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Abstract Lagrangian mechanics is extended to the
so-called nilpotent Taylor algebra T. It is shown that
this extension yields a practical computational tech-
nique for the evaluation and analysis of the equations of
motion of general constrained dynamical systems. The
underlyingT-algebra utilized herein permits the analy-
sis of constrained dynamical systems without the need
for analytical or symbolic differentiations. Instead, the
algebra produces the necessary exact derivatives inher-
ently through binary operations, thus permitting the
numerical analysis of constrained dynamical systems
using only the defining scalar functions (theLagrangian
L and the imposed constraints). The extension of the
Lagrangian framework to the T-algebra is demon-
strated analytically for a problemof constrainedmotion
in a central field and numerically for the calculation of
Lyapunov exponents of N -pendulum systems.

Keywords Constrained motion · Automatic
differentiation · Nilpotent algebra · Lagrangian
mechanics · Lyapunov exponents

1 Introduction

The traditional approach to Lagrangian mechanics
involves the evaluation of real-valued scalar functions.
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Within the Lagrangian framework, one is compelled
to construct the requisite equations of motion of a
mechanical system by first considering the kinemat-
ics of the system and then by evaluating the total sys-
tem kinetic energy T and potential energy U in order
to arrive at the Lagrangian L of the system. Invari-
ably, the process requires one to find the partial deriva-
tives of L with respect to (1) the generalized coordi-
nates that describe the system state and (2) time. Fur-
thermore, expressions for U may themselves require
many differentiation evaluations with respect to the
system configuration. This process can become non-
tractable if a large number of coordinates are involved.
In the presence of constraints, the situation is further
complicated since derivative information of the con-
straints may be needed for both the development of
the constrained equations of motion and their numeri-
cal integration. Implementation of analysis techniques
involving system linearization and sensitivity calcula-
tion of Lagrangian systems also relies on differenti-
ation and can become quite challenging for complex
systems. By extensions of the Lagrangian to the nilpo-
tent Taylor algebra developed herein, it is the goal of
this paper to show that the derivation of equations of
motion for general constrained dynamical systems and
their analyses can be transformed from an analytical
to a purely numerical process given knowledge of only
the Lagrangian and the constraints on the motion.

Schemes for numerical simulation of dynamical sys-
tems typically rely on formulations wherein the sys-
tem topology is determined before actual implementa-
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tion. This is partly due to the fact that derivatives play
a central role in relating the kinematics of a system
to its dynamics. Practical numerical implementation
of the equations of motion of a constrained dynami-
cal system essentially relies on three different forms
of differentiation, which include (1) analytical differ-
entiation by hand, (2) symbolic differentiation, or (3)
automatic differentiation. The first option is feasible if
all the necessary derivatives can be obtained by hand
prior to implementation. However, the process must be
repeated with changing system topology and is error
prone for complex systems. Symbolic differentiation
utilizes a computer algebra system to accomplish the
same feat in a more automated fashion, and as a result
is less error prone. Both of these forms of differenti-
ation lead to algorithms that rely on concrete analyti-
cal expressions. In contrast, automatic differentiation
obtains derivatives of functions numerically. Common
automatic differentiation methods apply a judicious
use of the chain rule to evaluate the derivative of a
given function by source code transformation or oper-
ator overloading [1,2]. This assumes that the function
of interest is suitably differentiable and can be imple-
mented in a particular programming language. These
methods fall into the classification of forward or reverse
mode techniques, where forward and reverse are used
to indicate the direction traversed by the chain rule.
Software implementation of these techniques is widely
available [3]. Another popular form of numerical dif-
ferentiation includes the complex-step derivative [4–
6], which has been used to numerically compute first-
and second-order derivatives. However, this approach
is based on the finite difference approximation and
is subject to truncation errors, making it a generally
unfeasible option for the numerical development and
analysis of equations of motion for constrained sys-
tems.

Yet another approach to automatic differentiation
involves the use of the so-called dual number alge-
bra. The dual numbers, which can be traced back to
the work of Clifford [7], have been shown to produce
exact first derivatives of real-valued functions by sim-
ply extending the function to the dual number alge-
bra. In mechanics, dual numbers have been primarily
used in kinematics analysis; e.g., see [8]. A dual num-
ber extension to second-order derivatives has recently
been developed [9], which was successfully applied to
a Navier–Stokes solver. In what follows, a superset of
the dual numbers called the Taylor numbers is con-

structed. It is shown that the Taylor algebra T can be
used to produce derivatives to arbitrary order of contin-
uous real-valued multivariate functions. The Jacobian
and Hessian numbers are constructed from truncated
T-algebras and used in the description of Lagrangian
mechanics. More importantly, it is demonstrated how
the algebras are used to numerically evaluate the ele-
ments needed to formulate general constrained equa-
tions of motion for dynamical systems and to perform
linearization and sensitivity analyses. Finally, the exact
nature of the derivatives produced by the algebras is
demonstrated analytically for a problem of constrained
motion in a central field and numerically for the calcu-
lation of Lyapunov exponents for Lagrangian systems.

