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Abstract—Reasonable computation and accurate camera
calibration require matching many interest points over long
baselines. This is a difficult problem requiring better solutions
than presently exist for urban scenes involving large buildings
containing many windows since windows in a facade all have
the same texture and, therefore, cannot be distinguished from
one another based solely on appearance. Hence, the usual
approach to feature detection and matching, such as use of
SIFT, does not work in these scenes. A novel algorithm is
introduced to provide correspondences for multiple repeating
feature patterns seen under significant viewpoint changes. Most
existing appearance-based algorithms cannot handle highly
repetitive textures due to the match location ambiguity. How-
ever, the target structure provides a rich set of repeating
features to be matched and tracked across multiple views,
thus potentially improving camera estimation accuracy. The
proposed method also exploits the geometric structure of
regular grids of repeating features on planar surfaces.

I. INTRODUCTION

Duplicated structures are ubiquitous in urban scenes

and handling their inherent match ambiguity has been an

important topic in computer vision. Scene structure duplicates

usually consist of man-made objects and are commonly found

in architectural scenes. Facades and windows are among the

most common repeating elements in urban scenes, as seen

in figure 2.

Replicated objects often cause issues in structure from
motion (SFM), the problem of simultaneously estimating

camera poses (motion) and 3-d points (scene structure)

from 2-d images with correspondences. Duplicated objects

often give rise to erroneous or ambiguous matches and their

detection and disambiguation must rely on global consistency

measures. For instance, consider a simple scene with two

identical cereal boxes, box 1 and box 2, and a reference image

sees only box 1. This scene configuration can illustrate two

common possible ambiguities problems. Traditional matching,

e.g. via SIFT [7], a broadly used local feature descriptor in

SFM, may incorrectly associate the image objects if the

sensed image sees only box 2 (type I ambiguity). SIFT will

likely fail to provide correspondences from the boxes if the

sensed image sees both of them, as it cannot disambiguate the

nearly identical local descriptors (type II ambiguity). Note,

type I ambiguity causes an error, whereas type II leads to

missing matches. These issues have motivated work in scene

disambiguation to determine the correct associations, i.e.

Figure 1. Typical example of the model-based pairwise matching method
proposed in this paper. A building facade exhibits many windows with
identical appearances duplicated in multiple locations in both views, leading
to highly ambiguous correspondences due to repetition. Matches for over 100
repeating features are correctly disambiguated under partial facade occlusion
with no calibration nor prior knowledge about the scene. Corresponding
points are shown with identical markers.

matching features that correspond to the same 3-d points.

Most existing work focus on type I ambiguity where repeating

elements are large objects repeating only a few times in a

scene. Progress has been made in terms of detection and

matching in the presence of such objects [10], [8], [6], [2],

[13], [3].

In contrast, the proposed method focus on match disam-

biguation for scenes with enhanced type II ambiguity, where

multiple distinct repeating elements may exist, each one

exhibiting a massive number of virtually identical features,

as a scene with all the buildings in figure 2. The proposed

procedure targets aerial views of scenes with tall buildings,

where multiple facades may be visible at once and the

common repeating elements are the windows of each facade,

but it is not limited to such objects or imagery. No prior

information about camera parameters are assumed.

Contributions: In summary, the main contributions of

this work include: (1) proposing a novel lattice-based solution

to a very ambiguous image correspondence problem on

matching a large number of identical features from building

facades, (2) enabling registration of the planar surfaces via

homographies to achieve straight forward wide baseline

matching and tracking via normalized cross-correlation, and

to (3) improve SFM accuracy on urban scenes with a greatly

enhanced number of matched features from facades.
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Figure 2. Example of facades of large buildings from a single urban scene.
All buildings present planar grid repeating features.

II. RELATED WORK

The majority of previous work focus on scene disambigua-

tion of large objects under minor repetition, i.e., repeating
elements occur a few times in the scene and are often seen

only once in an image (type I ambiguity). Specialized SFM

algorithms for handling repeated objects in a scene have been

proposed [13], [10], [3], [12], [1] and typically use SIFT

matching for finding correspondences.

