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Abstract— A system for autonomous operation of Mars 
rovers in high slip environments has been designed, 
implemented, and tested.  This system is composed of 
several key technologies that enable the rover to accurately 
follow a designated path, compensate for slippage, and 
reach intended goals independent of the terrain over which 
it is traversing (within the mechanical constraints of the 
mobility system).  These technologies include: visual 
odometry, full vehicle kinematics, a Kalman filter pose 
estimator, and a slip compensation/path follower.  Visual 
odometry tracks distinctive scene features in stereo imagery 
to estimate rover motion between successively acquired 
stereo image pairs using a maximum likelihood motion 
estimation algorithm.  The full vehicle kinematics for a 
rocker-bogie suspension system estimates motion, with a 
no-slip assumption, by measuring wheel rates, and rocker, 
bogie, and steering angles.  The Kalman filter merges data 
from an Inertial Measurement Unit (IMU) and visual 
odometry.  This merged estimate is then compared to the 
kinematic estimate to determine (taking into account 
estimate uncertainties) if and how much slippage has 
occurred.  If no statistically significant slippage has 
occurred then the kinematic estimate is used to complement 
the Kalman filter estimate.  If slippage has occurred then a 
slip vector is calculated by differencing the current Kalman 
filter estimate from the kinematic estimate.  This slip vector 
is then used, in conjunction with the inverse kinematics, to 
determine the necessary wheel velocities and steering angles 
to compensate for slip and follow the desired path.  
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 1. INTRODUCTION 
There is a very strong scientific rationale for Mars rover 
exploration on slopes, to access channels, layered terrain, 
and putative shorelines and fluid seeps, in pursuit of 
evidence for fossil or extant life and in order to understand 
the geologic and climatic history of the planet.  Precision 
landing capabilities anticipated for 2009 and beyond will 

 
Figure 1: Rocky 8 on a Sandy Slope 
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bring such terrain within practical reach of rover missions 
for the first time.  MOLA results [1] show Valles Marineris 
slopes over 600 meter baselines of typically less than 5 
degrees on lower canyon walls to 28 degrees on upper 
walls, while slopes elsewhere on Mars are within this upper 
bound. MOLA measurements of inner slopes of craters with 
seeps is typically from 15 to over 21 degrees for baselines 
of 330 meters, though typical fresh-looking Mars craters 
have slopes 2 to 2.5 times lower [2].  In principle, such 
slopes are within the mobility envelope of rovers.  
However, such slopes are likely to have abundant loose 
material, which could cause significant wheel slippage and 
sinkage in addition to the usual obstacles posed by rocks 
and tip-over hazards. Relatively little research has been 
done on rover navigation on slopes or in the presence of 
significant wheel slippage or sinkage, particularly for 
transverse slippage when traveling across a slope. 
Therefore, there is little rover navigation experience or 
autonomous navigation capability for what is likely to be 
important terrain for future rover missions.   
 
This paper describes the design, implementation, and 
experimental results of an integrated system to enable 
navigation of Mars rovers in high slip environments.  This 
system enables the rover to accurately follow a designated 
path, compensate for slippage, and reach intended goals 
independent of the terrain over which it is traversing (within 
the mechanical constraints of the mobility system).  The 
system is comprised of several key components that were 
developed and refined for this task and are described in 

detail below.  These components include: visual odometry, 
full vehicle kinematics, a Kalman filter pose estimator, and 
a slip compensation/path following algorithm.  A high-level 
functional block diagram of the system can be seen in 
Figure 2.  Visual odometry is an algorithm that uses stereo 
imagery to estimate rover motion independent of 
mechanical terrain properties.  The full vehicle kinematics 
uses position sensor inputs from the joints and wheels of the 
rocker-bogie mobility system (see Figure 4) to estimate 
rover motion.  The Kalman filter merges estimates from 
visual odometry and the onboard IMU to estimate rover 
motion at very high rates.  Both the IMU estimate and the 
visual odometry estimate are independent of the vehicle’s 
interaction with its environment.  The motion estimate from 
the Kalman filter is then compared with the motion estimate 
from the vehicle kinematics, which is highly dependent 
upon the vehicle’s interaction with its environment.  This 
comparison allows for the statistical analysis of the 
difference between the two estimates.  Accounting for 
estimate uncertainties, if the vehicle kinematic motion 
estimate can contribute to the Kalman filter motion 
estimate, then no statistically significant slippage has 
occurred.  If, however, slippage has occurred, then the 
kinematic estimate and the Kalman filter estimate are 
differenced, resulting in a rover ‘slip vector.’  This slip 
vector is then used in combination with a path following 
algorithm to calculate rover velocity commands that follow 
a path while compensating for slip. 

 

 
Figure 2: Path Following/Slip Compensation System 

 
The individual components of the system as well as that of a 
simplified integrated system has been tested onboard a 
rover.  Two independent tests were performed using Rocky 
8 (see Figure 4), a Mars rover research platform.  In the first 
test, visual odometry was tested onboard the rover in the 
JPL Mars Yard over two 25m traverses.  Results from this 
visual odometry test are very encouraging.  Under normal 
conditions, wheel odometry accuracy is not better than 10% 
of distance traveled and, in higher slip environments, it can 
be significantly worse.  Results from our tests show that we 
can achieve greater than 2.5% accuracy, regardless of the 
mechanical soil characteristics.  The second test was a field 
test that used the slip compensation system described above, 
minus the Kalman filter.  This test involved traverses of 
over 50 meter on sandy slopes. 
 
Results from the Mars Yard test and the field test are 
presented in Section 6.  Testing of the fully integrated 
system, including the Kalman filter and the continuous slip 
compensation, is planned for the near future. 
 
 
 2. VISUAL ODOMETRY ALGORITHMS 
Mobile robot long distance navigation on a distant planetary 
body requires an accurate method for position estimation in 
an unknown or poorly known environment.  Techniques for 
position estimation by stereo sequences have been shown to 
be a very reliable and accurate method.  Visual odometry, or 
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ego-motion estimation, was originally developed by 
Matthies [3].  Following this work, some minor variations 
and modifications were suggested for improving its 
robustness and accuracy [4][5].  However, the key idea of 
this method remains the same: to determine the change in 
position and attitude for two or more pairs of stereo images 
by using maximum likelihood estimation.  The basic steps 
of this method are described below. 
 