2 Nilpotent J, H, and T algebras

Consider a commutative ring R. By definition, the
binary operations of addition (+) and multiplication (·)
on R satisfy the usual commutative, associative, and
distributive axioms. The element 0 ∈ R is the additive
identity and 1 ∈ R is the multiplicative identity. While
all elements in R have an additive inverse, we do not
assume multiplicative inverses. Thus, R is not a field.
Elements in R that have a multiplicative inverse are
called units. It is also essential to note that an element
ε ∈ R is nilpotent to order k if εk = 0 for minimal
k ∈ N

+.

Definition 1 Let R[x1, . . . , xn] be a polynomial ring
over the real numbers in the n algebraically indepen-
dent indeterminates x1, . . . , xn . R[x1, . . . , xn] is called
the set of polynomials over the ring R, and it is com-
mutative since R is commutative.

Definition 2 An ideal I is a nonempty subset of the
commutative ring R such that the following closure
properties are satisfied

1. ∀a, b ∈ I: a ± b ∈ I.
2. ∀a ∈ I and ∀b ∈ R: ab ∈ I.
An ideal allows the construction of a quotient ring R/I
(also written as R mod I). This is essentially a new
ring with the elements of the ideal I removed from
the ring R. The quotient of a polynomial ring in mul-
tiple indeterminates is given by R[x1, . . . , xn]/I. This
is an important type of ring since many rings are con-
veniently expressed as a quotient of polynomial rings.
Here, it is assumed the ideal I = (α1, . . . , αm) is a
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set of generators such that αi ∈ R[x1, . . . , xn]. This
allows the construction of the Taylor algebra

T(ε1, . . . , εn) � R[x1, . . . , xn]
/{xi x j · · · xm}i, j,m∈N+ , (1)

where the ideal I = {xi x j · · · xm}i, j,m∈N+ is both max-
imal and nilpotent to order m for 1 ≤ i, j, . . . ,m ≤ n.
An ideal is nilpotent when Ik = {0} for any k ∈ N

+.
Note that the T-algebra actually depends on the trun-
cation orderm. Obscurely, the most germane and inter-
esting property of this algebra lies in its ability to pro-
duce exact derivatives to arbitrary order of continuous
real-valued multivariate functions. This can be accom-
plished by simply extending the function of interest to
the T–algebra of appropriate truncation order.

The dual numbers are a well-known subset of a
truncated T–algebra. Abstractly, the dual numbers are
derived from the Jacobian algebra, J, in a single inde-
terminate ε so that

J(ε) � R[x]/{x2}; (2)

i.e., J(ε) is isomorphic to the quotient ring R[x]/{x2}.
They are commonly written in the form

z = a0 + a1ε, (3)

where a0, a1 ∈ R. Thus, the dual number is a type
of Jacobian number. Namely, a Jacobian number with
a single indeterminate ε. The Jacobian number z in
Eq. (3) is then a particular 2-vector (a0, a1) over the
real numbers,wheremultiplicationmust follow the rule
εk = 0 for k ∈ {2, 3, . . .}. Addition and multiplication
of the Jacobian numbers are defined by

(a0, a1) + (b0, b1) = (a0 + b0, a1 + b1), (4)

and

(a0, a1) · (b0, b1) = (a0b0, a0b1 + b0a1). (5)

Division of two Jacobian numbers is determined by

b0 + b1ε

a0 + a1ε
· a0 − a1ε

a0 − a1ε
=

(
b0
a0

,
b1a0 − b0a1

a20

)
. (6)

Using Eq. (6), it can be verified that the Jacobian num-
ber a0 + a1ε is a unit for all nonzero a0. The utility of
the Jacobian number becomes obvious when we con-
sider the extension of the map f : R → R to the map
f̃ : J → J. For sufficiently smooth functions f , this
leads to the following evaluation

f̃ (z) = f̃ (a0 + a1ε) = f (a0) + f ′(a0)a1ε. (7)

Clearly, Eq. (7) represents a first degree Taylor polyno-
mial. Higher degree terms vanish since higher powers
of ε are zero. Thus, f̃ (z) returns the evaluated function
f (a0) and information about the first derivative f ′(a0).
The exact derivative f ′(a0) is obtained by evaluating
f̃ (a0 + ε). This is one of the most useful properties of
the Jacobian algebra.

Extending the Jacobian algebra to higher derivatives
yields another subset of a truncated T–algebra, which
has a third-order nilpotent element ε such that ε3 = 0.
In a single indeterminate ε, the Hessian algebra, H, is
given in the single indeterminate form as

H(ε) � R[x]/{x3}. (8)

The Hessian number is given by

z = a0 + a1ε + a2ε
2, (9)

where a0, a1, a2 ∈ R. Addition and multiplication of
the Hessian number follow the definitions

(a0, a1, a2) + (b0, b1, b2)

= (a0 + b0, a1 + b1, a2 + b2) (10)

and

(a0, a1, a2) · (b0, b1, b2)

= (a0b0, a0b1 + b0a1, a0b2 + b0a2 + a1b1). (11)

An extension of the sufficiently smooth map f : R →
R to the map f̃ : H → H then yields

f̃ (z) = f̃ (a0 + a1ε + a2ε
2) = f (a0) + f ′(a0)a1ε

+
(
f ′(a0)a2 + f ′′(a0)

2! a21

)
ε2. (12)

In order to extract the first and second derivatives of f ,
it is apparent from Eq. (12) that one should evaluate the
Hessian function f̃ (a0 + ε) and multiply the resulting
ε2 element by a factor of 2.