In contrast, the proposed method tackles repeating elements

displaying massive dense repetition, such as hundreds of

nearly identical features in a single image and proposes an

approach to robustly match all of them under viewpoint

changes assuming an they are organized in a flat lattice

(see figure 1). The lattice grid detection and matching is

robust to incomplete detected grids and also missing grid

matches. Park et al. [9] detect a deformed lattice from re-

peated patterns in a single image, but does not propose stereo

matching. Deformed lattice matching is usually achieved

using spatial-temporal tracking assuming negligible inter-

frame motion and do not handle significant baselines [5].

Schindler et al. [11] matches 3-d patterns from a pre-existing

database of geolocated planar facades to newly detected

facades exploiting the repeating nature of buildings to match

the lattice rather than individual points.

Recent work of Liu and Liu [6] detects and associates

facades on unconstrained aerial views and it is more directly

related to this work. [6] achieves good results in detecting

multiple facades per image and in associating detected facade

regions in different viewpoints. However, the matched facade

regions do not provide accurate local feature correspondences

of the ambiguous repeating elements (window corners).

III. OVERVIEW

Appearance based matching algorithms typically fail to

establish a unique correspondence between two views of a

highly repetitive texture due to the fact that the appearance

is densely duplicated at multiple locations in both images.

Highly repetitive textures mostly occur on planar man-

made objects, especially in urban scenes with repeating

Figure 3. Definition of planar lattice: a repeating arrangement of points in
space defined by a point p and two generator vectors, e1 and e2, resulting
in a regular tiling of the plane by parallelograms.

structure, i.e. a homogeneous facade of windows. However,

by introducing a planar geometric constraint, the algorithm

proposed in this paper establishes a correspondence between

two views of the same repetitive structure by exploiting

the global planar geometry to disambiguate features with

identical appearance.

The proposed matching algorithm is outlined in figure 4.

In a reference image, potential grid points are detected

as features that have many surrounding replicas in their

local neighborhood found via normalized cross-correlation,

and are defined as grid seeds. After selecting one grid

seed point, a larger neighborhood is searched for image

locations with similar appearance (figure 4a). A Delaunay

triangulation provides edge connectivity among these similar

points (figure 4b) which may include outliers, points that

are similar to the seed in appearance, but do not lie on

the same planar object. After removing outliers from the

original Delaunay triangulation (figure 4c), a regular lattice is

inferred from the refined triangulation based on common edge

lengths and orientations. See figure 3 for lattice definition.

The estimated lattice grid points are the vertices of the refined

triangulation and the two lattice edge directions are inferred

from the refined triangulation common edge orientations

(figure 4d). Unlike the triangulation, the lattice provides a

genuinely regular topological structure to the grid points

(compare figures 4c and 4d).

Grid points are matched individually in a sensed image

via normalized cross-correlation while imposing the epipolar

constraint. Note, the proposed approach is not limited to

a choice of features and matching criteria, extending to

any method that provides pairwise correspondences between

repeating elements. Epipolar geometry is estimated from

unambiguous matches found elsewhere. Essentially all the

grid matches are still highly ambiguous (multiple match

locations) when only considering appearance, due to the

repetitive nature and density of the grid. Spatial regularity

constraints of the lattice are used to disambiguate the point

matches in two stages. First, constraints are applied to lattice

lines, thus, simplifying the point correspondence ambiguity

problem to disambiguating line matches (figure 4e). Finally,

the intersection of two lattice lines must have a common

corresponding point defined individually from their line

match candidates, an important concept denoted intersection
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Figure 4. Overview of the planar grid matching pipeline. In a reference image, a grid seed point is found and similar features are detected as potential
grid points (a); outliers are removed (b); inliers are triangulated (c); and a lattice is estimated from the triangulation structure (d). Global lattice spatial
constraints are imposed on point matches and the problem of matching ambiguous grid points from the reference to the sensed image is reduced to a line
matching problem (e). The lattice points are matched one line at a time in images taken from different viewpoints establishing correspondences (f).

consistency that ensures every grid point has a common

correspondence from the two lines it belongs to. This

concludes the model-based disambiguation pipeline, resulting

in disambiguated matches (figure 4f).