Feature Selection 

Features that can be easily matched between a stereo pair 
and tracked between image steps are selected.  The Forstner 
interest operator [6] is applied to the left image of the first 
stereo pair.  The pixels with lower interest values are better 
features.  In order to ensure that features are evenly 
distributed across the image scene, a minimum distance 
between any two features is enforced.  In order to reduce 
the volume of data that needs to be sorted, the image scene 
is divided into grids, with a grid size significantly smaller 
than the minimum distance between features.  Only the 
pixel with the lowest interest value in each grid is selected 
as a potential feature. Then, all potential features are sorted 
in descending order. The top N pixels meeting the minimum 
distance constraint are selected as features. 
 
Feature Gap Analysis and Covariance Computation 

The 3D positions of the selected features are determined by 
stereo matching.  Under perfect conditions, the rays of the 
same feature from the left and right images should intersect 
in space. However, due to image noise and matching error, 
they do not always intersect. The gap (the shortest distance 
between the two rays) indicates the goodness of the stereo 
matching. Features with large gaps are eliminated from 
further processing. 
 
Additionally, the error model is a function of the gap.  This 
effect is incorporated in the covariance matrix computation. 
 
Assuming the stereo cameras are located at C1 (X1, Y1, Z1) 
and C2 (X2, Y2, Z2) (see Figure 3), r1 and r2 are two unit rays 
from the same feature in both images. Because of noise, r1 
and r2 do not always intersect in space. The stereo point is 

taken to be the midway between the closest points of the 
two rays.    C 1 

C 2 

m 1 

m 2 p 1 

p 2 
r 1 

r2

 
Figure 3: Feature Gap 

 
Assuming the closest points between the two rays are P1 
and P2, thus, we have  
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where P′ is the Jacobian matrix, or the matrix of first partial 
derivatives of P with respect to C1 and C2.  
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Feature Tracking 

After the rover moves some distance, a second pair of stereo 
images is acquired.  The features selected from the previous 
image are then projected into the second pair using the 
knowledge of the approximated motion provided by the 
onboard wheel odometry.  Then a correlation-based search 
and tracking based on an affine template precisely 
determine these features’ 2D positions in the second image 
pair.  The affine template tracking aims to remove the 
tracking error caused by large roll and scale change between 
images.  In this case, the relationship between two images 
within the template is expressed as an affine transform 
 

feydxycbyaxx ++=++= 112112  (9) 
  
Where [a, b, c, d, e, f] are the unknown coefficients of the 
affine transform that can be determined by an iterative 
method by minimizing a merit function [7]  
  

min)]y,x(I)y,x(I[M 2
222111 =−= ∑  (10) 

 
where Ij(x, y) specifies the pixel value at position (x, y) in 
image j.  Stereo matching is then performed on these 
tracked features on the second pair to determine their new 
3D positions.  If the initial motion guess is accurate, the 
difference between the two estimated 3D positions should 
be within the error ellipse.  However, when the initial 
motion guess is off, the difference between the two 
estimated positions reflects the error of the initial motion 
guess and can be used to determine the change of rover 
position. 
 
Motion Estimation 

Motion estimation is done in two steps.  Coarse motion is 
first estimated with Schonemann motion estimation, and 
then a more accurate motion-estimate is determined by 
maximum likelihood motion estimation.  
 
Schonemann motion estimation [8] uses singular value 
decomposition (SVD) with an orthogonal constraint to 
estimate a rotation matrix and a translation that transforms 
the feature positions in I1 to those found in I2.  The 
Schonemann method is simple and fast, however, it is 
highly unstable when large errors are involved.  In order to 
overcome this problem, the least-median-of-squares method 
[9] is applied.  In this method, a subset of features is 
randomly selected.  Then each feature from the previous 
frame is projected to the current frame, and the distance 
error between that projection and the position of the 
corresponding feature in I2 is calculated.  The total count of 
features under a given error tolerance is calculated.  This 
procedure is repeated multiple times.  The motion with the 
largest number of agreeable features is chosen as the best 
motion. 
 

The best motion estimation found using the above 
procedure is refined using maximum likelihood motion 
estimation.  Maximum likelihood motion estimation takes 
account of the 3D position differences and associated error 
models in order to estimate motion. Let Qpj and Qcj be the 
observed feature positions before and after a robot motion.  
Then we have 
  

jpjcj eTRQQ ++=     (11) 

 
where R and T are the rotation and translation of the robot 
and ej is the combined errors in the observed positions of 
the jth features.  In this estimation, the 3 axis rotations (Θ) 
and translation (T) are directly determined by minimizing 
the summation in the exponents ∑ , where T

j j je W e min=

j cj pje Q RQ T= − −  and Wj is the inverse covariance 

matrix of ej.  The minimization of the nonlinear problem is 
done by linearization and iterations [3].  Two nice 
properties of maximum-likelihood estimation make the 
algorithm powerful.  First, it estimates the 3 axis rotations 
(Θ) directly so that it eliminates the error caused by rotation 
matrix estimation (which occurs with least-squares 
estimation).  Secondly, it incorporates error models in the 
estimation, which greatly improves the accuracy. 

 
Figure 4: Rocky 8 

 3. KINEMATIC ALGORITHMS 

Full rover kinematic algorithms were developed to fill two 
roles in the system shown in Figure 2.  The first role is the 
forward kinematics of the vehicle, which estimates rover 
motion given the wheel rates, and rocker, bogie, and 
steering angles.  The second role is the inverse kinematics 
of the vehicle, which calculates the necessary wheel 
velocities to create the desired rover motion. 
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These algorithms are specific to the rocker-bogie 
configuration with six steerable wheels (see Figure 4), but 
the techniques used to derive the algorithms could be used 
for any vehicle configuration (although there may be a 
fewer number of observable DOFs for different 
configurations).  Additionally, the forward kinematic 
algorithms could be used directly for rovers with a subset of 
functionality (e.g. a rocker-bogie rover with only 4 steerable 
wheels, such as MER) simply by making the relevant 
parameters constant. 