Generalizing ε to higher powers, the construction of
themore general Taylor algebra in single indeterminate
form is given as

T(ε) � R[x]/{xn}. (13)

The Taylor number is simply

z = a0 + a1ε + a2ε
2 + · · · + anε

n = a0 + aTE,

(14)

where a0 ∈ R, a ∈ R
n , E = [ε, ε2, . . . , εn]T, and

εn+1 = 0. The basic operations of addition and multi-
plication of Taylor numbers are defined by the tuples

(a0, a
TE) + (b0, b

TE) =
[
a0 + b0, (a

T + bT)E
]
(15)
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and

(a0, a
TE) · (b0, b

TE)

=
[
a0b0,

(
a0b

T + b0a
T
)
E, aTEETb

]
. (16)

In Eq. (16), it can be shown that

EET =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε2 ε3 ε4 · · · εn 0

ε3
... εn

...
...

ε4
...

...
...

... εn
...

...

εn
...

...

0 · · · · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Once again, for sufficiently smooth real-valued func-
tions f : R → R, the map f̃ : T → T is generalized
to an nth-order Taylor series expansion in ε as

f̃ (z) = f̃ (a0 + aTE) = f (a0)

+
n∑

k=1

f (k)(a0)

k!
(
aTE

)k
, (18)

where
(
aTE

)k
is the kth-order piece in ε. Consequently,

the k-th derivative of f is recovered by evaluating
f̃ (a0 + ε) and then by multiplying the εk element by a
factor of k!.

In multiple indeterminates, the Hessian algebra is
given by

H(ε1, . . . , εn) � R[x1, . . . , xn]/(xi x j xk),
1 ≤ i, j, k ≤ n. (19)

This algebra has great practical applicability in prob-
lems involving multivariate functions f : Rn → R

m .
For example, consider z ∈ H

n of the form

z = a + Bε +
⎡
⎢⎣

εTC1ε
...

εTCnε

⎤
⎥⎦ , (20)

where ε = [ε1, . . . , εn]T, a ∈ R
n , B ∈ R

n×n , andCi ∈
R
n×n for i = 1, . . . , n. Addition and multiplication of

two elements of the vector z ∈ H
n are defined as

z1 + z2 = a1 + a2 + (B1 + B2)ε + εT(C1 + C2)ε

(21)

and

z1 · z2 = a1a2 + (a1B2 + a2B1)ε

+ εT
(
a1C2 + a2C1 + 1

2
BT
1 B2 + 1

2
BT
2 B1

)
ε,

(22)

where Bi is the i-th 1 by n row matrix of B. By
extending the sufficiently smooth vector-valued func-
tion f : R

n → R
m to the map f̃ : H

n → H
m we

therefore obtain

f̃ (z) = f (a) + J f (a)ε +

⎡
⎢⎢⎢⎢⎣

εT
1

2!H f1(a)ε

...

εT
1

2!H fm(a)ε

⎤
⎥⎥⎥⎥⎦ , (23)

where z is evaluated at B = In and Ci = 0 for i =
1, . . . , n. Thus, the function f̃ (z) in Eq. (23) yields
(in a single function evaluation) the real-valued vector
function f (a), the real-valued Jacobian J f (a), and the
real-valued Hessians H f1(a), . . . ,H fm(a).

3 Lagrangian mechanics over the Hessian
numbers

Consider a mechanical system with kinetic energy
T (q, q̇, t) and potential energy U (q). The Lagrangian
of the system is givenby the scalar functionL(q, q̇, t) =
T (q, q̇, t) − U (q), where q, q̇ ∈ R

n are the general-
ized position and velocity vectors and t ∈ [0,∞) is
the time. Assuming the components of the generalized
coordinate vector q are independent from one another,
the Lagrange equations are most often applied using
the component form

d

dt

∂L
∂ q̇i

− ∂L
∂qi

= Γi , i = 1, . . . , n, (24)

where the n-vector Γ = (Γ1, . . . , Γn)
T is an arbitrary

generalized force vector and n is the number of general-
ized coordinates. Departing from the standard compo-
nent form, the Newtonian form of Eq. (24) is recovered
by considering the differential of Lq̇ = ∂L/∂q̇ as

dLq̇ = ∂Lq̇

∂q
dq + ∂Lq̇

∂ q̇
dq̇ + ∂Lq̇

∂t
dt. (25)

By taking the differential dLq̇ with respect to time, the
matrix-vector representation of Lagrange’s equation of
motion is

M(q, t)q̈ := ∂2L
∂ q̇2

q̈ = Γ − ∂2L
∂q∂ q̇

q̇ − ∂2L
∂t∂q̇

+ ∂L
∂q

:= Q(q, q̇, t), (26)

whereM ∈ R
n×n and Q ∈ R

n . Equation (26) describes
the unconstrained motion of the system, wherein the
terminology ’unconstrained’ is used to imply that the n
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generalized coordinates q are to be treated as indepen-
dent of one another. The motion of the unconstrained
system described by Eq. (26) can be uniquely deter-
mined at time t since M > 0, and assuming the initial
position q(0) = q0 and velocity q̇(0) = q̇0 are pro-
vided at initial time t0.

