cuts,

which is introduced in section 6.7.1 prior to the graph construction in section 6.7.2.

6.7.1 Energy minimization using graph cuts

Let a graph be a set of nodes V and set of edges E connecting the nodes where each connection has a

cost value or weight. In the context of vision methods, nodes are typically representing a random

label for pixels or voxels, and the edge costs model discontinuities between the connected nodes

and are usually derived from neighbor-nodes interactions. Let G = (V, E) be a weighted graph with

nonnegative weights with two special terminal vertices called the source s and the sink t. Terminals

here represent labels. There are two types of edges, the ones between nodes (called n-links) whose

costs penalize neighbor label discontinuity, and, the ones between nodes and terminals (called t-links),

which have costs representing the penalty for not assigning the corresponding label to the node. A

cut is a partition of the nodes into two disjoint sets that separates the source from the sink (see

figure 6.9). The cost of a cut is cost of edges between vertices in different partitioned sets shown as

thin edges in figure 6.9, denoted boundary edges.
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𝒗𝟓 𝒗𝟒 𝒗𝟎 𝒗𝟏 𝒗𝟐 𝒗𝟑 

Figure 6.9: Illustration of a cut in a graph with six vertices and two special terminals called source
and sink. The cut is abstractly shown as a dashed green line and partitions the vertices in two sets
that separate the terminals. The exact shape of the illustrated cut is not important, however the
edges it severs are associated to the cost of the partition. The vertices are colored according to the
terminal they remain connected to. The thin edges, denoted boundary edges, are the ones that were
severed by the cut and link vertices that are in different sets of the partition. There is a clear binary
labeling associated to a cut’s partition, which segments the vertices in two sets, where each set is
associated to a label (corresponding connected terminal).

The minimum cut problem in combinatorial optimization finds the cut with the smallest cost.

Ford and Fulkerson [40] have shown that minimum cut problems are equivalent to maximum flow

problems, which are loosely associated to finding the highest flow of water from the source terminal

to the sink terminal given that edge costs are pipe capacities. These dual problems can be solved

efficiently in low-order polynomial time [3, 49], however in practice, the running time is close to linear

for graphs with short paths between the source and the sink terminals [64], as the volumetric ones

typically constructed for stereo reconstruction and is used here. Intuitively, the maximum flow is

rather constrained by the pipes of smallest capacities as the minimum cut is analogously determined

by the smallest costs, namely their sum. In fact, the numeric value of the maximum flow and the

cost of the minimum cut are the same.

The partition defined by a cut is equivalent to a binary labeling and therefore graph cuts can be
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used to solve such problems, e.g. certain types of Markov Random Fields with binary variables. A

specialized graph must be constructed such that minimizing the graph also minimizes an associated

energy function. In this thesis, an energy or cost is a vector-valued binary variable function with up

to pairwise terms with nonnegative coefficients and the cost of neighbor vertices being of the same

label is zero. These functions can be minimized using graph cuts. For more general conditions on

which energy functions can be solved via graph cuts see [63].

Figure 6.9 illustrates an example of a cut with a 1-d chain graph and the boundary edges that

are n-links indicate the border between of the segmentation given by the binary labeling. For a 2-d

graph, as one constructed to model pixel neighborhoods in 2-d images, the abstract cut would be a

surface and the border would be contours. In a volumetric 3-d graph to model voxels, the abstract

cut would be a 4-d manifold and the border would be blob surfaces indicating an actual surface

location estimate if the graph is constructed to model voxel occupancy.

6.7.2 Graph construction

The surface reconstruction problem is defined in 3-d via a voxel grid. A graph is constructed such

that each voxel is associated to a vertex and the immediate voxels are neighbors in the graph as

in [124]. Graph cuts minimizes the cost function to find the optimal solution. The binary problem

has labels inside and outside meaning whether voxels are inside or outside an object. The estimated

surface is the border between labels, i.e. the surface of the observed object.

A graph is constructed as in [124] in order to model the following energy function:

E [S] =
∫∫

S

ρ(x)dA− λ
∫∫∫

V

dV (6.29)

that finds minimal surfaces subject to photo-consistent locations. Intuitively, the double integral

term computes the area of a surface S weighted by a cost ρ(x) where x are points of S. The triple

integral computes the volume of the interior of the surface.

The cost term ρ is chosen to be low only at photo-consistent locations to encourage the optimal

surface to be near true surfaces and it is defined as

ρ(x) = exp
(
−µ

∑
images

votei(x)
)
, (6.30)
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where rate-of-decay paramter is chosen to be µ = 15 and the votes are given by

votei(x) =

 Q(q) if x has an estimated 3-d point via reference image i,

0 otherwise.
(6.31)

Note, Q(q) is defined via equation (6.6) as the peak score along a ray. Thus, the images vote for a

voxel to be photo-consistent and therefore be a surface location.

In practice, the voxels that are adjacent to locations where there are 3-d points are given low

pairwise cost to encourage a change of label and, therefore, to favor surface near points. The higher

the score of a point, the smaller the cost. The double integral is modeled as the pairwise terms of

the graph by giving edges the weight of ρ(x) multiplied by the area of a voxel’s face. Thus, the cost

of a surface includes the double integral in equation (6.29) computed in a discrete way as the areas

of voxels faces where there is a label change.

The unary cost encourages the volume inside the surface to grow in order to avoid a degenerate

trivial solution where there is no surface, in which case the area is zero, if there was no unary cost.

Graph cuts always finds a global optimum and would return a trivial solution without the unary

term. This term induces an inflating force and is commonly referred to as “ballooning” cost. This is

performed by giving no cost to voxels labeled inside and a cost proportional to a voxel volume to the

ones labeled outside. The unary cost would be λh3 if a voxel has size h× h× h. This discourages

surfaces of zero volume (and zero area) because these surfaces pay a high ballooning cost. For

any surface S, this unary cost is constructed such that it reflects the value of the triple integral in

equation (6.29) computed in a discrete fashion.

Given a surface, voxel labels inside and outside are interchangeable generating the same surface.

Thus, the global minimum of the problem would be found in at least two configurations where one is

the inverse of the other by interchanging inside and outside. In order to drive the optimization to a

determined solution, boundaries of the voxel volume are assumed to be of label outside.

6.7.3 Contributions

The previous graph construction summarizes the method proposed by Vogiatzis et al. [124]. The

method is an minimization in 3-d and is very time consuming due to the high number of variables
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defining a 3-d uniform voxel grid. It also has a large memory footprint. The method was modified

to accelerate the solution, reduce memory usage and remove some limitations. Note, [124] only

demonstrate their method on indoor scenes with images taken on controlled environment with a

single object of simple geometry with nearly constant background.

The proposed contributions are summarized as follows. First, for a given reference image, the

similarity score of [124] was a function of observations from all neighbor images regardless of occlusion

of the modeled voxels in those images. This is not suitable for real-world scenes where objects

often occlude each other or the unmodeled background (objects out of the volume of interest) is

cluttered. As mentioned before, their similarity is replaced by the proposed one of equation (6.6),

which takes care of occlusions by using only images such that their scores are higher than a threshold

τ and minimum number of images Imin must satisfy this criterion. These criteria are provided in

equations (6.3) and (6.4). Note, in experiments, the values of τ = 0.6 and Imin = 2 images (i.e.

|Qr(p)| ≥ 2) are used. The proposed score generalizes the one from [124] and it is identical to it

when using τ ≤ −1 and Imin = 0.

Second, this thesis also proposes using visibility constrains to assign labels to certain voxels with

high confidence prior to optimization. For instance, voxels that lie in the line of sight of an estimated

3-d point between the 3-d point and the camera center, must be clearly unoccupied (outside).

Conversely, voxels that lie immediately behind a surface are occupied. The proposed hypothesis is

that voxels that lie near 3-d points (4 voxels or closer) are putative locations for the surface and

must be left on the graph cuts optimization, while others may be classified as inside or outside in

advance. Among these other voxels, the ones that are deemed unoccupied by lines of sight of at least

40% of the images from cameras that look towards them are assigned to label outside. Analogously,

the ones that are beyond an estimated point for at least 95% of the modeling images are deemed of

label inside. This pre-estimation drastically reduce the size of the optimization problem such that

essentially only voxels near a thin crust around the estimated point cloud enter the optimization.

Such voxels are normally near the surface. Thus, the problem was reduced from a O(N3) to O(N2)

if the uniform voxel grid has size N ×N ×N voxels, remarkably reducing computation time and

memory usage. The resulting surface from the search for the minimum cost solution on a 3-d grid of
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size 200× 200× 200 can be found in average in a few seconds on a CPU using the max-flow/min-cut

library (version 3.01) from [16].

Finally, the assumption that the voxels at the borders of the volume are of label outside only

hold in controlled environment. In aerial scenes for instance, with a volume centered at the ground

level to model a city, it is normal to expect the top layer of voxels to be air, i.e. empty space of label

outside. However, the bottom layer is under the ground, i.e. inside the terrain. In addition, the

border layers at the sides have, in general, both labels since the ground must extend to all directions.

Assigning border voxels that are truly inside the surface to outside causes undesired effects as holes

in the reconstructed ground.

The proposed pre-estimation based on learned visibility handles this problem by assigning

appropriate prior labels to borders as well as the interior of the volume. Section 8.4 shows experimental

results and evaluation of surfaces estimation via the proposed method including indoor and aerial

scenes.



Chapter 7

GPU Accelerated Template

Matching

This chapter describes the proposed parallel implementation of normalized cross-correlation that

is used in this thesis for feature matching (chapters 4 and 5) and multiple view stereo (chapter 6).

The additional auxiliary functions used by the applications are also discussed. The implementation

is geared towards general purpose computing on modern commodity graphics hardware, whose

architecture is introduced in detail due to its relevance for the proposed implementation.

The proposed parallel implementation of normalized cross-correlation runs on a Graphics Pro-

cessing Unit (GPU), a high-performance many-core processor. This chapter presents the proposed

distribution of work among GPU cores that exploits the GPU memory cache to achieve high

speed memory access, avoids the use of synchronization barriers and circumvents the shortcomings of

GPU local memory altogether. Moreover, the memory footprint of the proposed program can adapt

to hardware with small memory sizes. The proposed implementation is contrasted to an optimized

version for a sequential Central processing unit (CPU) and to alternative parallel methods. For

instance, the attained speedup on the correlation computation (ignoring image transfer overhead)

when compared to a very optimized sequential CPU implementation can be, under certain relevant

conditions, remarkably up to 950X or more, and up to 14X or more when compared to the OpenCV

151
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library’s [114] GPU implementation of normalized cross-correlation (experiments run on the same

GPU). Modern hardware is used in these experiments and are described in chapter 8.

7.1 General Purpose Graphics Hardware

GPUs are specialized hardware designed to rapidly process information to render images for display

and are often used in computer graphics. Due to development of high level languages for parallel

programming, modern GPUs that have phenomenal processing power are now suitable for general

purpose computing, which consists of employing GPUs to handle computations that are traditionally

intended for CPUs. Such general purpose GPUs are known as GPGPU [43]. GPUs present many

processors making them more effective than CPUs for algorithms where processing of blocks of

data can be done independently in parallel. Parallel computing consists of performing arithmetic

calculations simultaneously assuming a problem can be solved by partitioning it into smaller problems

that are concurrently handled by multiple processors.

7.1.1 Typical GPU Architecture

GPU hardware and functionalities vary with vendors and models, and also evolve with time. This

section and the following ones are intended to discuss recent GPU technology. The designs of the

major manufacturers to date have several common properties that allow their devices to be used

almost interchangeably by developers implementing their parallel applications. Note, device-specific

tweaks may improve performance. In this thesis, the discussion focuses on GPUs from Advanced Micro

Devices (AMD) and Nvidia Corporation (Nvidia) manufactures, and the cross-platform language

used in the proposed implementations is OpenCL [1, 88, 87]. OpenCL (Open Computing Language)

is a an open parallel computing framework for writing programs that execute across heterogeneous

multi-core platforms, such as CPUs and GPUs, and on multiple operating systems. A competing

proprietary framework for GPUs is CUDA from Nvidia.

Typical GPU devices are divided into independent multiprocessors denoted compute units, which

share global GPU resources. Each compute unit (CU) is composed of multithreaded cores (a.k.a.

scalar processors) and private resources, including local memory and registers. Each physical core is
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responsible for the execution of a number of threads, elementary sets of instructions multiplexed in

time sharing the processing time of the physical core. Registers are where threads store their local

variables. Multiple threads are pipelined on single core (hyper-threading) to hide latencies due to

memory accesses and thread operations [1]. GPU components often use time-division multiplexing

to share a physical hardware component among multiple processes so that a fraction of the time is

allocated for each process. The reason behind all multiplexing operations happening on a GPU is to

hide memory latency, discussed in detail in section 7.1.2. In general, threads switch so frequently

a human user will perceive them as running at the same time. Therefore, a single physical core is

running the operation of multiple (virtual) cores, called logical cores. One logical core executes one

thread.

Each CU is capable of executing as many simultaneous threads as the number of its cores times

the amount of threads handled by a core. To date, modern GPUs have around 30 CUs and each

one is composed of typically 8 or 16 multithreaded physical cores where each one operates roughly 4

threads, yielding hundreds to thousands of logical threads per GPU device. Some modern Nvidia

GPUs effectively execute 32 simultaneous threads per CU. As for AMD counterparts, 64 threads

per CU. This set of concurrent executing threads is denoted a warp (a.k.a. wavefront). Similarly to

the multithreading of cores, a CU manages the operations of multiple warps multiplexed in time,

given the hardware can physically support only one warp execution at a time. A group of warps

executed by a CU is denoted a thread block (a.k.a. a work-group) or simply a block. A CU is in

charge of multiple thread blocks and it executes them sequentially. Multiple blocks are evenly and

automatically distributed by hardware among available CUs. CUs will handle more than one block

when there are less units in the GPU than the number of requested blocks. In fact, implementations

of methods that assign many thread blocks to each CU tend to be faster than others that distribute

only a few, since a high number of thread blocks hides more memory latency.