The motivation for developing the full kinematics of this 
class of vehicles (rather than making the more common 
planar assumption) is twofold.  First, it allows for the 
observation of 5 DOFs, whereas the planar assumption 
limits this to 3 DOFs.  Second, as terrain becomes rougher, 
the errors due to the planar assumption grow.  As shown in 
Section 6, these errors can grow to be significantly large 
and affect the slip calculations and, consequently, the slip 
compensation controller.  Secondarily, no formulation of 
the inverse kinematics previously existed that would take 
advantage of the holonomic nature of the rover (see Inverse 
Kinematics below).  
 
The formulation of the forward and inverse kinematics 
closely follows that of [10,11], with significant extensions 
being made for 6 wheel steering.  Greater details of the 
kinematic derivations can be found here [10,11,12]. 
 
Also note that the implementation of these algorithms has 
been parameterized so that changes in the kinematics of the 
rover or application of this algorithm to a different rocker-
bogie rover does not require a re-derivation of the 
algorithms and can be made with only parameter changes in 
code. 
 

Rocker-Bogie Configuration 

The rocker-bogie configuration is a suspension system that 
is commonly used for planetary rovers and their prototypes. 
 The configuration analyzed here consists of 15 DOFs: 6 
steerable/drivable wheels (12 DOFs), a rocker, and two 
bogies.  It is beyond the scope of this paper to discuss the 
benefits of such a mobility system.  The interested reader is 
referred to [13] for more details.  What is relevant here is 
that with a few assumptions, the rocker-bogie system allows 
for the observation of 5 of the 6 DOFs of the rover.  These 
assumptions are: 1) the wheel/terrain contact point is in a 
constant location relative to the wheel axle, and 2) slip 
between the wheel and the terrain only occurs about the 
steering axis (e.g. no side or rolling slip). 
 
The first assumption increases the modeling error in rough 
terrain; however, this error still remains smaller than the 
error created by the planar assumption.  The second 
assumption is necessary for a steerable wheel to exist. 

Frame Definitions 

Denavit-Hartenburg conventions were used to define the 
frames of each of the 15 DOFs (see Figure 5) [14].  Two 
additional coordinate frames were added for each wheel: the 
contact frame, Ci and the motion frame, Mi (for i=1,2,…,6). 
 Ci defines the wheel/terrain contact point, and Mi defines 
the steering slip and the wheel roll (see Figure 6).  Table 1 
describes each frame. 
 
Table 1: Frame Descriptions 
 

Frame Identification Frame Description 
R rover frame 
D rocker (differential) frame 
ρ1 right bogie frame 
ρ2 left bogie frame 

S1,…,S6 steering frames for each wheel 
A1,…,A6 axel frames for each wheel 
C1,…,C6 contact frames for each wheel 
M1,…,M6 motion frames for each wheel 

 
Figure 5: Coordinate Frame Definition For Right Side of 
Rover (all dimensions in cm) 

xMi 

zMi 

zCi 

xCi 

 
Figure 6: Contact Frame and Motion Frame Definitions 
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D-H Table Formulation 

From the frame definitions a unique set of D-H parameters 
can be derived that completely describes the kinematics of 
the rover (see Table 2 in Appendix A).  From these 
parameters, wheel Jacobians can be derived, as described in 
the following section. 
 
Wheel Jacobian Generation 

Homogeneous transforms can be derived for each wheel 
using 
 

Ci
Mi

Ai
Ci

Si
Ai

2,1
Si

D
2,1

R
D

R
Mi TTTTTTT ⋅⋅⋅⋅⋅= ρ

ρ   (12) 

 
(for the two rear wheels not connected to the bogies replace 
the  with T ), where each of these 

transforms are functions of the current kinematic angle 
measurements.  From these transforms and the equality 

2,1
Si

D
2,1 TT ρ

ρ ⋅ D
Si
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z0rp
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TTT Mi
R

R
Mi

R
R ���

���
���

�� φ
φ

        (13)

     
the wheel Jacobians can be solved for such that 
 

6,...,2,1iqJv ii == ��   (14) 
 

where: , the vector of rover 

velocities, and 

[ T
rpzyxv ������� φ= ]

[ ]i2,1iq θρβ ���� = , the vector of time 
derivative joint angles for each wheel: rocker angle rates, 
bogie angle rates, and wheel rates respectively. 
 
Forward Kinematics (Least-Squares Motion Estimation) 

Once the wheel Jacobians are known, motion estimation can 
be performed using the least squares formulation 
 

compcomp
T1T qJA)AA(

v
�

�
�

⋅=






 −

η
  (15) 

 
where A is a 24x10 matrix of the unsensed elements of the 
Jacobians, η�  is a 6x1 vector of unobservable parameters, 

 is a 24x16 block diagonal composite matrix of the 

wheel Jacobians, and is a 16x1 composite vector of 

measured kinematic rates. 

compJ

compq�

 

Note that it is not necessary to actually perform this 
inversion of ATA onboard the rover.  The matrix equations 
can be greatly simplified algebraically to make it 
computationally much more efficient.  We were able to 
reduce total computation time of the forward kinematics 
algorithm down to 1.0 msec on an UltraSparc/300MHz. 
 
Inverse Kinematics 

As can be seen in Figure 2, inverse kinematics takes the 
commanded rover motion, and the current kinematic angles 
and angle rates as inputs, and produces six steering angles 
and six wheel rates.  An interesting feature of the 6 steerable 
wheels is the fact that this creates a holonomic rover (with 
an assumption of instantaneous steering).  Thus all three 
controllable DOFs of the rover, [ ]φ��� yx , are 
independent, which allows for the isolation of several 
different control loops as will be seen in Section 5. 
 