When the system is subjected to constraints, an addi-
tional force of constraint, Qc(q, q̇, t), arises such that

Mq̈ = Q + Qc. (27)

Additionally, the mass matrix may only be positive
semi-definite (M ≥ 0) and non-invertible if Lagrange’s
equation is applied with dependent generalized coordi-
nates. The constraints may have the form

φi (q, t) = 0 i = 1, . . . , s1, (28)

and

ψi (q, q̇, t) = 0 i = 1, . . . , s2, (29)

which constitutes a general set of holonomic and non-
holonomic bilateral constraints, respectively. The ini-
tial conditions q0 and q̇0 are now assumed to satisfy the
constraints in Eqs. (28) and (29) at initial time t0. The
force of constraint Qc must be devised to ensure that
these constraints are satisfied at each instant in time.

Assuming the constraints in Eqs. (28) and (29) are
continuously differentiable with respect to time, they
can take the form of the constraint matrix equation

Aq̈ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ1
∂q
...

∂φs1
∂q
∂ψ1
∂q̇
...

∂ψs2
∂q̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
q̈

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q̇T ∂2φ1

∂q2
q̇ − 2 ∂2φ1

∂t∂q q̇ − ∂2φ1

∂t2
...

−q̇T
∂2φs1

∂q2
q̇ − 2

∂2φs1
∂t∂q q̇ − ∂2φs1

∂t2

−∂ψ1
∂q q̇ − ∂ψ1

∂t
...

−∂ψs2
∂q q̇ − ∂ψs2

∂t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

:= b,

(30)

where A is a matrix with m = s1 + s2 rows and n
columns and b is an m-vector. We note that the set of
constraints in Eq. (30) should be consistent (AA+b =
b), while the rows of A may be linearly dependent.
If the matrix [M AT] has full rank, then the auxiliary
mass matrix

M = M + ATW A > 0 (31)

is positive definite with positive definite diagonal
weighting matrix

W = diag(w1, . . . , wm) > 0.

Theweightsw1, . . . , wm simply scale them-constraints
relative to the mass matrix M . Under the condition
given by Eq. (31), the constrained equations of motion
can then become [10–12]

Mq̈ = Q + AT(AM−1AT)+(b − AM−1Q), (32)

where the superscript + symbol denotes the Moore-
Penrose matrix inverse.

Obtaining closed-form expressions of the con-
strained equations of motion depends on the determi-
nation of four elements. Namely, the mass matrix M ,
the generalized force vector Q, the constraint matrix A,
and the constraint vector b. In comparison with other
formulations [13], Eq. (32) does not require the use of
Lagrange multipliers, which will eventually simplify
the Lagrangian evaluations in what follows. It is evi-
dent from the expressions above thatM , Q, A, and b are
constructed using only the partial derivatives of L, φ,
and ψ with respect to q, q̇ , and t . Normally, one would
derive these expressions and evaluate the derivatives in
closed-form before arriving at the required equations
of motion. Here, we show that these objects can also
be obtained by extending the real-valued Lagrangian
map L : R

n × R
n × R → R to the Hessian-valued

H(ε1, . . . , εn)Lagrangianmap L̃ : Hn×H
n×H → H,

or equivalently L̃ : H2n+1 → H.
Define a generalized state vector z ∈ H

2n+1 so that

z =
⎡
⎣ zq
zq̇
zt

⎤
⎦ =

⎡
⎣q
q̇
t

⎤
⎦ + Bε +

⎡
⎢⎣

εTC1ε
...

εTC2n+1ε

⎤
⎥⎦ , (33)

where

ε = [εTq , εTq̇ , εt ]T = [εq1, . . . , εqn , εq̇1 , . . . , εq̇n , εt ]T,

B ∈ R
2n+1×2n+1,

and

Ci ∈ R
2n+1×2n+1, i = 1, . . . , 2n + 1.
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Given the Lagrangian of the system L(q, q̇, t), the
extended Hessian-valued Lagrangian is then given by
L̃(z). At each instant in time, we can evaluate L̃(z) at
z = z∗, where

z∗ =
⎡
⎣q∗ + εq
q̇∗ + εq̇
t∗ + εt

⎤
⎦ (34)

is obtained using the values B = In and Ci = 0 for
i = 1, . . . , 2n + 1. This yields

L̃(z∗) = L +
[

∂L
∂q

∂L
∂q̇

∂L
∂t

]
ε +

εT
1

2!

⎡
⎢⎢⎢⎢⎢⎣

∂2L
∂q2

∂2L
∂ q̇∂q

∂2L
∂t∂q

∂2L
∂q∂q̇

∂2L
∂ q̇2

∂2L
∂t∂ q̇

∂2L
∂q∂t

∂2L
∂q̇∂t

∂2L
∂t2

⎤
⎥⎥⎥⎥⎥⎦ ε. (35)

The Hessian-valued Lagrangian map L̃(z∗) consists of
(1) the Lagrangian function evaluation, (2) the gradient
of the Lagrangian, and (3) the Hessian matrix of the
Lagrangian with respect to q, q̇ , and t ; each evaluated
at q = q∗, q̇ = q̇∗, and t = t∗. The elements needed
to construct the unconstrained equations of motion of
the system are obtained directly from Eq. (35) as is
apparent in Eq. (26); i.e., Eq. (35) produces the mass
matrix M and the generalized force vector Q evaluated
at q = q∗, q̇ = q̇∗, and t = t∗.