The hierarchy of GPU parallelism is then summarized as follows: a GPU device has several CUs,

each of which executes multiplexed thread blocks. Every thread block is in charge of one or more

multiplexed warps. A warp runs on multiple physical cores of a CU, all of which execute a fixed

number of multiplexed threads. Often the number of physical hardware components is less than
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the number of associated logical requests, demanding the aforementioned time-division multiplexing

(TDM) of threads, warps and thread blocks. TDM is actually sequential, so the truly parallel

components of the GPU are the multiple CUs and their multiple cores, although TDM is essential to

achieve high computational throughput by hiding memory latency.

7.1.2 GPU memory model and cache

There are four typical memory domains: global, local, constant and private (see figure 7.1). Each

domain has some benefits and limitations.

Global memory. Global memory is the largest memory, it can be accessed by any thread, but

has high latency, usually requiring hundreds of cycles to respond to an access request. The global

memory is shared by all CUs of the GPU device. Global memory fulfills parallel requests to access

data from multiple concurrent threads, however, its bandwidth may drop significantly if the parallel

access does not follow specific patterns and present spatial locality.

Local memory. Local memory is an on-chip low-latency high-bandwidth memory specific of a

thread block of a CU. This memory is divided into a few banks of limited size and can only be

accessed by threads from a given thread block. Local memory (also known as shared memory) can

be accessed in parallel to fulfill requests within a few cycles (very low latency), but access may be

serialized reducing bandwidth if multiple threads access the same bank simultaneously, causing a

bank conflict. Local memory is the way threads share information efficiently within a thread block

and is an appropriate location to store data that is frequently accessed. Global memory can also

be used for sharing and is recommended for large data structures that are too large to fit in other

memory domains.

Private memory. Private memory consists of registers where a thread stores its local variables

and is not visible to other threads. Private memory is very fast, but limited in size. Registers are not

indexable, then arrays of arbitrary size cannot be allocated in private scope.
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Figure 7.1: GPU memory spaces. Host is normally a computer that controls the GPU.

Constant memory. The term constant memory usually refers to a read-only region of global

memory specialized in broadcasting data.

Cache. Another important memory space is cache memory, which has low latency and high

bandwidth. The cache automatically stores data recently accessed or computed to avoid latency costs

on future requests to the same data. Global memory is often cached and local memory may also

be cached. Cache operates both on reading and writing operations. It is able to accurately predict

requests when the access patterns exhibit temporal locality (when the same value is requested multiple

times) or spatial locality (the accessed data is stored in the same physical neighborhood). When

requested data is in the cache (cache hit), it is simply read from (or written to) the cache. Otherwise

(cache miss), the data is fetched from memory as usual. The cache bandwidth is comparatively higher

than global memory and comparable to local memory. Cache sizes are normally orders of magnitude

smaller than their associated memories. The larger the cache size, the faster are the overall memory

requests contributing to the peak calculation speed.
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Access patterns. Global and local memories are parallel storage locations that simultaneously

serve requests to multiple threads, with the disadvantage of decreased bandwidth if the access does

not follow particular patterns. Local memory is divided into a fixed number of independent storage

banks. If each thread in a warp access a distinct bank, read or write instructions are performed in a

single parallel access. Otherwise, the access is serialized into as many successive accesses as necessary

to resolve the bank conflicts. Global memory operates in an analogous way. Global memory highest

speeds are achieved when accessing contiguous and aligned memory addresses (coalesced access

pattern), otherwise access may be serialized (non-coalesced access pattern). Simple examples of

global memory access patterns are given in figure 7.2.

Coalescing global memory can be a difficult task as it is not always trivial or possible to design

a data storage structure that can always be accessed in such patterns. In addition, the supported

patterns may change remarkably between GPU models and manufactures. In earlier models, coalescing

was supported only by very limited patterns, whereas newer models tolerate more diverse coalesced

patterns. Developers should refer to programming guides that are specific to target hardware,

e.g. [1, 87], to learn their supported coalesced patterns, as there may be very peculiar differences

that are too detailed to discuss here.

Cache importance. The aforementioned drawbacks of limited patterns for achieving GPU memory

high-speed access suggest it is important to take advantage of the cache, as its peak memory bandwidth

is in the same order of magnitude to one of the local memory and cache does not require special access

patterns, except temporal and spatial locality. Cache and local memory offer significant advantage

when the data is re-used and reduce global memory requests. Although the bandwidth of cache is

regularly lower than the peak bandwidth of local memory, cache may often be faster given that local

memory suffering from bank conflicts reaches only a fraction of its peak bandwidth. The cache has a

key role in the proposed GPU implementation of normalized cross-correlation matching.

Data flow. The flow of data between host device (CPU) memory and GPU memory is illustrated

in figure 7.3. The data must first be transfered from host memory to GPU global memory, from

where it may go to local memory or directly to private memory for processing. Communication
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addresses from a warp

(a) Coalesced access in which all threads access the corresponding word in a segment.

(b) Unaligned sequential addresses that fit into two memory segments.

(c) Misaligned addresses that fall within two memory segments.

Figure 7.2: Simple examples of global memory access patterns.

between local and private memory is also supported. Transfers from host to device memory are

performed through a bus and are faster for large data blocks, whereas a large number of small ones

are transfered at low bandwidth.

7.1.3 Parallel synchronization

In sequential algorithms, instructions are executed in order. Thus, variables that have been defined

at some point in time are immediately ready to be accessed at any further instruction, but this is not

guaranteed in parallel computing.

In parallel algorithms, the address where data is shared by threads can be accessed (in parallel)

by other threads at any time and there is no inherent control of the sharing and fetching order as

in sequential programs. If a fetching access happens in a location before the sharing is complete,

meaningless data is read and processed inducing a silent failure. These problems of parallel threads

interfering which each other are called race conditions.

Synchronization of threads prevents the access of data before it is actually ready. The synchro-

nization barriers are software instructions placed after a sharing write instruction and before the
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Figure 7.3: GPU memory data flow. The data is originally resident on host memory. It is transferred
to the GPU through the PCI Express bus and stored in global memory. From global memory, data
may flow to shared memory or directly to private memory, where it is processed.

associated fetching read instruction. Synchronization barriers require all threads in a block to wait

at the instruction until all threads have reached it, thus enabling control of memory access order.

Synchronization barriers prevent the hardware cores from running without interruption, causing them

to stall until all are ready for the sharing operation. The GPU performance may be highly affected

by interrupting too often. Barriers can be very detrimental as all threads need to be interrupted

even to synchronize just a few.

Unlike threads in a thread block, compute units in a GPU carry their operations completely

independent of each other and cannot be synchronized in the same way using barriers. Even if one

attempts to synchronize CUs by reading and writing to a location in global memory, which all CUs

have access to, and let processing continue conditionally on all CUs setting a flag indicating they

reached an instruction, the effort can fail. The attempt will not succeed if a CU is handling multiple

thread blocks and a thread block never stalls, and as a result other blocks are never activated. Hence,

all active blocks will be endlessly waiting for the others that are indefinitely idle and are never

initialized to set their flags.

Atomic operations. Atomic operations are operations capable of reading, modifying and writing

to a shared memory location without interference of other threads. For instance, assume two threads

try to increment the value of a memory location by one. Depending on the order the threads access

the value, both may access the same value, then increment it by one and write the result back, however
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Figure 7.4: SIMD (Single Instruction, Multiple Data) multi-core computer architecture. Threads
concurrently process different data streams, but all execute the same instruction at any given time.

the values were supposed to be incremented twice. Atomic operations are designed to avoid these race

conditions since they happen atomically (without interruption) and ensure only one thread has access

to the memory location while the operation completes. Furthermore, atomic functions appear to occur

in parallel, but are in fact serialized and synchronized by hardware barriers. Atomic serialization

has no specific order and its synchronization is relatively faster than equivalent synchronization by

software barriers. Thus, atomic operations should be preferred to software synchronizations when

synchronization is unavoidable. Atomic operations can perform on local or global memory scopes,

and when done on global scope, they may provide a way to global synchronization [1].

7.1.4 Data-parallel instructions

Thread instructions execute sequentially in SIMD (Single Instruction, Multiple Data) paradigm.

As depicted in figure 7.4, the data-parallel process exploits parallelism by accessing multiple data

streams (one per thread) against a single instruction stream (all threads on a warp perform a common

command at any given time). Note, warps are multiplexed in time and threads of a single warp

execute instructions concurrently (SIMD paradigm), so only threads across different warps of a block

need synchronization.
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Figure 7.5: Schematic representation of the execution of warps on a single thread block for hiding
latency. Analogously, the diagram also represents the execution of thread blocks in a single CU.
When warp W4 stalls, execution returns to warp W1 if W1 is ready, otherwise execution returns to a
new active thread block that is ready.

7.1.5 Memory latency and performance

Each CU has its own sets of resources: scalar processors, registers and low-latency local memory. The

way these resources are allocated for a given program may have a substantial impact in performance.

Hiding latency. A CU executes SIMD instructions on multiple warps by first executing a set of

them on the first warp until it stalls, typically waiting for a high-latency memory access. The way to

keep the hardware busy after a warp is interrupted is to immediately execute other warps. Then

the CU switches execution to a another warp which will execute the same stream of instructions

and likely stall at the same place as the first warp (see figure 7.5). The switching repeats until the

last warp. Once the last warp stalls, the CU switches back to the first warp if it is ready, otherwise

it switches to another block (a different set of warps) and returns later. Switching between active

blocks hides block latency when all warps in a thread block have stalled waiting for memory. In

summary, memory transactions and mathematical computations are overlapping in time so latency

can be hidden. Note, it is necessary that there is enough instructions between each programmed stall

in order to achieve the overlap, otherwise memory latency is exposed and the hardware is idle.
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7.1.6 Active threads, warps and blocks.

In order to switch back and forth between warps and blocks, their data must be allocated and stored

somewhere, and be ready to execute at any time, which means to be active. The higher the number

of active (allocated) warps and blocks, the more latency can be hidden and better is the utilization

of the available computing resources. For instance, running only one block per CU will likely force

the CU to idle during thread synchronization and also during memory access. The number of active

threads per block is designed by user and defined by software, unlike active warps and active blocks,

which are determined by hardware in terms of availability of registers and local memory, which are

limited commodities allocated to an entire CU all at once and shared among all resident threads.

The amount of resources allocated for a thread, warp or block depends on the program, and the less

the better since higher is the number of active warps and more latency is hidden. The hardware

becomes temporarily idle if the very first warp that stalled is not ready after the CU has switched to

all other active warps of all other active blocks.

Occupancy. The ratio of the number of active warps to the highest possible number of active warps

is denoted occupancy. There is a performance trade-off between high occupancy and code optimization

as using more registers may translate into a more optimized code, but with less occupancy and more

exposed latency. Developers need to be very experienced to determine which implementations may

result in performance gains without trial and error.

7.1.7 Register spills

As described in section 7.1.6, high resources usage impacts performance by decreasing occupancy

and increasing the risk of exposing memory latency and keeping the hardware idle. Another issue of

concern is register spills. When private memory usage is higher than availability, a program may

still run, however registers that cannot fit in private scope are allocated in larger memory scopes of

higher latency. For instance, excess of registers may spill over cache, local memory, or global memory.

This memory allocation happens automatically and is denoted a spill. Spilled registers may cause a

large impact on performance as they are allocated in long-latency memory and access patterns are
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not necessarily optimized for such memory. In addition, little latency is hidden if only one warp or

block is active at a time due to high register usage. Register spills can be detected by compilers and

then avoided, requiring possibly complicated code redesigns.

7.1.8 Parallel functions

In order for algorithms to be suitable for a GPU, they must be defined as a series of independent

computations with minimal sharing of information among them. Recursive algorithms are not suitable

for GPU. Typically a function is defined as set of instructions to simultaneously run on multiple data.

This function is denoted kernel. If a kernel instructs a thread to read a small amount of data and do

a vast amount of processing with it, this kernel is suitable for general purpose computing on a GPU

by optimally exploiting GPU architecture to achieve remarkable speedups compared to an equivalent

sequential CPU program.

7.1.9 Summary of performance requirements

According to discussion of section 7.1, quality parallel algorithms are difficult to design as they are

expected to satisfy many requirements in order to present outstanding acceleration . These expected

attributes are summarized as follows:

• the algorithm is not sequential;
• global memory accesses are coalesced;
• local memory bank conflicts are avoided;
• data fits in global memory;
• data fits in local memory;
• register usage is relatively low;
• memory latency is hidden;
• there are no register spills;
• there is little synchronization;
• many warps and blocks are active;
• communication with host has high bandwidth;
• cache hits happen more often than cache misses;
• processing instructions occur more often than memory accesses.
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7.2 Normalized cross-correlation

The facts about GPU architecture and performance optimizations presented in section 7.1 are adopted

to introduce a very efficient high-performance parallel implementation of template matching using

normalized cross-correlation (section 7.3). This proposed method was designed for any general

template matching application where there is enough data and processing requests to enable high

data parallelism. The proposed parallel implementation is demonstrated on three applications

presented in this thesis: feature matching (discussed in chapter 4), match disambiguation for dense

repeating features (discussed in chapter 5) and multiple view stereo (discussed in chapter 6). Other

parallel portions of the implementations of these applications are described in sections 7.4 and 7.5.

This section discusses details pertinent to the normalized cross-correlation algorithm, such as its

complexity and an optimized sequential implementation for CPU that is contrasted to the proposed

GPU method. Experiments and evaluations are provided in chapter 8.

7.2.1 Expressing NCC in terms of sums

Normalized cross-correlation (NCC) is computed between a rectangular template window of size

tx × ty and a larger search window of size Sx × Sy. For every position for which the template fits

inside the search window, a numerical correlation coefficient is computed using the pixel values of the

template and the associated pixel values in the underlying search window. The output is a correlation

array of size Cx × Cy such that Cx = Sx − tx + 1 and Cy = Sy − ty + 1.