The first step of the inverse kinematics algorithm is to 
calculate an instantaneous center of rotation, [xO yO], in the 
rover frame using 

 

cmd

cmd
O

y
x

φ�
�

=     (16) 
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O

x
y

φ�
�

=     (17) 

 
For (any type of pure crabbing maneuver, 
including straight line driving) x

0des =φ�

O and yO are infinite and not 
very useful, so the instantaneous center of rotation is 
defined in polar coordinates using 
 

)
x
y

tan(a
cmd

cmd
O �

�
−=θ    (18) 

 
∞=Or     (19) 

 
This instantaneous center of rotation is then transformed 
from the rover frame into each motion frame using 
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 for i = 1,…,6 (20) 

 
The steering angle is then calculated using 
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)
y
x

tan(a
Mi,O

Mi,O
i =Ψ    (21) 

 
or  

 

Oi θΨ −=     (22) 
 
The wheel rate calculation is started by splitting up equation 
14 into actuated and un-actuated components 
 

uiuiiaicmdi qJJvE ��� += θ     for i = 1,…,6  (23) 
 
 
Each wheel rate is then determined using 
 

[ ] cmdiui
T
ai

1
aiui

T
aii vE)J(JJ)J(J �� ∆∆θ

−
=  (24) 

 
IJ)JJ(J)J( T

ui
1

ui
T
uiuiui −= −∆   (25) 

 
Equation 24 is the actuated inverse solution from Muir and 
Neumann [12]. 
 
Again, the matrix inversions can be algebraically simplified 
so that each wheel rate calculation is relatively simple and 
computationally efficient. 
 
 
 4. KALMAN FILTER 
In this section we present our approach for estimating the 
position and orientation of the rover using inertial 
measurements, from the IMU, and relative pose (position 
and orientation measurements) from visual odometry and 
vehicle odometry (kinematic algorithms). Since our 
formulation is based on sensor modeling, we use the 
Indirect form of the Extended Kalman Filter (EKF) that 
estimates the errors in the estimated states instead of the 
states themselves.  The interested reader is referred to [16, 
18, 19] for a detailed description of the advantages of the 
Indirect KF vs. the Direct KF. Within this framework, the 
IMU measurements are integrated in order to propagate the 
state estimate [15, 17], while the odometry, visual and 
vehicle, are employed for updating the state estimate and 
providing periodic corrections.  The equations of the EKF 
for a nonlinear system are listed in Appendix B. 
 
System Propagation Model 

The state vector of interest in this estimation problem is:  
 

[T T T T T T
g ]x q b u b p=
G GG G

α     
 
where q is the quaternion that represents the attitude of the 
vehicle,  and  are the linear velocity and position of 

the rover, and 

TuG pG

gb
G

and ab
G

 are the biases in the gyroscope and 
accelerometer signals. The corresponding error state vector 
is:  

ˆ= −
oG

1
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Gδ δ
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where o o o∆

G is the difference (error) between the real 
value of a state and its estimate o , and Ĝ G

δθ  is determined 
based on the small angle approximation: 
 

ˆ1 ,T Tq q  = ⊗  
q q

G
� θ δ . 

 
The continuous time equation for the error-state propagation 
is 
 

) ( ) ( )c ct F x t G w t∆ = ∆ +   (26) 
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T
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where (1

G TC

, ,T T
r wn n

is the transpose of the rotational matrix from 
the current attitude {1} to the global frame of the reference 
{G}, T

unG G

b̂

 are the noise vectors due to the white-
noise and bias components of the gyroscopes 
(accels), ˆ  

  = − 

GG ( )1
ˆˆ G T

m m b C q g    = − −        

GG G G
αα α , 

,m m
G Gω α  are the rotational velocity and linear acceleration as 

measured by the gyroscopes and the accelerometers, G gG  is 
the gravitational acceleration and  
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By discretizing Eq. (26) we obtain: 
 

1k k k k kx F x G w+∆ = ∆ +    (27) 
 
The interested reader is referred to [17] for the details of the 
derivation of Eqs. (26), (27) and the specific form of the 
matrices Fk and Gk used in Eq. (51) for propagating the 
covariance of the state estimate. 
 
Measurement Update Model 

In the following three sections we derive the equations of 
the EKF that processes relative pose measurements from 
odometry (visual and/or vehicle) in order to update the 
estimate for the state of the rover.  In what follows, we 
assume that at time t  the vehicle is at position  with 
(quaternion) attitude 

k ( )G
kp t

( )1
1G kq t q=

( )G
k mp t + =

 and after m steps it has 

moved to position  with attitude 2pG ( )1
G

0 kt

C q . 
Frames {G}, {1}, and {2} are the inertial frames of 
reference attached to the vehicle at times t ,  and 

correspondingly. k mt +

 
Relative Position Measurement Error 

The relative position measurement pz  between the two 
locations {1}, and {2} can be written as: 
 

( ) ( )1
2 1 2 1

G T G G
p pz p n C q p p n= + = − + p   (28) 

 
where pn is the noise associated with this measurement 
assumed to be a zero-mean white Gaussian process with 
covariance T

p p pR E n n =   . ( )1
GC q  is the rotational matrix 

that expresses the orientation transformation between 
frames {G} and {1}. 
 
If  is the error in the estimate of the position pip∆ i and the 
δq is the error in the estimate of the attitude q then:2 

 
ˆ ˆ, 1,2,...i i ip p p i q q= ∆ + = = ⊗ qδ  

 
Equation (28) can now be written as: 
 

( ) ( )1 2 2 1ˆ ˆG T G G
1p pz C q q p p p p n= ⊗ + ∆ − − ∆δ +

                                                          

 (29) 

 

 
2 Note that from here on q refers to q1 and δq refers to δq1.  
We have also dropped the vector symbol from the real, 
measured, estimated, and error position to simplify notation. 

The estimated relative position measurement is: 
 

( ) ( ) ( )1 22 1 1 1ˆ ˆ ˆ ˆˆ G T G G G T G
pz C q p p C q p= − = ,2   (30) 

 
The error in the relative position measurement is: 

 
ˆp p pz z z∆ = −  

 
By substituting from Eqs. (29), (30) and employing the 
small error angle approximation  
 

[ ] 1
11 1
2

Tq q
Τ

 
  

GG� �δ δ θ , 

 
it can be shown [17] that: 
 

( )
( ) ( )

1 1 1,2 1

1 1 2 1 1 1

ˆ ˆ

ˆ ˆ

G T G
p

G T G T
p

z C q p

C q p C q p n

 ∆ + 
+ ∆ − ∆ +

G
� δθ

. (31) 

 
In Eq. (31) the first term expresses the effect of the 
orientation uncertainty at the time on the quality of the 
estimated measurement. Note that if at time t there was no 
uncertainty about the orientation of the vehicle that would 
mean 

kt

k

1 0=
G

δθ  and thus the error in the relative position 
measurement would depend only on the errors in the 
estimates of the previous and the current position of the 
vehicle.  
 