When constraints are imposed, the holonomic con-
straints, φ(q, t), and the nonholonomic constraints,
ψ̇(q, q̇, t), require second- and first-order derivative
information, respectively, as shown in Eq. (30). For
z ∈ H

n+1, the i-th Hessian-valued constraint φ̃i (z)
evaluated at

z∗ =
[
q∗ + εq
t∗ + εt

]
(36)

yields

φ̃i (z
∗) = φi +

[
∂φi
∂q

∂φi
∂t

]
ε

+ εT
1

2!

⎡
⎢⎣

∂2φi

∂q2
∂2φi
∂t∂q

∂2φi
∂q∂t

∂2φi

∂t2

⎤
⎥⎦ ε. (37)

For z ∈ J
2n+1, the i-th Jacobian-valued constraint

ψ̃i (z) evaluated at

z∗ =
⎡
⎣q∗ + εq
q̇∗ + εq̇
t∗ + εt

⎤
⎦ (38)

yields

ψ̃i (z
∗) = ψi +

[
∂ψi
∂q

∂ψi
∂ q̇

∂ψi
∂t

]
ε. (39)

Equations (37) and (39) then contain all the elements
needed to construct the constraint matrix A and the
constraint vector b evaluated at q = q∗, q̇ = q̇∗, and
t = t∗. Observe that the constrained Lagrange equa-
tions of motion given by Eq. (32) can then be obtained
by pure numerical evaluation of the extended functions
L̃(z∗), φ̃(z∗), and ψ̃(z∗)!

4 Numerical linearization of Lagrangian systems

Given the exact nature of the derivatives produced by
the T-algebras, analyses requiring system lineariza-
tion or sensitivity calculation are easily carried out
numerically without truncation error using extended
Lagrangian L̃(z∗) evaluations. Consider a Lagrangian
system with configuration expressible as a bijective
function of the minimum number of generalized coor-
dinates

υ = υ(q), (40)

whereυ ∈ R
n are the reference coordinates andq ∈ R

n

are the generalized coordinates. The acceleration of the
system (Eq. (32)) is given as

q̈ = M−1Q =
(

∂2L
∂ q̇2

)−1 (
Γ − ∂2L

∂q∂q̇
q̇ + ∂L

∂q

)

(41)

since no constraints are imposed on the motion. Differ-
entiating Eq. (40) once with respect to time yields

υ̇ = ∂υ

∂q
q̇ := Φ(q)q̇, (42)

where Φ ∈ R
n×n is nonsingular. A second differentia-

tion with respect to time yields

ϋ = Φ̇q̇ + Φq̈. (43)

Substitution of Eq. (41) into Eq. (43) yields the accel-
eration of the reference coordinates as a function of the
generalized coordinates q and q̇ as

ϋ = Φ̇q̇ + ΦM−1Q. (44)

A first-order realization of Eq. (44) is given by

ẋ :=
[
ẋ1
ẋ2

]
=

[
x2
ϋ

]
, (45)
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where x1 = υ, x2 = υ̇, and x = [xT1 , xT2 ]T. Note that
the acceleration ϋ in Eq. (45) is obtained directly from
Eq. (44).

Ignoring any input or output relations for simplicity,
a linear model of Eq. (45) is obtained by considering
the perturbation δ ∈ R

2n about the operating point
x0 ∈ R

2n such that x = x0 + δ. The linearization with
minimum-sized Jacobian, A, is then given by

δ̇ =
[

0 In
∂ ẋ2
∂q

∂q
∂x1

+ ∂ ẋ2
∂q̇

∂ q̇
∂x1

∂ ẋ2
∂q̇

∂ q̇
∂x2

]∣∣∣∣∣x=x0
q=q0
q̇=q̇0

δ := Aδ, (46)

where ∂q
∂x2

= ∂q
∂υ̇

= 0 and (q0, q̇0) is the operating

point in terms of the generalized coordinates. Clearly,
the linearization in Eq. (46) requires (1) the inverse
function of Eq. (40)

q = q(υ) (47)

and (2) the differentiation of the matrices M−1 and Q
with respect to q and q̇ . If the quantities M and Q are
known analytically, one could theoretically computeA
analytically by using the formula

dM−1 = −M−1dMM−1. (48)

For complex Lagrangians L, this process is formidable
and most likely not possible. However, numerical cal-
culation of these objects using the T-algebra is triv-
ial. For example, using Eq. (48), the derivative of the
inverse mass matrix M−1 with respect to qi in terms of
the Lagrangian L is given by

∂M−1

∂qi
= −M−1 ∂M

∂qi
M−1

= −
(

∂2L
∂q̇2

)−1
∂3L

∂qi∂q̇2

(
∂2L
∂q̇2

)−1

. (49)

Since the second relation in Eq. (49) requires third-
order derivatives, it is apparent that Eq. (49) can be cal-
culated numerically by extending the LagrangianL to a
third-order truncatedT-algebra (seeSect. 2) evaluation.
In this way, the linearization in Eq. (46) can also be cal-
culated numerically and directly from the Lagrangian
L. Once the T-algebra has been implemented compu-
tationally, it inheres the burden of derivative computa-
tion, and the linearization is easily obtained once the
LagrangianL and the desiredminimumcoordinate rep-
resentation υ(q) and its inverse are defined.