After processing a lattice estimated from a seed point,

a new seed is selected to process other lattices of the

same image and this new seed does not belong to a

previously learned or analyzed grid. The system only returns

a corresponding lattice when both the learning and matching

procedures succeed in estimating well-supported structures

conforming with a proper planar lattice. Thus, corresponding

lattices must present simple canonical properties derived

from the definition in figure 3, such as line parallelism, no

distinct lines intersect more than once, every node has no

more than two neighbors per direction, the grid points are

not all collinear and the correspondences satisfy a planar

homography. These sanity checks prevent erroneous matches

arising from false seed points or from falsely-detected lattices.

Limitations: The proposed method does not provide a

correspondence for lattices of very skewed facades where the

grid corners are starting to merge due to the oblique viewing

angles, and also for camera configurations where epipolar

lines and lattice lines coincide leading to multiple possible

solutions. The proposed approach works well for large lattices

and the smallest matched lattices have in average six to eight

grid points.

A. Motivation for modeling planar surfaces

Planar geometry is very common in urban scenes and,

under viewpoint changes, it preserves

1: the collinearity of features, and

2: the relative ordering of a set of collinear features.

These preserved properties are exploited to match a rich set

of strong essentially identical features that are too ambiguous

to match individually without a region model. The matching

using a planar model, illustrated in figure 5b, succeeds for

an entire grid of points and justifies the use of a distinct

plane-based matching method tailored for this type of object.

(a) (b)

Figure 5. Matching results for highly repetitive urban scenes features. (a)
Model-free matching using SIFT features. (b) Matching using proposed
planar model of this paper.

IV. GRID POINTS DETECTION

A grid denotes a collection of nearly identical feature

points called grid points or clones originating from a planar

lattice in a 3-d scene. The clones in the planar grid lattice

are evenly distributed displaying evident collinear subsets.

Any clone can be a seed to a procedure that detects the grid

for which it is a point.

A. Finding grid seeds

In order to find a corner that is a potential grid seed,

normalized cross-correlation is used to correlate every corner

point feature (11×11 patch) over a square region around itself

of size 10% of the image height (72× 72 in experiments).

Matches are denoted clones (see figures 4a and 6). Points

with a high number of clones are denoted grid seeds of an

underlying grid structure. Note, only one seed is used to

estimate a lattice.

B. Augmented clones set

A grid seed is a point that presents a large number of

clones in its local neighborhood. In order to find the entire

associated grid, a new correlation search is performed for the

seed only, this time in a larger square neighborhood (50% of

image height). The matches are then points that compose a

planar grid in addition to outliers. The new set is denoted the

augmented clones set and includes potentially more clones

than the original clones set (see figure 6). The augmented

clones set has outliers, is unordered and may miss some grid

points. The method for robustly detecting the underlying true

grid structure is explained next.
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Figure 6. Illustration of two grids with grid seeds and clone sets. The grid
seed points are in blue, their clones, composed of nearly identical features,
are in green, and the augmented clones sets are in red.

Figure 7. Left: A Delaunay triangulation of the augmented clone set
of a grid seed showing potential grid points and some outliers. Right:
triangulation of estimated inliers.

C. Lattice model

A Delaunay triangulation Dt of the augmented clones set

is computed and there is likely outliers present in the set, as in

figure 7. On inlier regions, the edges of Dt are often periodic

as the lattice and therefore predictable, however this is not

guaranteed since a Delaunay triangulation can be sensitive

to some lattice configurations and present multiple periodic

patterns. The proposed grid detection method is robust to a

few distinct regular patterns. Near outliers, the triangulation

edges are usually irregular. Thus, outliers are filtered out by

learning the periodic patterns of Dt and removing points that

do not fit these patterns.

Lattice feature: The learning of the lattice structure is

based on the feature vector

E =

(
θ

l

)
(1)

composed of the orientation θ and the length l of an edge of

Dt. The orientation angle and the length of an edge e, given
by the vector e = (ex, ey)

�, are illustrated in figure 8 and

defined as

θ = arctan
ey
ex

, (2)

l =
√
e2x + e2y. (3)

Figure 8. Pictorial representation of feature vectors of Delaunay triangula-
tion edges of a grid lattice point. Six edge vectors are shown: e1, . . . , e6.
The orientation components are displayed for the first three edges as θ1, θ2
and θ3 and lengths are represented by the arrow sizes. By definition, the
orientation feature for e1 and e4 are approximately the same and similarly
for others.