Relative Attitude Measurement Error 

The relative attitude measurement error between the two 
locations {1}, and {2} is: 
 

1 1 1ˆ ˆ
2 2 2q q qz z q q n q∆ = − = + −   (32) 

 
Where  is the relative attitude measurement noise. We 
assume that is a zero – mean white Gaussian process 

with covariance 

qn

qn
T

q q qR E n n =   .  Since 

 

( ) ( )1 2 1 1
0 0 1

1
2 k k mq q q q t q t q q 1

2
− − −

+= ⊗ = ⊗ = ⊗  

 
and 
 

ˆ , 1,i i iq q q i 2= δ ⊗ =  
 
1
2 q can be written as: 
 

1 1
2 1 2 ˆq q q q−= ⊗ ⊗ 1

2δ δ    (33) 
 
By substituting Eq. (33) in Eq. (32) we have: 
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1 1

1 2 2
1ˆ ˆ
2qz q q q q n−∆ = ⊗ ⊗ − +δ δ q

4

2

2

q
q

Gδ

  (34) 

 
With 
 

4 4

1 2 1
1 2 2

1 2
, ,

q q
q q q

q q
−

−     
= = =     
     

G Gδ δ
δ δ δ

δ δ δ
 

 
In order to simplify the notation we set: 
 

4

1 ˆ
2

q
q q

q
 

= =  
 

G
 

 
For small attitude estimation errors δ  and  we make 
the following approximations: , , 

, . The first term in Eq. (34) can be 
written as: 

1q
qδ

2qδ
1

42 � 42 1qδ �

1 31q ×δ
G � 1 1

)

2 31q ×δ
G �

 
( ) (

( )
4 1 2 1 21 1

1 2 2
4 1 2

ˆ T

q q q q q q q
q q q

q q q q
− + − + +   ⊗ ⊗  − − 

G G G G G G
� G G G

δ δ δ δ
δ δ

δ δ
 (35) 

 
By multiplying both sides of Eq. (32) with the matrix 
 

( ) ( ) ( )1
2 4q̂ q q I q qΤ Τ Ξ = Ξ = − −  

G G   (36) 

 
we define the vector attitude measurement error as: 
 

( ) ( ) ( )
( ) ( ) ( )

1 1 1
2 2 2

1 1 1 1
2 1 2 2 2

ˆ ˆ 0

ˆ ˆ ˆ

T T
q q q

T
q

z q z q q n

q q q q q n−

∆ = Ξ ∆ = Ξ + −

= Ξ ⊗ ⊗ +Ξ

�

δ δ T
 (37) 

 
By substituting from Eqs. (35), (36) the first term in the 
previous equation can be written as: 
 

( ) ( ) ( )1 1 1 1 1
2 1 2 2 1 2 2ˆ ˆ ˆT q q q q q C q q−Ξ ⊗ ⊗ −

G� 2
Gδ δ δ δ  (38) 

 
Eq. (37) is now expressed as: 
 

( )( )1 1
1 2 2 2

1 ˆ
2qz C q∆ −

G G
�� � δθ δθ qn+   (39) 

 
where we have used the small angle approximation 

1 , 1,
2i iq i= =
GGδ θ 2  and ( )1

2 ˆT
q qn q= Ξ� n  with  

 
( ) ( )1 1

2 2ˆ ˆT T
q q q qR E n n q R q = = Ξ Ξ 
� � � . 

 
Relative Pose Measurement Error 

The Indirect Kalman filter estim tes the error in: (i) attitude G a
δθ , (ii) gyroscopes biases 

G
b∆ α , (iii) velocity u∆G , (iv) 

accelerometers biases ab∆
G

, and (v) position p∆G .  The error 
state vectors estimated by the filter at times tk and tk+m for 
i=1, 2 are: 

T Tx b p

p p

q q

z z
z z

 
 
 
 

r rn
 
 

( )



�

1 1

1,2

1 1

3

1

ˆ

ˆ

ˆ

0

G

x x

T

C q 0

0

0

I

C q

−

  

Ξ

 
 
 
 
 
 
 
  
 

q p

q

R R
R R

T
r X

2

1 = ∆

kt

]m+

 
TT T T

i i gi i i iu b ∆ = ∆ ∆ ∆ ∆ 
G G GG G

αδθ  

 
The errors in the relative position and attitude (pose) 
measurements calculated in Eqs. (31) and (39) are: 
 

( ) 1 1
1 2

2 2

k mz

x x
D D n H

x x

+

∆ ∆ 
∆ = = Χ = ∆ ∆ 

∆ ∆
= Γ + = ∆ ∆

�
�

X

 (40) 

+

 
with  
 

( )

( )

( )

( )

1 1

1 1

2 1
2 2

3 3 4

3 3 2

0
ˆ0

0 0 0

1 0 0 0
2

0 0 0
1 ˆ 0 0 0
2

ˆ0

G T

G T

G

G

x

C q
C q

p I
D

D

I

q

−

 
Γ =  

 

−
=  

 
 

=  − 
 

 
=   
 

X

 

 
Both noise nr and rn~ are assumed to be a zero-mean white 
noise Gaussian processes with 
 

,qT T
r r r r r r

pq

R E n n R E n n R
 

   = = = =    
 

� � � X  

 
As is evident from Eq. (41), the relative pose measurement 
error is expressed in terms of the current ( )k mx x t +∆ = ∆  
and the previous ( )kx x t∆  (error) state of the system. 
The Kalman filter state vector must therefore be 
appropriately augmented to contain both of these state 
estimates.  Note that and  are the time instants when, 
e.g., the two images (encoder readings) processed by the 
visual (vehicle) odometry algorithm were recorded and thus 
the relative pose (motion estimate) measurement provided 
by it corresponds to the time interval [

k mt +

k kt t . 
 