5 Implementation and application

Actual computational implementation of a particular
truncated T-algebra can be accomplished in software
using object-oriented programming techniques such
as operator overloading. A class structure can be cre-
ated that encapsulates the appropriate T-algebra num-
ber. For example, the class data definition of an H(ε)-
algebra would include three distinct floating-point dec-
larations that represent the scalar, ε, and ε2 parts. The
methods of the class are then defined to override the
binary operations and special functions. In particular,
the binary operators of addition (+) and multiplication
(*) of two H(ε) numbers would be coded to follow
the relations in Eqs. (10) and (11), while the special
functions such as sin(z) would be coded to follow the
evaluation in Eq. (12) as

sin(z) = sin(a + bε + cε2) = sin(a) + b cos(a)ε

+
(
c cos(a) − b2

2
sin(a)

)
ε2. (50)

In hardware, a field programmable gate array (FPGA)
coprocessor could theoretically be designed to imple-
ment a particular T-algebra natively. A typical micro-
processor (CPU) could then offload numerical deriva-
tive computations to the FPGA in parallel.

Once an appropriately truncated T-algebra has been
implemented computationally, it is quite trivial to
functionally evaluate the extended Lagrangian and
motion constraints. The function evaluation using the
T-algebra implementation provides all the derivatives
needed for the formulation of constrained equations
of motion and their linearization as demonstrated in
Sects. 3 and 4. This also simplifies sensitivity analyses
with respect to many system parameters. On the con-
trary, using analytical derivatives for sensitivity analy-
ses with respect to arbitrary system parameters is quite
difficult, or impossible, for complex systems.

In the following, two simple yet fairly compre-
hensive examples are provided to demonstrate how
the extended Lagrangian and constraint functions can
yield the derivatives needed to construct the constrained
equations of motion of a Lagrangian system in terms of
the matrices M , Q, A, and b, and for the computation
of Lyapunov exponents for a given Lagrangian system.
Increasingly complex examples can obviously be han-
dled simply by deriving the appropriate Lagrangian and
the required constraints.
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Fig. 1 A particle moving in a central field

5.1 Illustrative example: constrained motion in a
central field

Consider a single particle with massm moving relative
to an inertial frame of reference FN with orthonormal
basis. The position of the particle in the inertial frame
is given by the 3-vector r. As illustrated in Fig. 1, the
position vector, r, can be decomposed into magnitude
and normalized vector form by

r = r r̂, (51)

where r̂ is a unit 3-vector and r is the magnitude of
the position vector r. The position of the particle is
therefore defined by four coordinates from which three
of the coordinates are constrained by the relation

φ(q) = r̂Tr̂ − 1 = 0, (52)

where q = [r, r̂T]T is the generalized coordinate 4-
vector describing the configuration of the system. The
velocity of the particle is given by

ṙ = ∂r
∂q

q̇ := [
r̂ r I3

] [
ṙ
˙̂r
]

. (53)

The kinetic energy is subsequently derived as

T (q, q̇) = 1

2
mṙTṙ = 1

2
m

(
ṙ2 + r2 ˙̂rT ˙̂r

)
. (54)

Furthermore, we assume the particle is moving in a
uniform gravitational field so that we have the potential

U (q) = −μm

r
, (55)

where μ > 0. This yields the Lagrangian

L(q, q̇) = 1

2
m

(
ṙ2 + r2 ˙̂rT ˙̂r

)
+ μm

r
. (56)

To evaluate the constrained equations of motion,
we need to obtain the elements M , Q, A, and b as

described in Sect. 3. This is accomplished by extend-
ing the Lagrangian L(q, q̇) → L̃(z) and the constraint
φ(q) → φ̃(z). TheHessian state vector z ∈ H

8 is given
as

z =

⎡
⎢⎢⎣
zr
zr̂
zṙ
z ˙̂r

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
r
r̂
ṙ
˙̂r

⎤
⎥⎥⎦ + Bε +

⎡
⎢⎣

εTC1ε
...

εTC8ε

⎤
⎥⎦ , (57)

where ε = [εr , εTr̂ , εṙ , ε
T˙̂r ]T = [ε1, . . . , ε8]T, B ∈

R
8×8, and Ci ∈ R

8×8 for i = 1, . . . , 8. Thus, we can
evaluate

L̃(z) = 1

2
m

(
z2ṙ + z2r z

T˙̂r z ˙̂r
)

+ μm

zr
(58)

at z = z∗, where

z∗ =

⎡
⎢⎢⎣
r + εr
r̂ + εr̂
ṙ + εṙ˙̂r + ε ˙̂r

⎤
⎥⎥⎦ . (59)

By appropriately carrying out theHessian-based binary
operations, we obtain

z2ṙ = ṙ2 + 2ṙεṙ + ε2ṙ , (60)

z2r z
T˙̂r z ˙̂r = r2 ˙̂rT ˙̂r + 2r ˙̂rT ˙̂rεr + 2r2 ˙̂rTε ˙̂r + ˙̂rT ˙̂rε2r
+4r ˙̂rTεrε ˙̂r + r2εT˙̂r ε ˙̂r, (61)

and
1

zr
= 1

r
− 1

r2
εr + 1

r3
ε2r . (62)