The correlation function is discussed in all details in section 3.2 and it is defined in equation (3.7).

The definition is repeated here in equation (7.1) for convenience:

C(u, v) =

∑
x,y

{
w(x, y) [ S(x+ u, y + v)− Sw(u, v) ][ t(x, y)− tw ]

}
√∑

x,y

{
w(x, y) [ S(x+ u, y + v)− Sw(u, v) ]2

}∑
x,y

{
w(x, y) [ t(x, y)− tw ]2

} . (7.1)

To simplify notation, let wxy = w(x, y), Sxyuv = S(x + u, y + v) and txy = t(x, y). By expanding

products and plugging the mean terms defined in equations (3.8) and (3.9), Equation (7.1) can be
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reformulated as

C(u, v) =

∑
x,y[ wxySxyuvtxy ]−

∑
x,y

[ wxySxyuv ]
∑

x,y
[ wxytxy ]∑

x,y
wxy√∑

x,y wxyS
2
xyuv −

(
∑

x,y
wxySxyuv)2∑
x,y

wxy

√∑
x,y wxyt

2
xy −

(
∑

x,y
wxytxy)2∑

x,y
wxy

. (7.2)

Assuming arbitrary weights that are normalized,∑
x,y

wxy = 1, (7.3)

and using the notation
∑
x,y[wxyH(x, y)] =

∑
x,y,w[H(x, y)], equation (7.2) can be further simplified

to

C(u, v) =
∑
x,y,w[ Sxyuvtxy ]−

∑
x,y,w[ Sxyuv ]

∑
x,y,w[ txy ]√∑

x,y,w S
2
xyuv − (

∑
x,y,w Sxyuv)2

√∑
x,y,w t

2
xy − (

∑
x,y,w txy)2

. (7.4)

Let

S1 =
∑
x,y,w

t2xy, (7.5)

S2 =
∑
x,y,w

txy, (7.6)

S3 =
∑
x,y,w

[ Sxyuvtxy ], (7.7)

S4 =
∑
x,y,w

Sxyuv, (7.8)

S5 =
∑
x,y,w

S2
xyuv, (7.9)

then equation (7.4) may be rewritten in terms of five weighted sums:

C(u, v) = S1 − S2S4√
(S3 − S2

2)(S5 − S2
4)
, (7.10)

Note, S1 and S2 depend only on the template and need only be computed once for all (u, v), therefore,

the correlation coefficient computation is reduced to computing the three weighted sums S3, S4 and

S5 for every (u, v) in equation (7.10) and a few additional algebraic operations. The sums are O(N)

where N is the number of pixels in the template.

7.2.2 Sequential NCC algorithm complexity

The computation of NCC from equation (7.1) can be expressed either directly in the spatial domain

or in the frequency domain using the Fourier transform. This applies to both a sequential or a
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parallel implementation. In practice, spectral computation is faster only when the size of S and t are

approximately the same and are both large [69], as discussed below.

Complexity of the denominator of NCC

The energy terms in the denominator of equation (7.1) represent sample standard deviations respon-

sible for normalization of the signal amplitudes. Lewis [69] presents a very efficient way to compute

the energies and the means of S(x, y) in terms of the integral images (running sums) [28] of S and S2

for any position (u, v). After the construction of sum-tables the energies can be computed in constant

time using only four array references independent of the size of the template. An alternative similar

approach is to exploit the redundancy of the sum terms as the template shifts only by one pixel:

compute a sum Sα at a starting location and when the template window shifts by one pixel, e.g., to

the right, subtract from Sα the sum of the removed column and add the sum of the inserted column.

The result is the sum for the new location, which achieves similar performance as the sum-tables.

Hence, the bulk of the computation of NCC lies on the cross-correlation term in the numerator as it

cannot be precomputed.

Complexity of the numerator of NCC

The numerator of equation (7.1) can be reformulated as a convolution, which is expensive to compute

in the spatial domain, but less complex in the transform domain via a simple product of Fast Fourier

Transforms (FFT). However, the additional costs of computing the FFT of S(x, y) and t(x, y) and

the inverse FFT of the resulting product is not practical for cases where the template is much smaller

than the search window since S and t must be extented with zeros to a common power of two (zero

padding). In addition, FFT involves floating-point computations, whereas the spatial domain methods

can be implemented mostly using integer operations [119], which are often faster. In fact, assuming

the size of S(x, y) is M2 and the size of t(x, y) is N2, [69] indicates that the complexity of computing

the numerator of equation (7.1) ignoring the mean terms is: (1) 12M2 log2 M real multiplications and

18M2 log2 M real additions/subtractions via FFT, and (2) N2(M −N +1)2 additions/multiplications

via the direct method. Hence, when M � N the complexity of the spatial method for computing the

same numerator is approximately N2M2 multiplications/additions and the spatial method is faster
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Figure 7.6: Ratio of the algorithm complexities for computing the numerator of NCC using a spectral
method (48M2 log2 M) versus a spatial method (2N2(M −N + 1)2). The axes (N,M) represent a
square template of size N2 and a search window of size M2. The implementation complexities are
equal at the 1 level contour, shown in black. Note, the algorithms are only meaningful when M ≥ N .

than the spectral one. Figure 7.6 illustrates the ratio of the aforementioned complexities of the NCC

numerator algorithm in the two domains, showing that for small templates the spatial method is

more efficient. Note, the ratio plot presented in figure 7.6 can only motivate approximate conclusions

since additions and multiplications in either integer or floating-point representations are considered

equally complex, and transcendental function evaluations are omitted.

Preferred domain for parallel NCC algorithm

Parallel implementations running on a parallel computer with p processors reduce an algorithm

complexity by a factor of at most p, according to Amdahl’s law [99, 7]. The upper bound p of the

speedup can be reached only if the fraction of the algorithm that is strictly serial is 0. Spatial and

spectral parallel implementations must follow similar complexity reductions as both methods allow

broad parallelization. Therefore, in light of the complexity analysis in figure 7.6, a spatial parallel

implementation is appropriate for the stereo matching applications of this thesis, which use small

templates.
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In chapter 8 a comparison of the proposed spatial parallel algorithm of NCC with the optimized

parallel implementation of NCC of OpenCV [114] is provided. OpenCV has a spectral and a spatial

method, and both are outperformed for small templates and large search windows (see section 8.1.3).

The proposed implementation speedup over an optimized sequential CPU version is in the order

of several hundreds on modern high-performance hardware (see chapter 8). The optimized CPU

method is discussed in section 7.2.3.

7.2.3 Optimized CPU implementation

This section describes the optimized CPU implementation of NCC that competes with the proposed

parallel one. The sequential implementation of NCC is carried out by computing the sums S1 to S5

in equations (7.5) to (7.9) in section 7.2.1. As suggested in section 7.2.2, the template terms S1 and

S2 are evaluated only once, taking negligible time in general, and the denominator terms S4 and S5

are efficiently computed in terms of running sums (integral images). The numerator of the NCC

expression cannot be precomputed in the same way as the denominator so the numerator crossed

term S3 is carried out as a convolution. Note, the number of operations to compute the integral

images is very small compared to the cost of computing S3 [69], and other fast algorithms have been

proposed [135, 18, 45, 120, 91], however these are approximations and have shortcomings.

7.2.4 Disregarding integral images for parallel NCC

The construction of integral images discussed in section 7.2.2 involves cumulative sums which are

mainly sequential operations and harder to parallelize. Integral images are not used in the proposed

parallel algorithm as the additional time to redundantly compute the energy terms everywhere in

parallel is likely smaller or in the same order of the short time to compute the tables. The reason is

that the elements ti and si of a template and of an underlying patch, as illustrated in in figure 7.10,

need be accessed anyhow by a thread to compute the inner product
∑
i tisi of equation (7.7), and

the additional time for computing
∑
i si and

∑
i s

2
i in parallel is small since the values are already in

private memory (the fastest memory). Moreover, the tables would be stored in global memory due

to their sizes being as large as S(x, y), and this incurs additional memory access overhead.
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Figure 7.7: Overview of proposed parallel NCC implementation running on a GPU device responsible
for computing P correlation arrays. The computations are performed via thread blocks and are
distributed as evenly as possible among the N CUs. If the division is not exact, some CUs will be
responsible for one less block than the others, while jointly they complete all P tasks.

7.3 Proposed parallel NCC

The goal of the algorithm is to compute C(u, v) given a template t(x, y), a weight function w(x, y)

and a search window S(x, y). The implementation of NCC can be parallelized in several different

ways, but in order to get a high computational throughput the entire GPU hardware must be busy

at all times and hide as much global memory latency as possible, which varies with the amount of

active warps and blocks, use of synchronization barriers, access patters and other factors.

Memory latency may be completely hidden if each CU is responsible for many active blocks

and each block executes many active warps. Thus, the proposed solution requires every CU to be

responsible for the computation of a number of correlation arrays and each thread of a warp to handle

a number of elements of the array. Many correlation applications can be formulated in such way. For

instance, in the context of stereo matching, thousands of templates t(x, y) arise as patches centered

at interest point locations, while each of their search windows S(x, y) may have thousands of pixels,

as the case of long strips around associated epipolar lines, wihch leads to many tasks per processing

units as typical high-end GPUs to date have in the order of 30 CUs and 32 threads per warp.

The parallel implementation also requires limited use resources since overuse will limit active

warps and blocks, and reduce block and warp switching used for hiding memory latency. Registers
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Figure 7.8: An operation of loop 1, the outermost loop of the proposed GPU implementation. The
parallel operations indexed by k run on thread blocks of CUs, each receiving a template and a search
window, and returning a correlation array. The indices i, j and k indicate to which CU each task is
assigned and that the thread block jobs are distributed as evenly as possible among N CUs.

(private memory) are more limited than local or global memory for this parallel implementation,

then the code transfers some storage to local memory when necessary. Other requirements are listed

in section 7.1.9.

7.3.1 Distribution of work

The parallel computation of NCC for multiple template matching operations in an image pair is

outlined in figure 7.7 and has three main loops specifically designed to be faithfully in accordance

with performance requirements listed in section 7.1.9. Details on how these goals are achieved and

the descriptions of the loops are given below:

Loop 1: For every t(x, y) and S(x, y), a correlation array C is computed;

Loop 2: for each C, a correlation coefficient C(u, v) is computed for every position (u, v); and,

Loop 3: for each C(u, v), the sums in equation (7.1) are computed iterating over (x, y).

Loop 1 is parallelized among CUs, i.e., thread blocks run in parallel in CUs and each one handles

a feature point. A CU is responsible for multiple thread block jobs, as in figure 7.8. Loop 2 computes

C(u, v) for every position that t(x, y) fits inside S(x, y) and is distributed among threads of a block,

meaning threads handle the computations of elements of C in parallel. The pixels read from w(x, y),

t(x, y), S(x, y), and written to C(u, v) are accessed in coalesced patterns (see figure 7.9). Loop

3 iterates over all pixel locations (x, y) of a template t(x, y) and its associated underlying pixels
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Figure 7.9: Operations of loop 2, the intermediate loop of the proposed GPU implementation. (a) The
parallel operation indexed by λ runs on a thread Tλ of a thread block, receives a template patch and
an underlying patch of the search window, and returns one element of the correlation array. The set
of all such parallel operations composes loop 2, resulting in multiple correlation elements per thread.
(b) The division of work among threads working in parallel. Each one of M threads is responsible
for the sequential computation of multiple coefficients of C(u, v). (c) Assignment table associating
elements of the correlation array to their respective computing threads. This assignment achieves a
coalesced access pattern for elements stored in row-major order (rows of the array are contiguous in
memory). Note, the distribution of tasks is as evenly as possible.

in S(x, y) and w(x, y). Loop 3 is implemented sequentially within each thread and access pixels

in a coalesced pattern in the order they appear in the template array. According to discussion

at section 7.3, each thread computes the coefficient C(u, v) via equation (7.10) by computing the

sums S1, S2, S3, S4 and S5 from equations (7.7) to (7.8). In fact, S1 and S2 from equations (7.5)

and (7.6) are constant within the loop, therefore, they need only be computed once (per block) by

the first thread prior to starting loop 3 and are shared with the others through via local memory

(see figure 7.10). Furthermore, if the center coordinates of the template are not integers, its pixel

values are refined using bilinear interpolation. Note, the search window is required to be aligned
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Figure 7.10: The operations of loop 3, the sequential innermost loop of the proposed GPU implemen-
tation. The loop runs serially on a single thread to accumulate sums indexed by i used to a compute
a correlation coefficient via equations (7.5) to (7.10). Only one thread (T1) needs computing the top
two sums and it shares them with other threads through local memory.

with the pixel grid and no interpolation is necessary. Moreover, subpixel refinements of interest point

matching locations on the search window are discussed in section 7.4.6.

The proposed implementation does not use thread synchronization except once for computing

S1 and S2 ahead of loop 3, and then loop 3 iterates only over S3, S4 and S5 computations. Thus,

synchronization latency is negligible and this is very important for hiding latency, as described in

section 7.1.5), since the warps stall only at memory accesses.

7.3.2 Memory allocations

The input arrays t(x, y) and S(x, y) must be transferred from host computer to global memory as in

figure 7.3. For stereo matching applications two images must be transfered. The reference image

provides templates as patches centered at interest points and search windows are located in the other

image. The template has arbitrary size, but in general is much smaller than S(x, y) for the stereo

applications. The template is accessed for every position (u, v) of C(u, v). Local memory is chosen

to store the template since the template is small and accessed very often, which is appropriate for a

fast and limited memory. Note, arrays cannot be allocated in private memory since registers are not

indexable, therefore, local memory is the fastest storage location for the template array. The pixel

values of t(x, y) are stored in sizes matching local memory banks to avoid bank conflicts. The weight
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array w(x, y) is also small since it has the same size of the template, so it is computed once and also

stored in local memory.