Augmented-state propagation 

If ∆xk/k is the state estimate at time tk (when the first image 
or encoder measurement was recorded) we augment the 
state vector with a second copy of this estimate: 
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/ /

TT T
k k k kx x x ∆ = ∆ ∆ 

�  

 
Since initially, at time tk, both version of the estimate of the 
error contain the same account of the information, the 
covariance matrix for the augmented system would be: 
 

/
kk kk

k k
kk kk

P P
P

P P
 
 
 

�
 

 
where Pkk is the covariance matrix for the (error) state of the 
vehicle at the time tk. In order to conserve the estimate of 
the state at tk, necessary for evaluating the relative pose 
measurement error at tk+m, the second copy of the state 
estimate is propagated (during this interval only) while the 
first remains stationary3. The propagation equation for the 
augmented system based on Eq. (46) is: 
 

1 1

1 11/ /

0 0
0 k

k kk k k k

Ix x
w

F Gx x+ ++

∆ ∆      
= +      ∆ ∆      

G  

or 
1/ 1 / 1k k k k k k kx F x G w+ + +∆ = ∆ +

�� G� �  
 
where ∆x1 is the non-moving copy of the error state of the 
vehicle. The covariance of the augmented system is 
propagated according to Eq. (51) and after m steps is: 
 

T

/
/

kk kk
k m k

kk k m k

P P F
P

FP P+
+

 
= 
 

�
    (41) 

 
Where 11

m
ki

F +=
=∏F  and Pk+m/k is the propagated 

covariance of the evolving state at time tk+m. 
 
State and Covariance Update Equations 

When the relative pose measurement is received the 
covariance matrix for the residual is given by Eq. (52): 
 

/
T

k m k rS HP H R+=
� �+    (42) 

 
where  is the adjusted covariance for the 
relative pose measurement and R

T
r rR XR X=�

r is the initial covariance of 
this noise as calculated by the odometry algorithm.  We 
define the pseudo-residual covariance matrix as S S1−= Γ Γ�  
and by substituting from Eqs. (41), (42): 
 

                                                           

T

3 In the derivation of the equations of the Kalman filter that 
processes relative pose measurements, we duplicated the 
state estimate and its corresponding covariance at time tk 
and allowed each of them to evolve separately.  We have 
coined the term stochastic cloning for this new technique. 
 

1 1 2 1 1 2

2 / 2   

T T T
kk kk kk

T
k m k r

S D P D D P D D P D

D P D+

= + +

+ +

� F F

R

+

r

 

 
where 1

r R−= Γ �R Γ .  The update covariance matrix is 
calculated from the Eq. (54) as: 
 

1
/ / / /

11 2
/

1 / 2

T
1 2 kk 1 2 /

T
k m k m k m k k m k k m k

T T
kk kk

k m k T T
kk k m k

kk kk k m k

P P P H S HP

P D P D
P S

P D P D

D P D P D P D P

−
+ + + + +

−
+

+

+

= −

 +
= − × + 
 + + + 

� � � �

� �
TF

F

F F

 (43) 

 
The update covariance matrix for the new state of the 
vehicle will be (lower-right diagonal submatrix): 
 � �

/ /

1
kk 1 / 2 1 2 /( ) (

k m k m k m k

T T T
k m k kk k m k

P P

P D P D S D P D P
+ + +

−
+ +

= −

= + +�F F )
 

 
The Kalman gain is calculated by applying Eq.  (54):   
 

1 1
/

2

T
k m k

K
K P H S

K
−

+

 
=  
 

�
         (44) 

 
with  
 

1
2 kk 1 / 2( T T

k m kK P D P D S −
+ ) T= + Γ�F   (45) 

 
The residual is calculated as in Eq.  (56): 
   

1
2

ˆ
ˆ ˆ( )( )
p p

Tk m k m k m
q q

z z
r z z

q z z+ + +

− 
= ∆ = ∆ =  Ξ − 

� � X  

 
where zp, zq are the relative position and orientation  
measurements provided by the odometry,  
 

1 1
2 1 1 2 1 2ˆ ˆ ˆ ˆˆ ˆ( )( ),G T G G

p qz p C q p p z= = − = q̂

3 1

2

 
 
and  
 

1 1 1
2 2 2ˆ ˆ ˆˆ( ) ( ) 0T T

qq z q q ×Ξ = Ξ =  
 
Thus  
 

1 1 1,
1
2

ˆ ˆ( )
ˆ ˆ( )

G T G
p

k m T
q

z C q p
r

q z+

 −
=  Ξ 

�  

 
Finally, the updated augmented state is given by Eq. (57): 
   

/ /k m k m k m k k mx x Kr+ + + += +� � �  
 

From Eq. (45) the (evolving) state will be updated as:   
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1

/ / kk 1 / 2

/

(
ˆ                ( )

T T
k m k m k m k k m k

k m k

x x P D P D S −
+ + + +

+

= +

+

�

Z Z

F ) ×

+

 

 
where  
 

1
1 1 1,2

/ 1 1
1 1 2

ˆ( ) ˆˆ,
ˆ ˆ( ) ( ) 0

G T G
p

k m k k mG T T
p q

C q z p
C q z q z

−

+ −

   
=   =  Ξ   

Z Z

− p̂

 

 
is the pseudo-measurement of the relative displacement 
(pose) expressed in global coordinates.  The quantities 

 and  are 
computed using the previous and current state estimates 
from the filter.  Note that the current state estimates at time 

 are calculated by propagating the previous state 
estimates at time  using the rotational velocity and linear 
acceleration measurements from the IMU. 