Therefore, −π/2 ≤ θ ≤ π/2. Edge vectors for neighbors

that are in approximately opposing directions, e.g., Θe and

π +Θe, are represented by a single orientation.

Learning the lattice: In order to derive the lattice

structure from the triangulation Dt, assume the distribution of

the edge feature vectors E follows a 2-d mixture of Gaussians

density function. The parameters are learned incrementally

according to update equations based on [4] where samples

are weighted equally.

The truly periodic features must be very common and

produce strong Gaussian components, while the outliers are

normally random and generate none. If there are multiple

periodic patterns on Dt, they are also learned.

D. Iterative outlier removal

Given the learned mixture of 2-d Gaussians, each vertex v
in Dt is tested to check if all its edges are in accordance with

the mixture. A discriminant value Ze is computed for each

edge e of v as the minimum of the Mahalanobis distances

of the edge feature to each 2-d mixture component. The

discriminants are used in an iterative pruning procedure that

finds and removes highly inconsistent outlier vertices a few

at a time, update Dt and repeat.

An outlier on the triangulation interior affects the tri-

angulation on its surroundings potentially causing any of

its neighbors to also appear as an outlier. The proposed

procedure copes with this problem to prevent an outlier from

iteratively spreading its outlier condition outward as Dt is

updated, an issue denoted outlier proliferation. The solution

is provided below.

Finding nongrid outliers: At each iteration, vertices

such that at least 3 of their edges agree with the Gaussians

mixture by having a small discriminant, i.e.,

Ze < 2.5, (4)

are considered inliers. Vertices at the borders and corners of

the lattice need special treatment as some of their edges differ

from the edges of interior vertices. Thus, neighbors of the

inliers vertices may also be considered inliers and then are

protected from removal at each iteration. The protected inlier

neighbors (yellow nodes in figure 9) are the ones associated
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Figure 9. Iterative outlier detection and removal based on learned lattice.

with edges such that their discriminant is less than 2.5. This

method preserves border vertices neighboring inliers and also

avoids outlier proliferation. Remaining vertices are nongrid
outlier candidates and are not promptly discarded, but must

satisfy an inconsistency test to be considered an outlier. A

candidate is an outlier if 60% of its edges discriminants

(Mahalanobis distances) are greater than 5, i.e.,

Ze > 5, (5)

which means the edges are truly abnormal with respect to the

learned model, as often observed on outliers (see figure 9).

Figure 9 displays the iterative outlier removal method,

showing inliers, outliers and the triangulations. Outlier

candidates that are not deemed to be estimated outliers are

labeled “undefined”.

Termination condition: After each outlier removal

iteration, the structure of Dt is locally rearranged with the

outliers removed and the procedure repeats until no outlier

is left, as shown in figure 9, resulting in estimated inlier

triangulations as in figure 10. Note that nearby identical

facades may exist causing multiple grids to arise, as in the

bottom of figure 9. In order to remove similar nearby grids,

consider ignoring all edges not in accordance with the learned

model as in equation (5), and keeping only nodes connected

to the seed via remaining valid edges.

Figure 10. Examples of Delaunay triangulations of estimated grid points,
shown as red dots. The triangulations (blue edges) depict the structure of
the lattice.

E. Defining grid main directions

The main directions are any two directions in the grid

where a lattice can be defined by connecting sets of collinear

points parallel to each other. The directions are taken from

the orientation components of the Gaussian mixtures learned

in section IV-C. There are multiple possibilities for the choice

of directions, as can be seen in figure 10. The main directions

are chosen as two learned orientations such that their relative

angle is close to 90 degrees (in the image).

V. GRID LATTICE ESTIMATION

Given estimated grid points, they must be connected in a

consistent way in order to form a 2-d lattice, which consists

basically of finding straight line connections along two

main directions. Lattice lines must be estimated since the

grid points alone are not useful to ease image matching

disambiguation. As discussed in section III-A, matching is

easier to disambiguate when constrained to a model and a

planar surface.