S(x, y) is relatively larger and is kept in global memory. In fact, S(x, y) is accessed directly

as a subimage of its parent image, which resides in global memory. Transferring pieces of S(x, y)

to local memory for faster access seems reasonable, but it introduces complexity on the parallel

code in order to handle the transfers, increasing resource usage (private memory registers) and

reducing the number of active warps and blocks, potentially causing exposed latency and memory

spills. Hence, S(x, y) is left in global memory and accessed in a coalesced pattern. In addition, the

proposed method also achieves cached accesses to S(x, y) due to spatial and temporal locality of the

accesses. In the example portrayed in figure 7.10, the pixels identified as {s1, s2, s3} of the subimage

of S(x, y) underlying the template are contiguous in memory (spatial locality), and, according to

the assignment table in figure 7.9c, while a thread access {s1, s2, s3}, the next thread also access

{s2, s3} and the following thread also access s3 (temporal and spatial locality). Analogously, the

access to the other rows are also localized. Hence, the proposed access pattern attains high speeds

due to the high probability of cache hits. Cached access is very fast and comparable to local memory

speeds (section 7.1.2), suggesting the use of local memory to be unnecessary. The use of cache is

very important as it makes the implementation simpler than one using local memory, which could

potentially suffer from bank conflicts, have more complex code and not be faster. These alternative

approaches are discussed in section 7.3.3.

7.3.3 Alternative parallel NCC implementations

In light of the countless number of configurations that control GPU performance discussed in

section 7.1, GPU programming may become very complicated as it is hard for the average programmer

to predict overall performance of a parallel program. As stated by Lu et al. [75], most of the published

GPU simulations achieving two or more orders of magnitude speedups have authors in computer-

related fields with far more experience than typical experimentalists and the most impressive results

are often achieved via programs specifically written for a particular GPU model. Although processor-

specific programming may achieve speedups that are off the charts, they may require spectacular
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programming feats.

One common way of unveiling whether a parallel method is better than an alternative one is

in a trial-and-error fashion and since GPU programming is very time consuming, presenting the

performance of other parallel NCC methods is also of importance. Therefore, a brief description of

two alternative attempted methods that presented lower performance than the proposed one is also

provided for information purposes. One alternative method attempts to transfer the search window

to local memory to access it at higher bandwidth and the transfer is done in small increments as

local memory has limited size. The other method distributes the parallel processing of correlation

window coefficients among CUs in a similar but slightly different way than the proposed method.

A summary of properties of the alternative methods is presented in table 7.1 and a more detailed

description is given below.

Method A: search window in local memory

As already mentioned in section 7.3.2, the proposed algorithm transfers two images to global memory

to perform matching using NCC. Templates are extracted from the reference image and stored in

local memory, whereas search images S(x, y) are accessed directly in global memory as subimages of

the other image. Cache is exploited for fast access to S(x, y).

As briefly discussed in section 7.3.2, transferring portions of S(x, y) to local memory for faster

access during loop 2 and loop 3 is an alternative approach. Experiments showed that using a sliding

window for this purpose was not efficient. The sliding window stores in local memory a few rows of

S(x, y) where correlation is performed. After all operations in a given row are complete it is replaced

with a new row where new operations will take place. The speedup of the attempted implementation

over the single-core CPU implementation was poor and presented little speedup. The excessive

synchronization and additional registers necessary to manage the sliding window, besides possible

local memory bank conflicts, are likely accountable for the unsatisfactory speedup as these issues

easily offset the advantage of parallelism.
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Method properties Proposed
method

Method
A

Method
B

Search image location Global
memory

Local
memory

Global
memory

Heavy usage of global memory cache Yes No Yes

Heavy use of synchronization No Yes No

Subject to bank conflicts No Yes No

Number of computed coefficients
Multiple
per thread
per block

Multiple
per thread
per block

One
per thread
per block

Number of search windows per block One One Multiple

Typical usage of threads per block
Partial

on uneven
divisions

Partial
on uneven
divisions

100%

Processing of template data Only once
per block

Only once
per block

Always: once
per thread

Recommended usage case Large S(x, y) None Small S(x, y)

Typical relative performance Fastest Slowest Reasonably
fast

Table 7.1: Comparison of different GPU implementations of normalized cross-correlation.

Method B: bypassing assignment of search windows to CUs

An alternative approach to NCC is to group together all the Np pixels of all correlation arrays

and distribute their computation among Np threads, i.e., each correlation coefficient is assigned

to a different thread. The computation is done as in figure 7.10. Within a thread block, a thread

handles only one coefficient and the block may access multiple search windows, unlike the proposed

algorithm that distributes a search window to a single thread block regardless of size, in which a

thread may handle multiple coefficients. Note, the workload of a thread is similar in the two cases

since threads still compute multiple correlation coefficients, but in the alternative approach, the

coefficients are associated to a distinct S(x, y). The correlation coefficients of a search window are

still kept contiguous in memory to enable coalesced write operations of each C(u, v) window.



175

A benefit of this alternative method is to guarantee work for all threads of a block (except possibly

one block if division is uneven), unlike the proposed method where some threads may work more

than others (see figure 7.9c), or may not work at all if the correlation window is small and has less

elements than the number of threads of the block. Idle threads are rare for the applications of this

thesis under the proposed implementation.

The alternative approach has a drawback. In the proposed application, the template is constant

in a thread block and need be accessed only once in global memory before it is transfered to local

memory where it is shared among all threads of the block. Moreover, operations on the template,

such as the sums in equations (7.5) and (7.6) also need be computed only once. Conversely, in the

alternative approach, these operations that depend only on a template are redundantly repeated

by many threads since the concurrent threads of a block may be processing different templates and

sharing precomputed template information becomes impractical. Therefore, the template is always

broadcast to many threads from global memory or its cache.

It is not obvious which parallel NCC method is faster given only the trade-offs highlighted above.

The alternative method was also implemented and under some experiments it attains performance

similar to the proposed one, but the alternative implementation is in roughly 2X to 4X slower. The

variability depends on GPU models and window sizes.

7.4 Feature matching application

This section describes additional parallel functions used to implement the GPU portion of the feature

matching method of chapter 4. This part of the method is discussed in detail in section 4.3.1 and

involves finding the local maxima (peaks) of the correlation window and pruning them.

7.4.1 Overview of GPU function

Correlation coefficients compose the correlation window C(u, v), but only the local peaks are of

interest as they are an indication of a potential feature correspondence. Peaks are defined as values

that are higher than their neighbors in the window grid. At the moment a coefficient is computed

using the proposed parallel NCC method (section 7.3) there is no guarantee its neighborhood is
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already computed. Therefore, the local maxima of C(u, v) are computed separately by additional

subsequent calls to a GPU peak detection kernel functions and the complete correlation windows

must be stored in GPU global memory at that moment of the peak computations. Detected peaks

are also pruned and refined by the GPU.

7.4.2 Handling memory allocations

Several windows C(u, v) are computed by a single call to the parallel NCC kernel function (loop 1 in

section 7.3) in order to achieve high computational throughput. However, the storage requirements

for all correlation windows may be too large and may exceed the storage capacity of even some

modern GPUs (global) memories. For instance, the allocation size for the windows may be 1.4 GB if

an image has 7000 interest points, their associated correlation windows are each 50× 1000 pixels,

and each pixel stores a real number (4 bytes) that is the value of a correlation coefficient, then the

allocation size is 7000×50×1000×4 = 1.4 ·109 bytes or 1.4 GB. The GPU memory also needs to store

other variables such as the image pairs and/or the ones to render a computer display. In addition,

GPU manufacturers may impose a maximum limit on the size of an array stored in global memory,

which may be only a few hundred megabytes. For these reasons, the implementation partitions the

NCC kernel call into a sequential number of calls in which the data fits in GPU memory. In each

partition, a block of windows is allocated in available memory space, their peaks are detected and

stored, and the correlation windows are then promptly discarded. There is no harm to performance

in carrying out such divisions as large correlation windows imply reaching high data parallelism

required by the proposed method to achieve fast parallel acceleration. After each partition, only

peaks are stored and the effective memory footprint of the pipeline is small.

7.4.3 Finding correlation local maxima

The computation of the peaks of C(u, v) is distributed among threads, similarly to loop 2 (see

figure 7.9c) where each pixel of C(u, v) is assigned to a thread. Threads consider their assigned pixel

location a peak if the correlation value is strictly higher than values of the 8-nearest neighbors. This

computation is very efficient on GPUs and the access is coalesced and often cached.
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7.4.4 Finding the highest peak

As the peaks are detected, their location and correlation scores are analyzed. The scores of the peaks

are accessed in parallel by threads and their maximum is computed in parallel by atomic operations

(discussed in section 7.1.3). The majority of atomic operations in modern GPUs are currently limited

to support only integer values. Thus, the floating point correlation coefficient is first encoded as a

signed integer prior to applying the atomic maximum operation.

7.4.5 Prunning the peaks

The peaks that satisfy the quality criterion of having a score higher than a fraction of the highest

peak score, as defined in equation (4.13), are preserved and the others are discarded. This operation

is also done in parallel by threads of a block.

7.4.6 Refining peak locations

Stored peak locations are refined to subpixel accuracy by a local biquadratic function fit defined

in equation (4.16). Each peak is handled by a thread and this operation is fast since only a few

peaks exist in practice. Refined peaks are more accurate potential correspondences to the associated

interest points.

7.4.7 Storing the correlation peaks

Only the peaks and their peak correlation values are of interest for the feature matching application

because peaks are the putative locations for true feature correspondences. Hence, the correlation

window may be discarded after the peaks are detected and refined. In practice, there are peaks only

at a few peak locations in C(u, v), but the number of peaks is unknown and in theory can require

a large allocation space in the same order of C(u, v). Allocating space for an upper bound is not

practical since the size of C(u, v) can be huge as described in section 7.4.2. The peaks are then

pruned and counted first, as these operation are fast, then space for counted peaks is allocated in

GPU memory, and, in a second pass through C(u, v), the peaks are stored in the designated allocated

arrays.
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This concludes the GPU algorithm implementation discussion for the feature matching application

of chapter 4, since the corner detection method (section 4.2) and the disambiguation steps (section 4.4)

are performed on CPU. Porting the CPU portions of the algorithm to GPU will be addressed in

future work.

7.5 Multiple view stereo application

Chapter 6 presents a multiple view stereo pipeline that returns reconstructed 3-d points and is

suitable for real-time GPU implementation. The entire pipeline is implemented on a GPU and

implementation details are described in this section. The GPU receives as inputs a set of M + 1

images, their estimated cameras and a parameter vector that controls the algorithm, and returns

estimated depths. A depth map is computed for a reference image based on its M neighboring views.

These images are transfered from the host to the GPU along with their estimated cameras and

parameters that control the reconstruction.

7.5.1 Image rectification

Rectification is an operation that warps an image pair such that corresponding points do not have

any vertical disparity. As cameras are estimated, calibrated rectification is performed by finding two

transformations that sends the epipoles to infinity by mapping the images planes into a common

plane, as discussed in section 3.1 (see [53] for more details). Rectification is reduced to two image

transformations, which are simply 2-d interpolations.

Image interpolation is very efficient in GPUs and a thread is responsible for computing one

interpolated pixel of the rectified image via bilinear interpolation. Adjacent threads process adjacent

pixels for coalesced access.

7.5.2 Weighted Normalized cross-correlation

Section 6.2 introduces a set of rays, the ray grid, emanating from the reference view camera center

along which depths are to be estimated via a photo-consistency function between reference pixel

locations and epipolar lines associated to the rays, as discussed in section 6.4.1. Weighted NCC
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is adopted as the photo-consistency measure and is denoted Sj in section 6.4.1. Weighted NCC is

carried out exactly as the parallel implementation proposed in section 7.3, therefore computed via

equation (7.10) where the weight function is given in section 6.4.1. Each template is located at the

reference pixel location and its search window is a thin strip centered at its epipolar line. The strip

is a rectangle since the images are rectified. The resulting correlation window is chosen to be one

pixel thick (1-d) and to represent a similarity function between the template and its epipolar line. If

the grid has Nr rays, and each ray defines M epipolar lines, one in each of M neighboring views,

there is a total of Nr ×M = Tc correlation arrays to be computed and these array computations are

distributed among Tc thread blocks.

For a typical multiple view stereo application, Tc is in the order of hundreds of thousands to

millions of arrays and each array has hundreds or thousands of correlation coefficients. This amount

of computation is suitable to achieve remarkable accelerations on a GPU via a massive number of

concurrent tasks, each one computing intensive operations.

7.5.3 Peak detection

Peaks of the correlation function are the potential corresponding locations along epipolar lines that

define the depth along a ray. The peaks are counted and stored in the same way as it is done in

sections 7.4.3 and 7.4.7 for the feature matching application. In addition, the location is similarly

refined as proposed in section 7.4.6, however, since the correlation array here is 1-d, the refinement

is achieved by fitting a quadratic function to the peak (section 6.4.7), as opposed to a biquadratic

function, as performed in section 7.4.6.

7.5.4 Evaluating scores at each depth

The continuous function Cwj from equation (6.1) is a peak enhancement function derived from peaks of

Sj , which is computed as described in section 7.5.3. Cwj sums Gaussian kernels centered at the peaks

of Sj . Both Cwj and Sj are in image space and in order to register the scores from different views to

common depths, the continuous Cwj is sampled at a range of ray depths according to equation (6.2)

in section 6.4.3. The depths are uniformly sampled along the rays.
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Each depth has a projection onto the epipolar line where the continuous Cwj is evaluated. Note,

evaluating a function that is a sum of Gaussians at some coordinate, requires evaluating the sum of

Gaussians at every coordinate. However, these computations are independent, there is one Gaussian

per peak and many depths, hence there is a massive amount of computation suitable for parallel

processing.