1 1 1 2 1 1
1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ, G Gq q q q q q− −= ⊗ = ⊗

k mt +

kt

1,2 2 1ˆ ˆG Gp p= −

 
The same process is repeated every time a new set of 
relative pose measurements ( )k mz t +λ =  

,  becomes available.   ( ) ( )
TT T

p k m q k mz t z t+λ +λ  1,2,λ = …
 
Mahalanobis Comparator (Slippage Estimation) 

In this section we describe our approach to rover slippage 
detection.  Based on the kinematic equations of the rover 
and assuming no wheel slippage, the wheel and rocker-
bogie joint measurements are processed to produce a 
relative position and orientation measurement over a certain 
time (sampling) interval.  Before updating the state estimate 
of the EKF these measurements need to be validated.  If 
significant wheel slippage has occurred, the residual for the 
relative pose measurement will be significantly larger 
compared to the case where the rover moves on solid 
ground without any of the wheels slipping.  A statistical 
measure for assessing the validity of these measurements is 
the Mahalanobis squared distance  
 

2 1T
m k m kd r S r−

+ += �� � m     (46) 
 
where  is the measurement residual and  is the 
corresponding residual covariance matrix, described in the 
previous section.  In the case of a vehicle odometry 
measurement, the Mahalanobis squared distance follows a 
Chi-square distribution with five degrees of freedom.  A 
sufficient test for validating vehicle odometry 
measurements  is to require that these match the 

expected (estimated by the EKF) measurements 

k mr +� S�

k̂

k m+Z

m+Z  of the 
same quantities with a certain level of confidence.  By 
requiring the fit between the expected and actual 
measurements to be valid with probability, e.g., P=95%, 
odometric measurements are processed by the EKF only 

when 2
md t≤ , with t = 11.07.  If this inequality does not 

hold, these measurements are discarded and wheel slippage 
is detected.  In this case, the residual  is provided to the 
slip compensation algorithm for appropriately modifying 
the rover commands. 

k mr +�

[x�

[ yx

 
 

5. SLIP COMPENSATION/PATH FOLLOWING  
At the center of Figure 2 are the slip compensation/path 
following algorithms.  These two algorithms are used in 
close conjunction to achieve this system’s end goal of 
enabling the traversal of a desired path through high slip 
environments, such as sandy slopes.   At the highest level, 
the algorithms take a 3x1 slip vector ]slipy φ�� , a 3x1 

rover pose vector [ ]poseyx φ , and a 2x1 desired path 

vector ]path .  It then outputs a 3x1 commanded rover 

velocity vector [ ]cmdy φ��x� .  
 
Carrot Heading Algorithm 

The carrot heading algorithm takes the desired path and the 
current rover pose and calculates a desired heading, carrotφ , 

and thus is then able to calculate the heading error, errφ  of 
the rover (see Figure 7).  This algorithm was chosen for its 
robustness to path error [20,21].  The desired path consists 
of a set of linear segments between waypoints; however, the 
waypoints can be spaced any distance apart, thus allowing 
for paths of arbitrary complexity.  The algorithm determines 
the desired heading by calculating the intersection of a 
circle centered on the rover frame with the desired path and 
calculating the direction of that intersection.  The 
intersection point that is furthest along the path is always 
selected.  The heading error is then calculated using 
 

 

(x carrot  , y carrot )  

x̂

ŷ

circle 
radius 

φerr 

 
 
Figure 7: Carrot Heading Calculation 
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posecarroterr φφφ −=    (47) 

 
A large radius will tend to filter out small features of a path, 
but results in a smooth motion of the rover.  A small radius 
results in large heading changes of the rover for small path 
errors (which is extremely inefficient), but results in an 
overall smaller path following error.  A circle radius is 
selected that balances the desire to closely follow the path 
and the magnitude of the heading changes.  Under nominal 
conditions, the rover path error will always be smaller than 
the circle radius.  If this is not the case, then the radius is 
grown until an intersection occurs. 
 
Slip Compensation/Path Following Algorithm 

When the Mahalanobis comparator determines that slippage 
has actually occurred, the calculation of rover slip is made 
by comparing the output from the Kalman Filter and the 
output from the forward kinematics.  If statistically 
significant slippage has not occurred then the slip vector 
consists of zeros and the compensation algorithm described 
below converges to a heading controller. 
 
The slip compensation algorithm consists essentially of two 
separate control loops.  The first control loop, the heading 
controller, is described by the equation 
 

Sslip2err1cmd T/)KK( φφφ �� +⋅=  (48) 

 
This loop determines the commanded yaw rate of the 
vehicle as a combined function of the heading error, errφ  
(as calculated by the carrot heading algorithm), and the yaw 
slip, .  It attempts to achieve the heading deemed by the 

carrot algorithm to be optimal, even when slipping in the 
yaw direction. 

slipφ�

 
The second loop is described by the equation 
 

Sslip3cmd T/yKy �� ⋅=    (49) 

 
This loop calculates the rate of the rover in the y direction 
(perpendicular to normal straight line motion of the rover) 
based entirely on the slip in the y direction during the 
previous sample period.  A  command results in a 
crabbing maneuver, where all six wheels have a steering 
angle offset in the same direction.   

y�

 

cmdx�  is then determined to be the maximum value allowed 
that keeps the rover within its operational constraints (i.e. 
the maximum speed of the drive motors). 
 
Both of these loops make the assumption that the slip from 
the last sample period has some correlation to the slip in the 

current sample period.  This assumption becomes more 
valid as the sample period decreases. 
 
These three rover commands, [ ]cmdyx φ��� , are then 
passed to the inverse kinematics algorithm. 
 
 

6. RESULTS 
Two experiments have been performed using Rocky 8 (see 
Figure 4), a Mars rover research platform developed at JPL. 
This rover has a very similar mobility system to Sojourner, 
Mars Exploration Rovers (MER), and the current design of 
the 2009 Mars Science Laboratory rover.  The body 
mounted hazard cameras on Rocky 8 have a resolution of 
640x480 with a field of view of 79.5x64.0 (horizontal x 
vertical) and a baseline of 8.4 cm and are angled down at 
45˚.   The first experiment was performed in the JPL’s 
Marsyard, a 20mx20m space designed as an analog (in rock 
size/distribution and soil characteristics) to the Viking 
Lander sites.  It consisted of two consecutive 25-meter runs 
with visual odometry running onboard.  The second 
experiment was performed in Johnson Valley, California.  
The terrain of this area consisted of slopes of loose granular 
sand up to 25˚ (see Figure 1).  This experiment was a test of 
a simplified integrated slip compensation/path following 
system.  It was simplified in the sense that the Kalman filter 
and Mahalanobis comparator had not yet been implemented, 
and a slip estimate was calculated and compensated for only 
when the visual odometry provided a new estimate, which 
was approximately every 20-30 cm.  Another simplification, 
due to limitations of the vehicle, was to assume the rocker 
and bogie angles were zero.  The effects of non-zero rocker 
and bogie angles are shown in simulation results. 
 