Combining like terms in ε, Eq. (58) then yields

L̃(z∗) = 1

2
m

(
ṙ2 + r2 ˙̂rT ˙̂r

)
+ μm

r
+

+
[
mr ˙̂rT ˙̂r − μm

r2
0 mṙ mr2 ˙̂r

]
ε

+ εT
1

2

⎡
⎢⎢⎢⎣
m ˙̂rT ˙̂r + 2

μm

r3
0 0 2mr ˙̂rT

0 0 0 0
0 0 m 0

2mr ˙̂r 0 0 mr2I3

⎤
⎥⎥⎥⎦ ε.(63)

Similarly, the evaluation of

φ̃(z) = zTr̂ zr̂ − 1 (64)

at z = z∗ for

z∗ =
[
r + εr
r̂ + εr̂

]
(65)

yields

φ̃(z∗) = r̂Tr̂ − 1 + [
0 2r̂T

]
ε + εT

1

2

[
0 0
0 2I3

]
ε. (66)
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In regard to the constrained equations of motion of the
system, Eqs. (63) and (66) contain all the needed infor-
mation. The mass matrix is

M =
[
m 0
0 mr2I3

]
, (67)

the generalized force vector is

Q =
⎡
⎣mr ˙̂rT ˙̂r − μm

r2

−2mrṙ ˙̂r

⎤
⎦ , (68)

the constraint matrix is

A = [
0 2r̂T

]
, (69)

and the constraint vector (a 1-vector here) is

b = −2 ˙̂rT ˙̂r. (70)

Given a constraint weightw > 0, we can compile these
elements into Eq. (32) to obtain the constrained accel-
eration of the system as

[
r̈
¨̂r
]

=
⎡
⎣ r

( ˙̂rT ˙̂r
)

− μ

r2

−2ṙ

r
˙̂r −

( ˙̂rT ˙̂r
)
r̂

⎤
⎦ . (71)

Equation (71) is provided analytically for completeness
with the understanding that we could also produce this
equation at any given instant in time using only the
numerical calculations L̃(z∗) and φ̃(z∗).

5.2 Numerical example: Lyapunov exponents of
N -pendulum systems

Lyapunov exponents are quantities used to characterize
the asymptotic behavior of a dynamical system. They
are commonly used to determine whether the system
is sensitive to initial conditions and to help establish
chaos. Given an autonomous dynamical system

ẏ = f (y), y ∈ R
n, f : Rn → R

n, (72)

the variational equation

Ẏ = ∂ f

∂y
Y, Y ∈ R

n×n, (73)

can be used to compute the Lyapunov exponents of the
system in Eq. (72). The spectrum of Lyapunov expo-
nents of Eq. (72) are defined as

λi = lim
t→∞

1

t
ln(|mi |), i = 1, . . . , n, (74)

Fig. 2 A planar N -pendulum system

where mi is the i-th eigenvalue of Y . The largest Lya-
punov exponent (usually of most interest) is termed the
maximal Lyapunov exponent (MLE). Computation of
the n Lyapunov exponents of Eq. (72) can be accom-
plished by solving the initial value problem [14]

ẏ = f (y), y(0) = y0 (75)

Q̇ = QS, Q(0) = In, (76)

ρ̇i =
(
QT ∂ f

∂y
Q

)
i,i

, ρi (0) = 0, i = 1, . . . , n,

(77)

where the n by n matrix Q is the orthogonal matrix
obtained from the QR–decomposition

Y = QR (78)

and the n by n matrix S is defined as

S =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
QT ∂ f

∂y
Q

)
i, j

, i > j

0, i = j

−
(
QT ∂ f

∂y
Q

)
j,i

, i < j

. (79)

The time evolution of the Lyapunov exponent spectrum
is then given by

λi (t) = ρi (t)

t
, i = 1, . . . , n, (80)

and the value of each Lyapunov exponent is given by

λi = lim
t→∞ λi (t), i = 1, . . . , n. (81)
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Fig. 3 Time evolution of
the N -pendulum MLE

Now consider the MLE calculation of the planar N -
pendulum system illustrated in Fig. 2, where the Lya-
punov exponent spectrum is 2N dimensional. The cal-
culation of theMLE clearly depends on the realizations
of then-vector f (y) and then bynmatrix ∂ f/∂y,where
the state vector is given by

y = (q, q̇) = (θ1, . . . , θN , θ̇1, . . . , θ̇N ), y ∈ R
2N .