Each thread block is responsible for one ray and each thread analyzes one depth along this ray by

computing its 3-d point, projecting it into neighboring views and evaluating the sum of Gaussians

associated with the projected coordinates to arrive at Qj from equation (6.2). Qj is registered to

depths along rays and is no longer viewpoint dependent as Cwj .

7.5.5 Score fusion

Once similarity scores Qj , from multiple viewpoints indexed by j, are registered according to depths

along rays, fusing them is based on robustly averaging multiple view scores of a particular depth,

as in equation (6.5). The averaging is in accordance to quality criteria of equations (6.3) and (6.4),

where only reliable scores are averaged. Continuing as in section 7.5.4, each thread independently

computes the average of each depth p, arriving at the fused score Q(p). Still in the same thread block,

threads stop and synchronize at a synchronization barrier after the averaging is complete. After the

barrier, each thread checks a location of the fused score Q to see it is a valid peak as described in

section 6.4.6. The true depth of the surface along a ray is regularly associated to the highest peak of

Q. The highest valid peak is found by an atomic maximum operation to finally determine the depth

along the ray according to equation (6.6) as the depth q associated to this highest peak.

7.5.6 Depth refinement

Refinement of an estimated depth q is achieved by the same parabolic interpolation of peaks performed

in section 7.5.3. As only the highest peak is refined, only one thread performs such quick refinement

instructions. This concludes the GPU algorithm implementation discussion for the multiple view

stereo application. Note, section 6.6 regarding “volume far sides” proposes very simple and fast

computations that are performed on CPU.



Chapter 8

Experiments and Evaluation

This chapter contains comprehensive experiments evaluating the performance of the proposed

normalized cross-correlation (NCC) methods. First, the performance of the GPU implementation

of the proposed parallel NCC algorithm is presented (section 8.1), followed by the applications.

Section 8.2 discusses NCC for camera pose estimation. Section 8.3 describes the results in wide-

baseline matching of dense repeating features and planar lattice tracking. Experiments on multiple

view stereo and surface reconstruction are provided in section 8.4. Finally, section 8.5 concludes this

chapter.

Many different datasets are used in the evaluations of this chapter. A notation is used to indicate

the number of learning images of a dataset by appending the number to the dataset name. For

instance, the dataset “capitol26” has 26 images and “downtown46” has 46.

8.1 Parallel NCC Performance

The proposed spatial domain parallel implementation of NCC is compared with state-of-the-art

implementations that run on a CPU or a GPU. The most relevant part of the evaluation is on spatial

domain methods for reasonably small templates, as the proposed method is geared towards these

conditions. However, some results for alternative frequency domain methods and large templates

are also shown. The use of small templates with sizes varying from 5× 5 to 11× 11 is appropriate
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for the image matching applications of this thesis to avoid the bias that larger templates introduce

under significant perspective distortions (see section 3.2.2). The experiments show that the proposed

method is remarkably faster for small templates. The complexity of the spatial method increases

faster with template size compared with the spectral method, as theoretically analyzed in figure 7.6.

Therefore, the frequency domain is preferred for applications that require large templates.

This section demonstrates that the proposed implementation achieves remarkable speedup with

respect to other efficient well-supported CPU and GPU methods. Comparisons of runtime between

several combinations of square template sizes and square search window sizes are shown.

8.1.1 Alternative methods

Five alternative implementations of NCC that use the optimizations of [69] to compute the denomi-

nator term efficiently using sum-tables (see section 7.2.2) are presented:

• an efficient CPU spatial C-implementation from the Jet Propulsion Laboratory (JPL),

• the Matlab CPU spatial/spectral method provided by the function normxcorr2,

• the OpenCV CPU frequency domain FFT-based method,

• the OpenCV GPU spatial domain parallel method, and

• the OpenCV GPU frequency domain parallel FFT-based method.

The method from JPL is entirely written in C. JPL is a federally funded research and development

center managed for NASA by the California Institute of Technology (Caltech). The Matlab code

spatial method uses efficient built-in convolution computations written in C/C++ to compute the

numerator of NCC, and vectorized Matlab language code to compute the denominator. Matlab and

the Matlab code are developed by MathWorks. The OpenCV library [114] correlation functions

are written in C/C++/CUDA and the version used in the experiments is 2.4.2. The CPU and

GPU implementations of OpenCV are provided by functions called matchTemplate using parameter

CV_TM_CCOEFF_NORMED. OpenCV has a comprehensive set of both classic and state-of-the-art

computer vision and machine learning algorithms that are open source, support multiple platforms

and are extensively used in the field by well-established companies, startups, research groups and by

governmental bodies.
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By default, the OpenCV library and Matlab use hybrid domain implementations that decide

during runtime whether to use a spatial method or a spectral one based mainly on template area.

The experiments with OpenCV run on modified versions that impose one domain method or the

other. As for Matlab, the original hybrid domain function was left unchanged. The switch point

from spatial to spectral methods are at templates of size approximately between 16× 16 to 25× 25.

8.1.2 Devices used in the experiments

Three devices are designated for NCC performance evaluations:

• the 4-core Intel Core i7-950 CPU 3.07GHz with 12GB RAM, which performs at roughly 50

gigaFLOPS1 for single precision computations,

• the Nvidia GTX 275 GPU with 1792 MB of global memory and 240 CUDA cores that

performs at 1010.88 gigaFLOPS (single precision), and

• the AMD Radeon HD 7970 GHz Edition GPU with 3072 MB of global memory and 2048

stream cores that performs at 17.2 teraFLOPS (single precision).

All evaluations run on desktop PC with 64-bit OS equipped with the designate devices. Note,

OpenCV GPU code is written in CUDA language and can only run on Nvidia devices. Thus, the

OpenCV GPU experiments are limited to the GTX 275 device.

8.1.3 Runtime of NCC on designated devices

The runtime of specified NCC methods and the associated speedup of the proposed implementation

is given in figures 8.1 to 8.12. Figures 8.1 to 8.3 show running times of specified CPU normalized

cross-correlation methods and figures 8.4 to 8.7 provides the ones of the GPU methods. The speedup

of the proposed GPU algorithm over others are plotted in figures 8.8 to 8.12. Each figure has an

accompanying table with numerical values from the associated figure.

The reported times are for computation only and do not include memory transfers. For the

applications of this thesis and many others, memory transfers of input images or data can overlap

with GPU kernel computations and therefore be hidden. In addition, output correlation values can
1FLOPS is an abbreviation of FLoating-point Operations Per Second.
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Figure 8.1: Runtime (ms) of frequency domain NCC implementation of OpenCV running on the
“i7-950” CPU for N ×N templates and M ×M images.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 0.524 1.01 8.26 28.1 114 852 2412
5×5 0.512 0.998 8.19 28 113 851 2418
7×7 0.502 0.982 8.11 28 114 853 2378
11×11 0.479 0.961 8 27.8 114 855 2370
13×13 0.474 0.951 7.96 27.8 115 856 2367
15×15 0.465 0.929 7.93 28 114 908 2462T

em
pl
at
e
si
ze
s

25×25 0.424 0.88 7.91 27.7 114 912 2475

Table 8.1: Running times (ms) taken from figure 8.1.
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Figure 8.2: Runtime (ms) of spatial domain NCC implementation of JPL running on the “i7-950”
CPU for N ×N templates and M ×M images.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 0.324 0.679 4.35 17.5 72.1 633 1747
5×5 0.404 0.852 5.55 22.6 95 824 2283
7×7 0.52 1.12 7.5 30.8 130 1134 3139
11×11 0.685 1.54 10.8 45.3 194 1689 4677
13×13 0.796 1.85 13.3 56.3 240 2108 5855
15×15 0.935 2.21 16.5 70 301 2643 7357T

em
pl
at
e
si
ze
s

25×25 1.51 4.11 35.8 160 702 6233 17358

Table 8.2: Running times (ms) taken from figure 8.2.
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Figure 8.3: Runtime (ms) of hybrid domain NCC implementation of Matlab running on the “i7-950”
CPU for N ×N templates and M ×M images.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 1.4 1.79 6.75 39.6 177 1513 4312
5×5 1.45 1.86 7.04 40.6 180 1538 4409
7×7 1.52 1.96 7.61 41.9 184 1573 4623
11×11 1.7 2.23 8.77 45.8 198 1706 5060
13×13 1.82 2.41 9.58 48.2 208 1806 5382
15×15 1.96 2.6 10.8 50.7 216 1905 5670T

em
pl
at
e
si
ze
s

25×25 4.14 3.88 24.9 104 415 4201 8483

Table 8.3: Running times (ms) taken from figure 8.3.
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Figure 8.4: Runtime (ms) of spatial domain NCC implementation of OpenCV running on the “GTX
275” GPU for N ×N templates and M ×M images.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 5.51 5.6 8.44 11.5 15.7 58.9 N/A
5×5 8.54 9.59 11.6 14.7 21 84 N/A
7×7 8.34 9.65 11.7 15.4 23.5 87.3 N/A
11×11 8.3 9.53 12.2 17.3 30.9 153 N/A
13×13 8.45 9.69 12.4 18.6 34.5 170 N/A
15×15 8.69 9.68 12.8 19.7 39.1 220 N/AT

em
pl
at
e
si
ze
s

25×25 8.57 10.1 14.7 27.6 71.7 497 N/A

Table 8.4: Running times (ms) taken from figure 8.4.
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Figure 8.5: Runtime (ms) of frequency domain NCC implementation of OpenCV running on the
“GTX 275” GPU for N ×N templates and M ×M images.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 19.9 20.5 23.6 26 32.7 99.7 373
5×5 23.2 24.7 26.5 28.6 35.9 106 375
7×7 23.3 25.2 26.1 28.8 35.8 102 376
11×11 23.5 24.9 26.6 28.8 35.8 101 375
13×13 23.5 24.8 26.4 28.7 35.8 102 374
15×15 24.1 24.7 26.3 28.8 35.8 102 376T

em
pl
at
e
si
ze
s

25×25 23.5 24.9 26.6 28.9 35.9 99.3 381

Table 8.5: Running times (ms) taken from figure 8.5.
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Figure 8.6: Runtime (ms) of proposed spatial domain NCC implementation running on the “GTX
275” GPU for N ×N templates and M ×M images.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 0.0697 0.0762 0.151 0.342 1.14 8.84 24.2
5×5 0.0728 0.0868 0.217 0.538 1.71 13.1 35.7
7×7 0.0919 0.152 0.275 0.818 2.49 18.4 50.3
11×11 0.148 0.259 0.514 1.73 5.02 38.2 103
13×13 0.193 0.342 0.748 2.36 6.86 52.6 142
15×15 0.304 0.553 1.1 3.1 9.18 69 186T

em
pl
at
e
si
ze
s

25×25 1.06 1.27 2.62 7.36 28 222 609

Table 8.6: Running times (ms) taken from figure 8.6.
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Figure 8.7: Runtime (ms) of proposed spatial domain NCC implementation running on the “HD
7970” GPU for N ×N templates and M ×M images.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 0.0657 0.0663 0.0911 0.105 0.119 0.861 2.35
5×5 0.0803 0.0801 0.117 0.159 0.167 1.17 3.2
7×7 0.1 0.138 0.184 0.215 0.26 1.83 5.03
11×11 0.16 0.166 0.297 0.39 0.562 4.7 14.3
13×13 0.208 0.216 0.35 0.32 0.747 6.44 20
15×15 0.256 0.269 0.404 0.41 0.98 8.83 26T

em
pl
at
e
si
ze
s

25×25 0.497 0.55 0.858 1.11 2.75 23.8 66.4

Table 8.7: Running times (ms) taken from figure 8.7.
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Figure 8.8: Speedup of proposed spatial domain NCC implementation running on the “HD 7970”
GPU for N × N templates and M ×M images over frequency domain NCC implementation of
OpenCV running on the “i7-950” CPU.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 7.97 15.2 122 376 951 988 1025
5×5 6.37 12.5 93 249 678 727 754
7×7 4.99 7.14 58.5 163 436 466 473
11×11 2.98 5.78 34.3 81.9 203 187 167
13×13 2.28 4.41 27.5 85.5 153 138 119
15×15 1.81 3.46 22.9 67 117 105 94.4T

em
pl
at
e
si
ze
s

25×25 0.855 1.64 10.1 24.5 41.4 38.5 37.3

Table 8.8: Speedup ratio values taken from figure 8.8.
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Figure 8.9: Speedup of proposed spatial domain NCC implementation running on the “HD 7970”
GPU for N ×N templates and M ×M images over spatial domain NCC implementation of JPL
running on the “i7-950” CPU.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 4.92 10.2 59.6 253 605 734 742
5×5 5.03 10.6 58.6 216 569 704 712
7×7 5.18 8.15 50.1 192 500 619 624
11×11 4.27 9.25 43.4 141 345 369 329
13×13 3.83 8.6 43.6 175 322 339 293
15×15 3.65 8.22 45.3 170 307 306 282T

em
pl
at
e
si
ze
s

25×25 3.04 7.64 44.4 143 255 263 261

Table 8.9: Speedup ratio values taken from figure 8.9.
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Figure 8.10: Speedup of proposed spatial domain NCC implementation running on the “HD 7970”
GPU for N ×N templates and M ×M images over hybrid domain NCC implementation of Matlab
running on the “i7-950” CPU.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 21.3 26.9 94.3 568 1484 1755 1830
5×5 18 23.2 75.8 387 1079 1314 1374
7×7 15.3 14.2 51.4 260 709 858 918
11×11 10.6 13.4 35.2 142 352 372 356
13×13 8.78 11.2 31.3 150 278 290 269
15×15 7.69 9.69 29.6 123 221 221 217T

em
pl
at
e
si
ze
s

25×25 8.33 7.12 30.8 92.5 151 178 129

Table 8.10: Speedup ratio values taken from figure 8.10.
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Figure 8.11: Speedup of proposed spatial domain NCC implementation running on the “GTX
275” GPU for N ×N templates and M ×M images over spatial domain NCC implementation of
OpenCV running on the “GTX 275” GPU.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 79.1 73.6 55.8 33.8 13.8 6.69 N/A
5×5 118 113 53.7 27.5 12.3 6.44 N/A
7×7 91.4 64 42.9 18.8 9.47 4.75 N/A
11×11 56.8 36.9 23.8 10 6.17 4.02 N/A
13×13 44.3 28.5 16.7 7.86 5.03 3.23 N/A
15×15 28.9 17.6 11.7 6.33 4.26 3.2 N/AT

em
pl
at
e
si
ze
s

25×25 8.15 8.28 5.62 3.79 2.56 2.25 N/A

Table 8.11: Speedup ratio values taken from figure 8.11.
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Figure 8.12: Speedup of proposed spatial domain NCC implementation running on the “GTX 275”
GPU for N × N templates and M ×M images over frequency domain NCC implementation of
OpenCV running on the “GTX 275” GPU.