In both experiments, ground truth data was collected with a 
Leica Total Station, which is a laser based position 
measurement system.  The Total Station was used to 
measure the absolute position of four prisms mounted to the 
rover (see Figure 4).  This system gives an accuracy of 2 
mm in position and 0.2˚ in attitude.  In the field test 
experiments the waypoints for the rover were also 
designated using the Total Station and a prism.  The prism 
would be placed somewhere within the range of the Total 
Station and surveyed.  This location would then be 
transformed into the initial rover frame where it could be 
used directly as a waypoint. 
 
Visual Odometry Results 

Visual odometry results are shown from both the Marsyard 
and the Johnson Valley experiments.  The results from both 
Marsyard runs are shown in Figures 9 thru 14.  In Figures 9 
and 10 the errors at the end of the runs are both less than 
2.5% of the distance traveled.  Errors in attitude (shown in 
Figures 11-14) remain below ~5˚ throughout both runs.  
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As can be seen in Figure 15, the error at the end of the field 
test run (0.37 m) is less than 1.5% of distance traveled (29 
m). 
 
Kinematic Simulation Results 

The goal of this kinematic simulation was to compare 
kinematics that make the planar assumption (2D kinematics) 
with the full kinematics described in this paper.  The 
simulation was of extremely rough terrain that exercised the 
rocker and the two bogies of the suspension system to their 
full extent.  As can be seen in Figure 8, under such extreme 
conditions, very large errors can quickly accumulate.  Over 
the short distance of the simulation (~ 0.15cm of travel in 
the x direction) the 2D kinematics had accumulated an error 
of greater than 30% distance traveled. 
 

 
Slip Compensation/Path Following Results 

Results of the slip compensation/path following algorithm 
are shown in Figures 16 and 17.  The entire section of the 
path shown in Figure 16 was on a slope of between 10˚ and 
15˚.  Figure 16 is an expansion of the box shown in Figure 
15.  Figure 17 is an expansion of the box shown in Figure 
16.  These two figures show three important pieces of 
information that the slip compensation/path following 
algorithm uses to calculate the rover commands: visual 
odometry pose, kinematics pose, and the desired path.  
Carrot heading, which is calculated in an intermediate step, 
is also shown.   In Figure 16, the rover was able to 
accurately and efficiently follow the desired path, despite 
significant slippage.  As can be seen in Figure 17, there is a 
noticeable, consistent bias between the visual odometry 
pose and the kinematics pose in the y direction.  This is due 
to the downhill slippage of the rover; this bias is being 
compensated for in the slip compensation algorithm. 
 
 

7. CONCLUSIONS 
In this paper we have described the design, implementation, 
and testing of a system that enables a rover to accurately 
follow a designated path, compensate for slippage, and 
reach intended goals, independent of terrain geometry and 
soil characteristics along the path (within the mechanical 
constraints of the mobility system).  Individual components 
have been simulated and tested; additionally, an integrated 
system (minus the Kalman filter) has been tested onboard a 
rover in a desert field test.  The results from the individual 
and integrated tests are encouraging.  Visual odometry is 
able to consistently estimate rover motion to within 2.5% of 
distance traveled.  Given this knowledge, the slip 
compensation/path following algorithm is able to accurately 
estimate and effectively compensate for slip and thus 
accurately follow a desired path and reach the intended goal 
while traversing through a high-slip environment.  
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Figure 8: X Distance of Rover in World Frame 
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Figure 9: X and Y from Run 1 (ground truth -- +) 
 

 
Figure 10: X and Y from Run 2 (ground truth -- +) 

 
Figure 14: Roll from Run 2 (ground truth -- +) 

 
Figure 13: Roll from Run 1 (ground truth -- +) 

 
Figure 11: Heading from Run 1 (ground truth -- +) 

 
Figure 12: Heading from Run 2 (ground truth -- +) 
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Figure 15: Field Test Visual Odometry Results 
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Figure 16: Field Test Slip Compensation/Path Following Results 
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Figure 17: Expanded Slip Compensation/Path Following Results 
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APPENDIX A 

Table 2: D-H Parameters for Rocky 8 
 

Frame γ (rad) d (m) a (m) α (rad) 
D 0 -0.2022 -0.1420 -π/2 
ρ1 β-0.2698 0.3111 0.2812 0 
ρ2 -β-0.2698 -0.3111 0.2812 0 
S1 ρ1+0.2698 0 0.2644 -π/2 
S2 ρ2+0.2698 0 0.2644 -π/2 
S3 ρ1-2.872 0 0.1285 π/2 
S4 ρ2-2.872 0 0.1285 π/2 
S5 β+π 0.3111 0.2121 π/2 
S6 -β+π -0.3111 0.2121 π/2 
A1 Ψ1 -0.1273 0 -π/2 
A2 Ψ2 -0.1273 0 -π/2 
A3 Ψ3 -0.1273 0 π/2 
A4 Ψ4 -0.1273 0 π/2 
A5 Ψ5 -0.2022 0 π/2 
A6 Ψ6 -0.2022 0 π/2 
C1 0 0 0 π/2 
C2 0 0 0 π/2 
C3 π 0 0 π/2 
C4 π 0 0 π/2 
C5 π 0 0 π/2 
C6 π 0 0 π/2 
M1 ξ1 -.1000 -.1000*θ1 0 
M2 ξ2 -.1000 -.1000*θ2 0 
M3 ξ3 -.1000 -.1000*θ3 0 
M4 ξ4 -.1000 -.1000*θ4 0 
M5 ξ5 -.1000 -.1000*θ5 0 
M6 ξ6 -.1000 -.1000*θ6 0 

 

 

APPENDIX B 
Propagation  
 

1/ 1 / 1k k k k k k kx F x G w+ + +∆ = ∆ +   (50) 

1/ 1 / 1 1 1
T T

k k k k k k k k kP F P F G Q G+ + + += + +

+

  (51) 
Update 
 

1/
T

k kS HP H R+=    (52) 
1

1/
T

k kK P H S −
+=     (53) 

1
1/ 1 1/ 1/ 1/

T
k k k k k k k kP P P H S HP−
+ + + + += −  (54) 

1 1 1ˆk k k kr z z z+ + += − = ∆ 1+    (55) 

1/ 1 1/ 1k k k k kx x Kr+ + + += +    (56) 
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