(82)

For the N -pendulum system in Fig. 2, f is obtained
from Eq. (26) as

f =
[
q̇
q̈

]
=

[
q̇

M−1Q

]

=
⎡
⎣ q̇(

∂2L
∂q̇2

)−1 (
∂L
∂q − ∂2L

∂q∂q̇ q̇

)⎤
⎦ (83)

since no constraints are present and L has no explicit
dependence on time; i.e.,

L = 1

2
m

N∑
i=1

ṙi · ṙi − mg
N∑
i=1

hi , (84)

where for i > 1

ṙi = ṙi−1 + l θ̇i [cos θi ,− sin θi ]T (85)

and

hi = hi−1 − l cos θi . (86)

The matrix ∂ f/∂y is then given by

∂ f

∂y
=

⎡
⎣ 0 IN

∂q̈

∂q

∂q̈

∂q̇

⎤
⎦ , (87)

where the i-th column of ∂ q̈/∂q is

∂q̈

∂qi
= −

(
∂2L
∂q̇2

)−1
∂3L

∂qi∂q̇2

(
∂2L
∂q̇2

)−1 (
∂L
∂q

− ∂2L
∂q∂q̇

q̇

)

+
(

∂2L
∂q̇2

)−1 (
∂2L

∂qi∂q
− ∂3L

∂qi∂q∂q̇
q̇

)
(88)

and the i-th column of ∂ q̈/∂q̇ is

∂q̈

∂q̇i
= −

(
∂2L
∂q̇2

)−1
∂3L

∂q̇i∂q̇2

(
∂2L
∂q̇2

)−1 (
∂L
∂q

− ∂2L
∂q∂q̇

q̇

)

+
(

∂2L
∂q̇2

)−1 (
∂2L

∂q̇i∂q
− ∂3L

∂q̇i∂q∂q̇
q̇ − ∂2L

∂q∂q̇

∂q̇

∂q̇i

)

(89)

All of the derivatives in Eqs. (83), (88), and (89) are
obtained numerically using a third-order nilpotent alge-
bra as described in Sect. 2. This eliminates the need
to re-derive analytical expressions as N (the number
of pendulums) increases. The numerical evaluation of
L(z∗) is all that is needed.

A Fortran 2008 module that implements the third-
order multivariate nilpotent algebra was constructed to
enable numerical calculation of Eqs. (83), (88), and
(89). A simulation that implements Eqs. (75) – (77)
using numerical derivatives for the N pendulum sys-
tem was then constructed. As N increases, the initial
conditions were chosen as

q(0) = [θ1, θ2, . . . , θN ]
T = [

75◦, 0, . . . , 0
]T (90)

and

q̇(0) = [θ̇1, θ̇2, . . . , θ̇N ]T = [0, 0, . . . , 0]T. (91)

The mass and length of each pendulum is chosen as
m = 1 and l = 1, and the gravitational constant
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Table 1 Approximate
maximal Lyapunov
exponent with increasing N

N λMLE

1 3 × 10−5

2 0.1

3 0.8

4 1.4

5 2.2

6 3.1

g = 9.81. Using a fixed-step fifth-order Dormand-
Prince integration scheme with step size of 0.05 sec-
onds, the timehistory of the resultingMLEfor each sys-
tem (up to N = 6) is shown in Fig. 3. Approximate val-
ues of λMLE for each system are reported in Table1. As
expected, λMLE approaches zero when N = 1, which
is consistent with the fact that the system is conserva-
tive and two dimensional. The other higher-order cases
show increasingly positiveλMLE values. Finally, Figs. 4
and 5 illustrate the evolution of the errors in the energy
conservation of the system and the orthogonality of the

matrix Q. Since the system is conservative, the total
energy of the system

E = 1

2
m

N∑
i=1

ṙi · ṙi + mg
N∑
i=1

hi (92)

should not deviate from the initial value E0 throughout
the system trajectory. The growth in the errors shown in
Figs. 4 and 5 indicates that a variable time step and/or
higher-order integrator may be needed for improved
accuracy with increasing N . It is important to note that
the entire analysis was completed without analytically
differentiating any expressions. Only the Lagrangian in
Eq. (84) was needed.

6 Conclusions

In this paper, a nilpotent algebra approach is developed
for comprehensive numerical analysis of constrained

Fig. 4 Time evolution of
the error in total energy
conservation |E − E0|

Fig. 5 Time evolution of
the maximum component of
|QTQ − I |
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dynamical systems in the Lagrangian framework.
This was accomplished by extending the Lagrangian
L(q, q̇, t) and the constraints φ(q, t) and ψ(q, q̇, t) to
truncated T-algebras (multivariate generalizations of
the so-called dual number algebra). Conceptually, it
was shown that the process for numerical derivation of
constrained equations of motion can be quite simple
since only four elements are needed, namely the mass
matrixM , the generalized force vectorQ, the constraint
matrix A, and the constraint vector b. It was shown that
these elements can be constructed numerically by eval-
uating the extended L̃(z), φ̃(z), and ψ̃(z) functionswith
a generalized state vector z ∈ H

2n+1. In addition, it was
shown that exact numerical linearization and sensitiv-
ity calculations can be carried out directly by extending
the Lagrangian to a third-order truncated T-algebra,
which was demonstrated numerically for the compu-
tation of Lyapunov exponents in N -pendulum sys-
tems. The approach eliminates the need to obtain ana-
lytical derivatives prior to computational implemen-
tation. This is a significant capability when consider-
ing algorithm development for analysis of Lagrangian
systems in general, especially for systems with com-
plex Lagrangians and many interacting subsystems. In
practice, these algebras can be implemented in soft-
ware using standard operator overloading techniques,
or in hardware using Hardware Description Language
(HDL). As a result, numerical algorithms for simula-
tions based on Lagrangian dynamical systems can be
automated more intelligently as it is apparent that one
only needs to define the requisite Lagrangian L and
motion constraints φ and ψ for a given system.
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