Search window sizes
70×70 100×100 250×250 500×500 1024×1024 3000×3000 5000×5000

3×3 285 269 156 76.6 28.9 11.3 15.3
5×5 321 289 123 53.4 21.1 8.07 10.4
7×7 256 166 95.9 35.2 14.4 5.52 7.44
11×11 161 95.9 52.3 16.7 7.16 2.66 3.61
13×13 123 72.6 35.5 12.2 5.23 1.93 2.62
15×15 80.3 44.7 24.1 9.28 3.91 1.48 2.01T

em
pl
at
e
si
ze
s

25×25 22.3 20.2 10.2 3.99 1.29 0.45 0.621

Table 8.12: Speedup ratio values taken from figure 8.12.
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be processed in the GPU if the application pipeline is GPU-accelerated and do not require output

transfers back to CPU. Thus, transfer times are not reported here since they are considered negligible,

otherwise, they must be reported [50].

Experiment description. This experiment consists of distributing on the GPU the computation

of NCC for an image of size M ×M with a template of size N ×N and measure the runtime. For

a CPU, the method runs sequentially. Each experiment is repeated 10 times and the results are

averaged to mitigate variabilities. Runtimes and speedup for a broad range of values for N and M

are provided for information purposes. However, more relevance must be given to smaller templates

(small N) and large images (large M) since spectral methods are preferred for large templates

(discussed in section 7.2.2) and larger images require significant time to process on CPU, unlike tiny

ones, which demand no GPU acceleration. Note, GPU speedup for small images is limited since

there is little data to distribute among the GPU cores.

The applications of this thesis are analogous to the processing of this experiment with large M

and small N since each of many thread blocks on the GPU process a fraction of the large M ×M

image, equivalent to NCC searches along thin strips around epipolar lines (chapters 4 and 6) where

each of many blocks is in charge of a small portions of the image, i.e. the strip.

In summary, attention must be given essentially to performance speedup of the proposed method

over others when using small templates and large images, i.e., the upper right portion of the tables 8.8

to 8.12. Denote such image sizes of the tables as target sizes. Note, a “N/A” symbol is displayed on

the tables if runtime is not available for the a device among reasons as lack of memory or lack of

other computing resources to run the experiment.

8.1.4 Discussion

As seen on the target sizes of tables 8.8 to 8.10, the proposed method running on “HD 7970” achieves

remarkable speed up over alternative CPU implementations in the range of approximately 200X

to 1000X with respect to OpenCV, 330X to 750X with respect to JPL and 350X to 1800X with

respect to Matlab. Similarly, comparing the performance of parallel GPU methods in tables 8.11

to 8.12, the proposed method outperforms the OpenCV equivalent spatial method by 4X to 13X and
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outperforms the OpenCV spectral method by 2.6X to 29X, when all algorithms run for target sizes

on the same “GTX 275” GPU device. The performance of the proposed method tends to decrease as

the template size increases since the method is designed for small templates and does not exploit

sum-tables. Nevertheless, at the target sizes performance gains are noticeable over OpenCV, one of

the fastest publicly available NCC implementations.

8.1.5 Comparison to additional NCC methods

To put the results into perspective, other alternative methods have reported speedups for normalized

cross-correlation of less than 10X [8] or on average 22X [23]. Wang and Wang [127] report computing

NCC between a 512 × 512 image and a 80 × 80 template image using an FPGA in 224ms. The

proposed approach is not designed for high performance on such high template sizes, yet achieves the

same computation in 10.3ms on “HD 7970.”

Lu et al. [75] report a maximum speedup of 130X for the correlation of images of size roughly

750× 1500 with shifted versions of themselves (auto-correlation). In this case, the template image

is also very large being of the size of the actual image. The speedup was attained from CUDA-

specific precise coding running on a single Nvidia Tesla C1060, which contains a GT200 GPU, over

a C implementation running on a single Dell XPS 730 with an Intel Q6600 Core2 Quad at 2.4

GHz. As a comparison, the maximum reported speedup by the proposed method with respect

to a C implementation is in the order of 750X, as shown in table 8.9, which is nearly 6X larger

speedup than [75]. The results are comparable despite hardware differences since they were running

experiments in older generations of both GPU and of CPU, therefore the performance ratio measured

by the speedup is similar to when using newer generation hardware, as the ones in the proposed

experiments.

Idzenga et al. [55] propose a CUDA implementation of NCC running on the Nvidia Tesla K20

(2496 CUDA cores), one of the latest graphics cards from Nvidia. Their speedup with respect to

Matlab CPU implementation running on Intel Xeon CPU L5420 at 2.50 GHz is up to 376X, whereas

the proposed speedup on similar hardware w.r.t. Matlab is up to 1830X (see table 8.10).
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Matching method MSE
Number of
3-d points

Number of
2-d matches

“capitol26” 0.349 26809 41690
“downtown46” 0.305 48963 76280
“campus29” 0.252 21671 29068
“horse21” 0.184 10538 14620

Table 8.13: Mean squared reprojection error (MSE), number of correspondences and number of 3-d
points estimated via structure from motion using SIFT matching.

Matching method MSE
Number of
3-d points

Number of
2-d matches

MSE ratio
w.r.t. SIFT

“capitol26” 0.131 54013 94416 0.38
“downtown46” 0.161 134686 214026 0.53
“campus29” 0.176 64316 88275 0.69
“horse21” 0.172 24352 34377 0.93

Table 8.14: Mean squared reprojection error (MSE), number of correspondences and number of 3-d
points estimated via structure from motion using proposed feature matching method (chapter 4).

8.2 NCC for camera pose estimation

This section presents results in the accuracy of structure from motion when using features matched

via the proposed method of chapter 4. Accuracy is measured in two steps: the features are used

for estimating camera models that are refined by bundle adjustment nonlinear optimization (see

section 3.4.1) and then, given the cameras, the mean reprojection error MSE of the matching

features, which is defined in equation (3.15), is used as a measure of camera estimation accuracy.

Tables 8.13 and 8.14 show the quantitative results demonstrating that the proposed method

achieves better accuracy than SIFT matching in the four tested datasets. The tables present the

error measure, the total number of correspondences and total number of 3-d points recovered from

structure from motion. Table 8.14 also show the ratio between the estimation error for the evaluated

methods. Figures 8.13 to 8.15 illustrate the reconstructed structure, which, besides being more

accurate, is visually denser when estimated using the proposed method because it recovers more

points. A qualitative comparison of matches found via proposed NCC method and via traditional

SIFT matching is provided in figures 8.16 and 8.17 to illustrate that the proposed method finds more

matches, and only the proposed approach handles repetition.
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(a)

(b)

(c)

(d) (e)

Figure 8.13: Structure from motion reconstruction of the “capitol26” dataset. (a) Dataset images.
(b,d) Reconstructed 3-d points using the proposed matching method (denser) and (c,e) using SIFT.
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(a)

(b) (c)

Figure 8.14: Structure from motion reconstruction of the “horse21” dataset. (a) Images of the dataset.
(b) Reconstructed 3-d points using the proposed matching method (denser) and (c) using SIFT.



201

(a)

(b)

(c)

Figure 8.15: Structure from motion reconstruction of the “campus29” dataset. (a) Images of the
dataset. (b) Reconstructed 3-d points using the proposed matching method (denser) and (c) using
SIFT. Estimated cameras are shown above the scene.



202

Figure 8.16: Typical example of pairwise matching via the proposed NCC method. The estimation
method handles repetition and matches are denser than the ones found via traditional SIFT matching
(c.f . figure 8.17).
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Figure 8.17: Typical example of pairwise matching via traditional SIFT method. The matching does
not handle repetition and estimated matches are sparser than the ones found via proposed method
(c.f . figure 8.16).
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Figure 8.18: Images of the “downtown46” dataset.

8.3 Planar lattice matching and tracking

This section shows the improvement in accuracy of structure from motion when using features

matched via the planar lattice model of chapter 5. Accuracy is measured in the same two steps

as in section 8.2: the features are used for estimating camera models that are refined by bundle

adjustment nonlinear optimization (see section 3.4.1) and then, given the cameras, the mean squared

reprojection error MSE of the matching features, which is defined in equation (3.15), is used as a

measure of camera estimation accuracy.

The lattice matching improves camera estimation accuracy in two ways: providing an additional

dense set of reliable feature matches coming from building facades of urban scenes and filtering out

incorrect matches that occasionally appear in such facades. For comparison, reprojection errors are

computed and provided using matches from SIFT, from the proposed method of chapter 4, from the

lattices tracked across multiple image frames and from proposed methods combined. The reprojection

errors of all proposed methods are much smaller than the errors resulting from the same process

using SIFT matching and often provides much more feature correspondences to perform bundle

adjustment.

8.3.1 Results

The proposed matching method of chapter 4, denoted here by “NccD” finds correspondences among

sparse interest points via normalized cross-correlation and performs disambiguation when necessary.

NccD stands for normalized cross-correlation and disambiguation. The proposed matching method of

chapter 5 is denoted here by “NccDRF” for normalized cross-correlation on dense repeating features.

NccDRF complements NccD by finding correspondences for dense repetitive features distributed in
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(a) (b)

(c) (d)

(e) (f)

Figure 8.19: Results of proposed matching of dense repetitive features for adjacent frames. Short-
baseline matching results show robustness to: (a) large grids of repeating elements, (b) partial
occlusion of lattice in reference image, (c) partial occlusion of the lattice in the target image including
several complete vertical columns of windows, (d) oblique views and (e) small lattices. A wide-baseline
failure case due to a horizontal shift of the entire matching lattice by one window is shown in (f).
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Figure 8.20: Results of the proposed wide-baseline matching of dense repetitive features. The top
row shows robustness to occlusion and multiple planar surfaces with the same repeating elements.
The other rows show wide-baseline matches for other buildings.
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Figure 8.21: Additional results of the proposed wide-baseline matching of dense repetitive features.
The top row shows robustness to multiple planar surfaces with distinct repeating elements. The middle
row illustrate robustness for periodically missing grid lines that are undetected due to uncommon
failure of the lattice line detector. The bottom row demonstrates wide-baseline matching under a
significant number of missing grid matches.
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Figure 8.22: Multiple estimated lattices on a single image. A single facade may have multiple lattices
because windows are seen as small blobs and blobs may generate one or more corners depending on
the size of the blob, e.g., a corner at the top and other at the bottom of the window. Each distinct
repeating corner defines a lattice.

planar lattices when these exist.

Figures 8.19 to 8.21 and 8.23 show qualitative results demonstrating the robustness of the

proposed dense repeating feature matching algorithm in the “downtown46” dataset (see figure 8.18).

Figure 8.19 illustrates the method preforming on large grids, on small grids, under drastic occlusion,

under oblique views, and also a failure case in figure 8.19f. Figures 8.20 and 8.21 show results of the

lattice tracking for successive frames achieving wide-baseline matching and its robustness to missing

matches and multiple nearby planar surfaces. In general, several lattices are detected in a single

image, as in figure 8.22, and are matched on a second image, as shown in figure 8.23.

Tables 8.15 and 8.16 show quantitative results for two aerial urban datasets, denoted the “capitol26”

and the “downtown46” datasets. The “downtown46” scene contains many planar facades with dense

repeating features, whereas the “capitol26” has planar lattice features that are not dense enough

to require the use of the planar lattice model for match disambiguation. The density of repeating

features is represented by a threshold on the number of similar features in the vicinity of a given

feature. Repetition in the “capitol26” dataset is gracefully handled by the disambiguation of chapter 4.
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Figure 8.23: Several multiple-lattice correspondences from different angles.
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Matching method MSE
Number of
3-d points

Number of
2-d matches

MSE ratio
w.r.t. SIFT

SIFT 0.349 26809 41690 1.00
NccD 0.131 54013 94416 0.38
NccD+NccDRF 0.131 54013 94416 0.38
NccD+NccDRF (NccD matches only) 0.131 54013 94416 0.38
NccD+NccDRF (NccDRF matches only) N/A 0 0 N/A

Table 8.15: Mean squared reprojection error (MSE) for “capitol26” scene.

Matching method MSE
Number of
3-d points

Number of
2-d matches

MSE ratio
w.r.t. SIFT

SIFT 0.305 48963 76280 1.00
NccD 0.161 134686 214026 0.53
NccD+NccDRF 0.138 161872 279277 0.45
NccD+NccDRF (NccD matches only) 0.168 121747 199859 0.55
NccD+NccDRF (NccDRF matches only) 0.065 40125 79418 0.21

Table 8.16: Mean squared reprojection error (MSE) for “downtown46” scene.

As desired, NccDRF detects no dense planar lattice features in “capitol26” dataset, as reported in

table 8.15. Conversely, the “downtown46” dataset presents many dense lattice features, e.g. as seen

in figure 8.23.