To estimate lines from grid points, adjacent vertices are

first connected in the two main grid directions, forming line

segments (section V-A). A single grid line can be broken

into multiple segments if there are missing vertices or local

statistical variability. Second, the segments are iteratively

merged into complete grid lines (section V-C).

A. Connecting vertices into line segments

In order to connect points into line segments in one of

the main directions v, as in figure 11, every point is visited

once. Given the first visited point p1, find its surrounding

points according to Dt and assign the neighbors along the

direction v to be the one or two which are roughly in such

orientation. This process iteratively repeats for the neighbors

of p1 and so on, growing it into a line segment of roughly

collinear points, and is repeated for other points and for the

other main direction. Results are shown in figure 11.

B. Defining line segments neighborhood

The line segments provide a rough structure of the grid

that is enough to find line-to-line neighborhoods. Given a

line segment sl in one direction, the two neighbor parallel
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(a) (b)

Figure 11. Line segments estimated for two grids of windows. Segments
are presented with random colors for one grid direction. A single grid
line may split into multiple segments and their breaking points are due to
missing features, missing connectivity or small statistical deviations from
learned orientations.

(a) (b)

Figure 12. (a) Parallel neighbors of a lattice line segment sl and three
segments on the other lattice direction (dashed). (b) Distance threshold τs
for points to merge into fit line ls.

segments, sl−1 and sl+1, can be found by traversing through

the other main direction, as shown in figure 12a.

C. Merging line segments
Once all segments and their neighbors are established,

they are merged to form longer and complete grid lines. The

merging is based on distances from points to lines. Let s
be line segment. A line is fit using SVD to the points in s,
resulting in a line ls. The distances from the points in s to

ls are computed and their median is the within-line distance,

dw(s). The distances between neighbors of s and ls are also

computed and their median is the neighbor-line distance,

dn(s). These distances are illustrated in figure 12b and their

mean is a threshold τs,

τs =
dw(s) + dn(s)

2
, (6)

representing the half-distance between a line and its neighbors

that is used to determine whether a point should merge into ls.
This process runs from the largest to the smallest segments

incrementally merging them into larger ones until nothing

can be combined anymore.
Singleton-point segments: Segments with a single point

can be naturally assigned to merge with other larger segments

of the same underlying grid line via the proposed merging

method. They may borrow line slopes from neighbor seg-

ments if necessary for merging. Near the lower left corner

of figure 11b, two grid lines have only two singleton-point

segments, but the lines are successfully learned (figure 13).

Figure 13. Examples of estimated 2-d planar grid lattices found in images
from figure 2. Note, the method is robust to small distances between the
grid lines.

D. Organizing lines into a 2-d lattice

The iterative segment merging process of section V-C is

performed once in each main direction of the grid providing

complete lines. The lines can be straightforwardly ordered

given the estimated parallel line neighborhoods (section V-B).

The result is an estimated 2-d lattice, as shown in figure 13,

where the ordering of lines is color coded. In addition, the

ordering of points in each line is illustrated by connecting

adjacent points with a straight line segment. Note, the

merging is robust to sequences of missing grid points.

VI. GRID MATCHING

After a grid lattice has been established, the next step is

to match it on a sensed image enforcing global properties

that are invariant under viewpoint changes to disambiguate

the matching, as motivated in section III-A.

A. Match grid points independently

Individual grid points are first matched from a reference to

a sensed image using traditional normalized cross-correlation

procedure, retaining all high correlation peaks near epipolar

lines. The epipolar geometry is estimated from other nongrid

matched points from the image pair. The average number of

matches per grid point is high due to periodicity of the grid

(see figures 14 and 15 for details).
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Figure 14. Histogram of the number of correlation matches on a sensed
image (not shown) of repeating grid points displayed in the reference image
on the right.