Tables 8.15 and 8.16 have five rows of results for the following methods: (1) SIFT matching, (2)

the NccD method of chapter 4, (3) the NccD followed by the NccDRF of chapter 5, (4) the same as

before restricting the statistics to the matches found using the NccD method (ignoring the ones from

NccDRF), and (5) similarly restricting to the dense feature matches found on planar facades by the

NccDRF method (ignoring the ones from NccD). The columns show results for the reprojection error

of equation (3.15), the number of 3-d points associated to matched features on the entire scene, and

the number of 2-d features matched in the images of scene. Note, when using NccDRF following

NccD, NccDRF will discard some sparse feature matches found by the NccD on regions it detects to

be of planar lattices of dense repeating features and replace them by its own matches, which are

more reliable. This replacement causes small drops in the number of features found in the fourth row

compared to the second row. Also note that the number of 3-d points is usually higher than the

number of 2-d matches because a single 3-d point may be seen in multiple images.
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3-d points from SIFT matching. 

3-d points from proposed lattice matching. 

3-d points from proposed NCC matching. 

Figure 8.24: Comparison of 3-d points returned by bundle adjustment on the “downtown46” scene.
SIFT matching, at the top, returns fewer points and does not include the dense repetitive features
from windows in building facades, as opposed to the proposed methods, NccD at the middle and
NccD+NccDRF at the bottom, which detect repeating features and others that SIFT matching does
not disambiguate. SIFT features are concentrated mostly only on the ground and at the roofs of the
buildings. NccDRF matches a large number of dense repeating features, as seen in the bottom, while
NccD can disambiguate a few of them, as seen in the middle.

Discussion. The experiments show that the reprojection error of the reconstructed features of a

scene diminishes when using the proposed methods for matching than when using SIFT matching.

For the “capitol26” scene, the proposed NccD method attains an average reprojection error that

is only 38% of the SIFT matching error. For the “downtown46” scene, where dense planar-lattice

features are found, the NccD presents approximately half of the reprojection error of SIFT mathcing,

while the features found using the NccDRF method present only nearly a fifth of the error. Note, the

numbers of associated feature pairs of the proposed matching methods are always higher than SIFT

matching. Similarly, the number of estimated 3-d points of the proposed methods tend to be higher,

especially when augmenting matches with the NccDRF method that include the windows in building

facades, as shown in figure 8.24.
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8.4 Dense surface estimation

The proposed pipeline of chapter 6 includes a multiple view stereo (MVS) method for 3-d point

estimation and another method for surface estimation. These steps are described in chapter 1: a

point cloud estimation stage (using MVS) and a meshing stage (surface fitting). At the MVS stage,

a dense set of 3-d points is recovered from multiple calibrated images (section 6.4). A watertight

triangular mesh is fit to the point cloud using surface priors via energy minimization techniques

(section 6.7). In this section, qualitative and quantitative results are discussed for evaluating the

proposed methods. Reconstructions in the form of point clouds and in the form of surface meshes are

compared to state-of-the-art methods. The datasets and ground truth data used for these experiments

are discussed next.

8.4.1 Evaluation datasets.

The evaluation of the proposed dense point-cloud reconstruction of multiple view stereo (chapter 6)

and its associated surface estimation (section 6.7) are performed using the evaluation setup of [58, 57].

Jensen et al. [58] are extending the stereo evaluation benchmark of Seitz et al. [102, 101] by providing

ground truth reconstructions and accurate cameras for a larger variety of scenes. Both evaluation

setups use cameras mounted on a robot arm in order to measure camera pose with high accuracy.

In [101], a laser stripe scanner was used to measure ground truth with accuracy of 0.05mm to

0.2mm and two scenes are provided containing well-textured diffuse-reflectance 3-d objects that are

observed from 317 camera locations located on a one-meter radius hemisphere around the objects.

The image resolution of the CCD camera is 640×480 pixels and objects are lit by three fixed external

spotlights. Three standard image datasets for the two scenes are defined: one with all 317 images,

denoted full; other with a subset whose size is 47 images, denoted the ring; and the last with 16

images, denoted sparse. The smaller subsets are used to test algorithms performance on sparser

image data and their cameras are distributed in a circle.

In [57], binary stripe encoding structured light scans are employed for estimating ground truth

and providing a wider collection of 80 scenes with a broad range of objects found in real-world

applications each one captured under different illumination conditions. The objects of [57] have
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varying reflectance, texture, and geometric properties, and include fabric, groceries, fruit, sculptures,

stuffed animals, metal etc. (see figure 8.25 for examples). Every object is captured from 49 or 64

different viewpoints at a distance of 50 cm or 65 cm. Note, the 317 images from [101] cover a full

hemisphere around the objects, whereas the 49 or 64 cameras from [57] correspond to the views from

the top and from one side of the object (see figure 8.26). The structure light scans display an average

error estimate with standard deviation of 0.14mm, meaning that 68.2% of its measurements are

accurate up to 0.14mm and 95.4% up to 0.28mm. Thus, the scans are physical measurements with

very high accuracy (see figure 8.27 for an example) and are considered ground truth for the purpose

of evaluating MVS. Image resolutions of [57] are 1200× 1600 pixels and, at each viewpoint, images

are captured under varying illumination by strobing 18 LEDs in groups, providing eight illumination

conditions per viewpoint (see figure 8.28).

Although the innovative evaluation benchmark of [101] strongly influenced the developments

of MVS, the datasets from [57] are chosen to evaluate accuracy of the proposed reconstructions

algorithms due to their higher diversity of objects, object geometry, materials, illuminations and

higher image resolution. Another seminal evaluation benchmark is the one from Strecha et al. [112]

that targets ground level outdoor scenes, and, similarly to [101], has a limited number of scenes

with mostly nonspecular surfaces. Even though [101] and [112] made tremendous contributions in

advancing the quality of multiple view stereo, they only answer the question of which algorithms

best work for those few scenes, whereas [57] was designed to point out in which scenes algorithms

work best and which ones they fail.

In addition to a quantitative evaluation using twelve scenes from [58], reconstructions from real-

world aerial scenes and indoor environments are also provided for qualitative analysis in section 8.4.3.

8.4.2 Quantitative evaluation.

Among the 80 scenes provided by Jensen et al. [57, 58], twelve representative ones are selected to

evaluate the performance of the proposed methods as a measure of its accuracy, completeness and

runtime.

The evaluation of algorithms in [57] is similar to the one in [101]. In [57], there are masks near the
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Figure 8.25: Datasets used for reconstruction evaluation. From top to bottom, the first twelve are
from [58] and are denoted “bunny49”, “houses49”, “headphones49”, “tools49”, “ball49”, “groceries49”,
“brewer49”, “smurf63”, “packages64”, “plant64”, “birds64” and “statuette64”. The last two are
from [102] and are denoted “dinoRing48” and “templeRing47”. .
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Figure 8.26: Camera positions for multiple view stereo reconstruction evaluation of [58] (image
from [58]). Cameras in black are 50 cm away from the object, while cameras in red are 65 cm away.

ground truth data and only points in the masks are used for measuring the accuracy and completeness

of the reconstructions. Accuracy is measured as the distances from stereo reconstruction points to

the ground truth, while completeness represents the distances from the ground truth to the stereo

reconstructions. Distances are computed from every point of a set to its nearest neighbor on the

other set. The mean and median value of all distances below 20mm are provided yielding the mean

and median accuracy, and, the mean and median completeness. Distances above 20mm are discarded

as resulting from outliers.

The evaluation strives to provide unbiased measurements by dealing with different point densities,

with outliers, with points below the supporting table and unreliable reconstructions on the unseen

side of the objects opposing the cameras. Thus, additional data that may bias the evaluation is

intentionally ignored from accuracy and completeness measurements (see [58] for more details). For

instance, since the objects are only seen from one side, as in figure 8.26, and reconstructions on the

unobserved side are not meaningful, only points that are within a certain distance to the ground

truth are considered in error measurements. The evaluations are performed both in 3-d point clouds

as well as in surface meshes. For surfaces, points are sampled in mesh faces and the problem is

converted back a 3-d point comparison (see [58] for details).

Figures 8.29 and 8.30 show reconstruction comparisons between the proposed method and the

ones of Tola et al. [116], and, Furukawa and Ponce [41], which are included in the evaluation of [58]
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Figure 8.27: Highly dense ground truth point cloud of the “tools49” scene. The observed objects
have significant specularity.

as representative algorithms from the feature expansion and depth-map fusion families. The figures

show, in their first columns, an image of the dataset in which evaluations are performed. In the

second columns, performances of accuracy and completeness of reconstructed points (Pts) and

meshed surfaces (Sur), are provided for each dataset scene. The error is measured both as mean and

median (smaller is better). The abbreviation “Tol” is for Tola et al. [116], “Fur” is for Furukawa

and Ponce [41] and “Pro” is for the proposed method (chapter 6). The surfaces of the alternative

methods are computed using Poisson reconstruction [61]. The third columns display curves for

accuracy evaluations (higher is better). The graphs show, for a given distance d, how much of a

reconstructed model falls within a distance d of the ground truth data. The fourth columns present

completeness curves, which for a given distance d, show how much of the ground truth falls within d

of the model (higher is better). The associated overall performance for all twelve datasets shown in

figures 8.29 and 8.30 is presented in figure 8.31.



217

Figure 8.28: Images of the “smurf63” and “statuette64” datasets that are taken with eight distinct
illumination conditions from a fixed viewpoint.

Discussion. As seen in figures 8.29 and 8.30 and in figure 8.31, the performance of the proposed

MVS method for point reconstruction is comparable to state-of-the-art methods. This discussion is

based on the curve plots since they show more information than the bar plots with a mean and a

median. In fact, the medians are simply abscissas in the curve graphs associated to 50% ordinates.

According to the curves, the proposed point reconstruction accuracy is in general better than the

method of Furukawa and Ponce [41] and its completeness is better than the method of Tola et

al. [116]. There is a trade-off between accuracy and completeness among the evaluated methods.

Normally, the more accurate methods are less complete and vice-versa, as already noted in [58].

Note, the proposed method achieves the best completeness for the “tools49” dataset, which contains

challenging specular metallic objects like a scissors.

Regarding overall surface estimation accuracy and completeness, the proposed method is outper-

formed by the others, according to the curves. Nevertheless this does not necessarily means that

subjective surface quality is worse, as shown in the example of figure 8.32. In addition, the proposed

method achieves superior surface accuracy when considering error thresholds of more than 1 or

2mm, as seen in “houses49”, “headphones49” and other datasets. The proposed surface estimation

performance is degraded because of limited resolution. The memory required to construct the regular

grid of voxels and the 3-d graph limits the surface resolution to a coarse level compared to the

estimated point cloud and to the ground truth. Low surface resolution degrades measurements of

both accuracy and completeness. If the meshing stage is replaced by Poisson reconstruction, as used

by the alternative methods, the proposed surface performance evaluation is statistically similar to

the alternative methods (see figure 8.33).

The evaluation dataset of Jensen et al. [58] provides many different illumination conditions, as
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Figure 8.29: Reconstruction evaluations for scenes with well textured objects (see section 8.4.2 for
details and definitions of abbreviations).
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Figure 8.30: Reconstruction evaluations for scenes containing textureless or highly specular objects
(see section 8.4.2 for details and definitions of abbreviations).
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Figure 8.31: Overall reconstruction performance comparisons for all twelve evaluated scenes shown
in figures 8.29 and 8.30 (see section 8.4.2 for discussion).

shown in figure 8.28, that are exploited here to show the robustness of the proposed method to varying

illumination. Figure 8.34 presents results comparing reconstruction evaluations for a dataset with

fixed illumination and the same dataset with images from the same viewpoints, but with alternating

illumination from frame to frame. Images are selected such that illumination alternates between eight

lighting conditions and only repeats after eight images. Since the MVS method uses four neighboring

views per reference image, all images in a group have distinct illumination. The results in figure 8.34

show that the reconstructions are not affected by lighting variations.

Tables 8.17 and 8.18 present statistics and running times for the proposed methods. The provided

running times showcase the speed of both the GPU point estimation and CPU surface estimation

methods. A reference image and neighboring views are processed by the GPU in roughly 2 seconds

(all overheads included) resulting in high-resolution depth maps. The images can be processed as fast

as their acquisition process, i.e. in real-time. The CPU method takes slightly more time to return a



221

Multi-view stereo

#Images #rays
per view

#Points
per view

Runtime (s)
per view

Total
runtime (s)

bunny49 49 532498 129131 1.8491 90.6059
houses49 49 507836 99581 1.8478 90.5442
headphones49 49 562974 53055 2.4411 119.6155
tools49 49 438519 40581 1.4332 70.227
ball49 49 577982 66164 2.3325 114.2909
groceries49 49 477197 52700 1.524 74.6742
brewer49 49 428750 6966 1.2706 62.2612
smurf63 63 466983 17853 1.9387 122.1403
packages64 64 534682 54293 2.3256 148.8406
plant64 64 514736 34720 2.2059 141.179
birds64 64 620122 61756 2.7574 176.4749
statuette64 64 575242 69856 2.4488 156.7256
dinoRing48 48 273446 60377 0.37027 17.773
dinoRing48 48 98440 24981 0.13588 6.5221
templeRing47 47 256894 115502 0.54388 25.5621

D
at
as
et
s

templeRing47 47 77690 35046 0.15449 7.2611

Table 8.17: Statistics for proposed multiple view stereo pipeline. Runtimes are on GPU. Values that
are defined per view are averaged from depth maps that are estimated per reference view (with four
nearby images).

mesh from given point clouds and operates in near real-time speed. However, the mesh needs be

computed only once and computational complexity is a function of 3-d grid resolution and not the

number of images. For instance, the “bunny49” dataset required roughly 90 seconds of processing

time for 49 depth maps and about 24 seconds for fusing and meshing them. The GPU and CPU

used in these experiments were the “HD 7970” and the “i7-950” defined in section 8.1.2.