B. Reduce ambiguities by matching grid lines

Given that collinearity and ordering of grid points on

a plane are preserved under viewpoint change (see sec-

tion III-A), these constraints are used to rule out wrong

matches. Given all matches of all grid points, it is likely that

there is only one matching configuration among all possible

combinations that preserves the topology of the entire

estimated grid. However, trying every possible combination

is prohibitive. Match ambiguity is reduced by several orders

of magnitude by first constraining matches of collinear points

taken from the grid lattice.

Three constraints are implemented to reduce ambiguities:

collinearity, ordering and spacing. Points from a planar

grid lattice line in a reference image must appear in the

same relative order in the sensed image, in addition to being

collinear. Spacing denotes the distances between adjacent
grid line points. The spacing of the grid points and their

matches is considered locally invariant under viewpoint

changes under assumed approximately affine projection of

building facades that are away from the camera. Spacing

constraint is more relevant to disambiguate small lines. The

tolerance level for the collinearity constraint is modeled using

τs from equation (6). The spacing constraint is performed

by comparing ratios of distances among neighbor points. In

addition to relative spacing ratios, the absolute distances of

matching neighbor points is only allowed to change by a

factor of 1.5 between adjacent images.

Applying such constraints to points of a grid line, es-

sentially eliminates match ambiguity. This constrained line

matching robustly handles occlusion by tolerating missing

grid points and skipping unmatched ones, as illustrated in

figure 16. The bottom row of figure 17 provides matching

results under occlusion. Multiple line matches may still exist

after applying the constrains, yet affecting mainly short grid

lines. When a single grid line has multiple line matches,

only the ones with the highest number of points are kept for

further disambiguation discussed in section VI-C.

C. Topology-preserving incremental line matching

The ambiguity of line matches seen in figure 16a is smaller

than is the ambiguity of matching individual points (c.f .
figure 15).

Figure 15. Examples of grid point matches computed individually. Left:
arbitrary feature points, where some are collinear. Right: multiple matches
of previous points in different views showing that collinearity alone does
not fully disambiguate line matchings.
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Figure 16. Illustration of grid line matching. (a) Aerial stereo pair showing
grid lines in different colors (left) and their associated line match candidates
(right) with matching colors. (b) Detail of the yellow horizontal grid line
on the left image and (c) detail of its matching line on the right image. The
numbers uniquely represent a line point and its match showing that matches
are pointwise correct despite missing grid points and missing matches.

Grid topology is enforced using line intersections. The

matching process starts by matching a long grid line using

procedure in section VI-B. Longer lines are often unam-

biguous. Then, a second long line in the other direction is

matched and its intersection with the first must be consistent.

Intersection consistency is a very important concept implying

that when two grid lines intersect at a point, their matching

lines must also intersect at a common point. The matching

expansion continues trying to add one line at a time to the

matched grid, alternating between the two main directions. As

new line matches are being incorporated, they must conform,

in the context of intersections, with all lines matched prior

to them. Note, consistent intersections are very restrictive,

essentially eliminating match ambiguity by basically yielding

one coherent matching line or none, and ensuring grid

topology is preserved on the sensed image. Resulting matched

grids are shown in figures 17 and 18.
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Figure 17. Examples of pairwise matches of grid features from building facades seen from distinct angles. The matches are estimated from proposed fully
automatic procedure. Zoom in electronic version for details.

Figure 18. Multiple lattice correspondences automatically estimated using
a single image pair of sizes 1280 × 720. Top: a reference image and its
estimated lattices that produced correspondences. A building facade may
have multiple lattices, one for each distinct repeating corner from windows.
Bottom: point correspondences of the multiple lattices (zoom in electronic
version for details). The smallest matched lattice dimensions are 2× 4.

VII. CONCLUSION

The proposed feature matching method assumes the exis-

tence of grids of features with planar geometry in the scene

and exploits this global spatial information to resolve a highly

ambiguous correspondence problem. Unlike in previous work

that only handles little repetition, common features that

massively repeat, such as building windows found in urban

scenes, are correctly detected and matched to one another

by the proposed pipeline using a planar lattice model. The

procedure is fully automatic and assumes no prior knowledge

of the scene. The planar correspondences estimated here can

be used to refine match location for piecewise planar regions

under wide baselines by tracking planes among successive

small-baseline images via homographies and can potentially

improve the accuracy of SFM.
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