In table 8.17, the datasets “dinoRing48” and “templeRing47” are processed at two different

resolutions to show how resolution affects complexity. In order to put these GPU running times

into perspective, comparison charts with running times of the fastest alternative methods of the

evaluation benchmark of [101] are provided in figure 8.36, showing that the proposed method and

its variants are among the fastest of all 74 methods listed there as of February 2015. In terms of

speed, the proposed method is only behind the methods labeled “Merrell Stability” [79] and “Merrell

Confidence” [79], and sometimes behind “Zach2” [137] and “Vu” [126]. However, the proposed method

is more accurate than “Furukawa 3” [41] from result of the proposed evaluation (figure 8.31) and

“Furukawa 3” is ranked as one of the best methods of the evaluation of [101], as shown in table 8.19.
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Surface extraction

#Voxels
(millions)

Graph
construction
time (s)

Max-flow
time (s)

bunny49 12.7215 20.7268 3.2173
houses49 12.444 18.5199 3.9587
headphones49 17.8848 21.1265 1.8732
tools49 10.0737 12.1259 1.5266
ball49 14.5854 19.8275 2.3894
groceries49 11.505 14.2052 1.5348
brewer49 11.2464 11.6883 0.76381
smurf63 12.3201 12.8766 1.1071
packages64 13.554 16.4677 2.3387
plant64 13.7115 16.5718 2.1847
birds64 16.8237 23.9801 4.36
statuette64 15.0792 20.3135 3.3579
dinoRing48 27.0384 35.3328 14.8631
dinoRing48 5.8404 8.5158 6.5816
templeRing47 18.8976 39.3407 45.7419

D
at
as
et
s

templeRing47 3.1416 5.8909 6.989

Table 8.18: Statistics of proposed surface extraction pipeline. Voxel grid resolution is provided as
number of voxels. Graph construction time refers to the CPU time to embed the MVS data into a
volumetric representation and build an associated 3-d graph, which is solved via graph cuts using a
max-flow algorithm.

Table 8.19 also show that the fastest methods are not as accurate, showing up to 3X the accuracy

error of “Furukawa 3”. In conclusion, the proposed method surpasses the accuracy of one of the most

accurate alternative MVS methods and has speeds comparable to the fastest MVS methods, which

present only moderate quality accuracy, therefore the proposed method is among the fastest and

most accurate methods. Note, the accuracy of the proposed method is outperformed by the method

of Tola et al. [116] (see figure 8.31). However, [116] is an efficient CPU method that is roughly 100X

slower than the proposed MVS method running on a GPU.

8.4.3 Qualitative evaluation

Reconstruction of indoor and outdoor scenes are also provided for visual evaluation. Aerial scenes

are included as the proposed solutions aim to perform well in uncontrolled environments. Figure 8.37

shows results of reconstruction from aerial scenes. Figures 8.38 and 8.39 present reconstructions in

indoor environments. Successful recovering of thin geometry is demonstrated in figure 8.39. A partial
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Figure 8.32: Surface reconstruction for thin geometry. The top row has images of the “plant64”
dataset. Quantitative evaluation results are shown in the middle row. The bottom row displays
reconstructions (from left to right): Tola et al. [116] with Poisson reconstruction, Furukawa and
Ponce [41] with Poisson reconstruction, proposed (untextured), proposed (textured) and ground
truth. The proposed surface reconstruction seems more representative of the thin geometry of the
object than the alternative ones, despite quantitative evaluations results.

failure case is shown in figure 8.40. Reconstructions used in the quantitative evaluation section are

displayed in figure 8.35.

Thin geometry. Thin geometry is commonly a problem for surface estimation algorithms as

it defies smoothing priors. For instance, the proposed method fits a mesh as a minimal surface

constrained to photo-consistent locations and a ballooning term. Thus, the model encourages smaller

areas and larger volumes. However, thin structure, e.g. wire, is approximately a cylinder of zero

radius and when the radius of a cylinder goes to zero, the volume converges to zero faster than the

area. Hence, reconstruction methods tend to favor discarding such object completely as the cost

reduction of its tiny volume does not compensate the cost of its area. Similarly, models that favor

piecewise constant regions often see the discontinuity of a tiny cylinder in space as noise and discard

it.
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Figure 8.33: Performance evaluation comparison of the proposed MVS algorithm paired with the
proposed surface estimation method and paired with Poisson reconstruction against alternative MVS
methods that also use Poisson reconstruction. The experiment uses the “bunny49” dataset. When all
methods use Poisson surface reconstruction, the proposed method is comparable to the alternative
methods and slightly better in accuracy.

Discussion. The method performs well in both indoor and outdoor uncontrolled environments,

as shown in figures 8.37 and 8.38, and can reconstruct thin geometry under appropriate model

resolution (figure 8.39). The experiments show many successful examples of reconstructions from

aerial views in figure 8.37. The failure case shown in figure 8.40 is representative of occasional

failures that may happen near textureless surfaces and near the boundary of the volume of interest.

Border regions are challenging since part of their neighborhood is unmodeled. Textureless regions

are often not reconstructed by MVS, thus generating holes that the surface extraction must try to

fill, however if such holes also happen near the border, meshing based on surface priors fail due to

lack of information.
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Figure 8.34: Robustness of proposed method to varying illumination (V.I.). Images from the “smurf63”
and “statuette64” datasets were provided to the proposed MVS algorithm in two forms: with fixed
illumination and with illumination alternating between eight different conditions. No set of nearby
views had two images with the same lighting. The performances are statistically the same even
though the statuette is a specular object. Moreover, the completeness (yellow and red bars) actually
improved (smaller is better) when forcing illumination changes on these experiments due to statistical
variabilities of point estimation.



226

8.5 Conclusions

The proposed GPU implementation of NCC achieves a remarkable speedup with respect to alternative

optimized CPU and GPU algorithms. Moreover, the reported speedup of the proposed implementation

is much higher than speedups reported by prior work on accelerating NCC for various tasks.

A solution is presented to the camera pose estimation problem using NCC and results show that

its estimation accuracy is better than is the accuracy of SIFT matching, a standard technique for

this purpose. In addition, NCC is successfully applied to the detection, matching and tracking of

dense repeating features. The ambiguity of the problem is resolved assuming a planar model and

estimation accuracy of matching feature locations found in this way is also much higher than is SIFT

matching.

The evaluations of the proposed multiple view stereo method for point reconstruction indicate

that the proposed approach is among the fastest MVS methods and also among the most accurate,

and its completeness is comparable to the state-of-the-art methods. The proposed surface estimation

method generates visually pleasing results, but it is outperformed by alternative approaches due to

its limited resolution. However, using a point cloud from the proposed MVS method with Poisson

surface reconstruction yields a meshing method that is also as fast and as accurate as the fastest

and the most accurate state-of-the-art pipelines, respectively. These results were assembled based on

comprehensive evaluations performed in twelve different datasets containing a variety of objects.

The proposed surface reconstruction method works well in uncontrolled environments such as aerial

scenes and produces photo-realistic renderings of the reconstructed scene. The approach satisfactorily

models thin geometry and flat surfaces even though it assumes no known prior information about

surface shape. This chapter also shows many successful surface reconstructions in indoor environments

from a variety of objects including stuffed animals, scissors and a plant.
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Figure 8.35: Reconstruction of objects from datasets used in evaluations in section 8.4.2. The first row
shows the proposed method’s point reconstructions. The second row displays points from Furukawa
and Ponce [41], which are visually more complete, but less accurate than the proposed method,
in accordance with evaluation measurements. The third row displays surfaces from the proposed
method. The fourth row illustrates surfaces recovered from Furukawa and Ponce. The last row has
the ground truth.
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Figure 8.36: Running times of several multiple view reconstruction algorithms for the “dinoRing48”
and “templeRing47” datasets. The alternative methods running times and their labels are taken
from [101]. Top: CPU and GPU methods. Bottom: detail including only the GPU methods, which
are the fastest among all currently listed methods (74 methods as of February 2015). “Furukawa
3” is [41], “Vogiatzis2” refers to [124], “Zach2” is [137], “Vu” refers to [126], “Chang” is [25], the
“Merrell” methods are [79], “Proposed” refers to the pipeline of MVS and surface estimation of
chapter 6, “Proposed+Poisson” is the proposed MVS method with Poisson surface reconstruction,
and “Proposed (MVS only)” is the proposed MVS method (point estimation) without a surface fit.

dinoRing48 templeRing47
Rank Accuracy (mm) Rank Accuracy (mm)

Furukawa 3 1 0.28 5 0.47
Zach2 30 0.51 17 0.56
Vu 32 0.53 2 0.45
Merrell Stability 44 0.73 42 0.76

M
et
ho

ds

Merrell Confidence 47 0.84 47 0.83

Table 8.19: Accuracy results obtained from the evaluation of [101] for Furukawa’s method [41] and
for the fastest GPU methods as of February 2015. Results were obtained using an accuracy threshold
of 90%. The proposed method has not been evaluated in [101].
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Figure 8.37: Surfaces estimated by proposed meshing algorithm running on aerial views. The mesh
is painted with texture from the dataset images, shown in the left. Top: The Rhode Island state
house building (“capitol26” dataset) showing successful renderings of the scene from an unobserved
ground viewpoint and correct estimation of the building flat and curved surfaces, including one flag
on the right side. Below: Reconstruction results on scenes containing a few buildings, streets and
vegetation correctly recovered.
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Figure 8.38: Reconstruction of an indoor environment (bottom) where radiometric variations are
noticeable in the input images (top) of the “office18” dataset.



231

Figure 8.39: Reconstruction of thin geometry. The proposed surface estimation method handles
thin geometry well if given appropriate model resolution. The images demonstrate the retrieving of
plant leaves (“plant64” dataset), bicycle spokes (“bicycle34” dataset) and a network cable (“office18”
dataset). The bicycle spokes are roughly 2 pixels wide in image resolution; the network cable is 4.
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Figure 8.40: Example of failure regions on the “downtown46” dataset. Occasionally, the surface
estimation leaves holes in the reconstruction, shown here as black spots. These regions are typically
textureless regions, where MVS provides no point reconstruction, and are more often concentrated
near volume boundaries. Fitting holes near borders is difficult since there is neighboring data only at
one side. The algorithm then favors a hole instead of fitting a surface because textureless regions
have low photo-consistency and therefore are of high cost.



Chapter 9

Conclusions and future work

This thesis revisited normalized cross-correlation for use in accurate camera pose estimation and

accurate real-time multiple view stereo applications. The novel proposed solutions include a very fast

GPU parallel implementation of normalized cross-correlation that is discussed in detail. Experiments

show that the speedup of such implementation is phenomenally up to three orders of magnitude

faster than alternative CPU methods and significantly faster than alternative GPU methods.

The proposed parallel normalized cross-correlation algorithm is successfully applied to feature

matching for camera pose estimation and attains better location accuracy than SIFT matching, the

most popular alternative method. It is hypothesized that the higher location accuracy of normalized

cross-correlation matching w.r.t. SIFT is due to the way normalized cross-correlation compares the

unprocessed appearance of an object directly. The SIFT descriptor incorporates a very large number

of local visual fragments of the local features, which clearly builds its distinctiveness and invariance

properties, but normalized cross-correlation does deliver superior accuracy in feature localization

under different viewing conditions.

A new approach for matching dense repeating features also via normalized cross-correlation

complements the proposed feature matching method and is able to establish remarkably accurate

wide-baseline matches improving overall accuracy further. Dense repeating feature matching is a

challenging task due to high ambiguity of the true match. The proposed method resolves ambiguities

by assuming the features are on a plane, which support most common dense feature repetition found

233
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in architectural scenes, such as windows of building facades.

In addition to the camera estimation application, the proposed normalized cross-correlation method

is satisfactorily applied to real-time multiple view stereo to achieve real-time performance without

sacrificing accuracy. The proposed pipeline runs entirely on a GPU and achieves accurate results

outperforming most state-of-the-art methods in terms of accuracy and speed of geometry estimation.

Moreover, a fast surface estimation framework is proposed to model arbitrary environments, from

indoor to aerial imagery. Experiments show that this proposed procedure performs well in such

environments successfully modeling surface shape, flat or curved, thin geometry and specular materials

in a variety of conditions with good accuracy, good resolution and speeds that are better or comparable

to alternative methods. Reconstructions are, in general, invariant to illumination conditions because

the methods are based on normalized cross-correlation.

All the proposed pipelines are automatic and were tested on modern GPUs from different vendors.

A comprehensive set of experiments demonstrates the claimed quality of the proposed reconstruction

methods.

The parallel normalized cross-correlation utility proposed here is not limited to the proposed

applications, feature matching for camera estimation and dense surface reconstruction. It is appli-

cable in image registration, object recognition and general template matching. In order to extend

applicability, future work will focus in generalizing the correlation implementation to handle a more

diverse set of correlation kernels. Currently, the implementation supports square templates, Gaussian

weighting and 8 bit/pixel grayscale images. Support for rotation- and scale-invariant correlation

computation will be explored in the future. These potential enhancements deliver a matching process

that is invariant to image rotations and adapts to the characteristic scale of interest points.

A second line of research to be explored is to fully parallelize all proposed application pipelines.

For instance, there are many independent sequential CPU computations that could run concurrently

processed in the proposed feature disambiguation pipelines. Moreover, the proposed surface estimation

method has limited resolution due to high memory requirements of the volumetric representation

with uniform grid. This approach can benefit from a more efficient volumetric representation, such

as an octree, and from a GPU-accelerated graph cuts optimization solution to reach high-resolution
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real-time performance.

Finally, the model-based disambiguation and matching of dense repeating features presented the

most accurate localization of estimated correspondences between surveyed methods. Generalizing

the approach for matching lattices on deformed surfaces and handling other primitive shapes besides

planes is also useful in architectural scenes and will be investigated in the near future.

The results of this thesis indicate that normalized cross-correlation is powerful matching tool

capable of providing very accurate results under a variety of conditions and at very high speeds

thanks to the proposed parallel algorithms and to the massive processing power of modern GPUs.

Furthermore, extensive experiments regarding the proposed applications demonstrate significant

gains with respect to traditional alternative methods, in terms of estimation accuracy and speed.
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