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Abstract 
Autonomous off-road navigation through forested 

areas is particularly challenging when there exists a 
mixture of densely distributed thin and thick trees.  To 
make progress through a dense forest, the robot must 
decide which trees it can push over and which trees it 
must circumvent.  This paper describes a stereo-based 
tree traversability algorithm implemented and tested 
on a robotic vehicle under the U.S. Department of 
Defense-DARPA PerceptOR program.  Edge detection 
is applied to the left view of the stereo pair to extract 
long and vertical edge contours.  A search step 
matches anti-parallel line pairs that correspond to the 
boundaries of individual trees. Stereo ranging is 
performed and the range data within trunk fragments 
are averaged.  The diameters of each tree is then 
estimated, based on the average range to the tree, the 
focal length of the camera, and the distance in pixels 
between matched contour lines.  We use the estimated 
tree diameters to construct a tree traversability image 
used in generating a terrain map.  In stationary 
experiments, the average error in estimating the 
diameter of thirty mature tree trunks (having diameters 
ranging from 10-65cm and a distance from the 
cameras ranging from 2.5-30 meters) was less than 5 
cm. Tree traversability results from the daytime for 
short baseline (9cm) and wide baseline (30cm) stereo 
are presented. Results from nighttime using wide 
baseline (33.5cm) thermal infrared stereo are also 
presented. 
  
1.  Introduction 
 

Autonomous navigation by off-road mobile robots is 
an important task for many defense, in-situ planetary 
exploration, and rescue applications. Robotic vehicles 
must have the ability to operate efficiently and 
intelligently with minimal user interaction. Traditionally, 
traversability decisions are made by determining surface 
and geometric characteristics from data obtained 
passively by stereo ranging, or actively by laser ranging. 
Range data alone, however, is not sufficient to determine 
whether a detected obstacle is traversable, in spite of its 
size.  Small bushes and thin trees may exceed the vehicle 
mechanical constraints size-wise, but they could be run 
over if they were known to be soft obstacles. We are 
pursuing added levels of robot intelligence by also 
exploiting the geometric aspects that some natural objects 
have, such as piecewise linear sections, direction of 

growth, and appearance properties.  In this paper, we 
focus on estimating the diameters of trees in the scene, to 
help determine whether or not they are traversable 
obstacles. This process relies on edge contours extracted 
from the left image of the stereo pair. The edge contours 
are coded with their direction to limit processing to 
vertical (or near-vertical) object boundaries, and to match 
the edges on opposite boundaries of tree trunks. The 
matching process produces fragments that represent 
portions of tree trunks and other similar objects. Straight 
linear segments having a location, a width, a length, and 
an orientation in 2-D image coordinates represent these 
fragments. The range data provided by stereo ranging, 
projected onto the frame of the left camera, provide the 3-
D information needed to assist the matching process and 
derive the range to the trees, and to estimate the 
diameters. An assessment of the quality of these estimates 
is given also, as well as examples from visible color 
image pairs from several diverse scenarios, and from 
mid-wave infrared image pairs acquired during the night. 

This work is designed to estimate the diameters of 
trees that belong to a large class of trees having near-
vertical trunks. We assume that portions of the main 
trunk are discernable from the background, i.e. the 
boundaries that delineate portions of the trunk are 
detectable. We call these portions, trunk fragments. The 
diameters of portions of tree trunks are assumed to vary 
little along the fragment. The system uses edge contrast 
polarity to match tree boundaries and detect fragments.  
Therefore, it assumes that portions of the trunk appear 
either brighter, or darker, than the background, and thus 
the boundaries have opposite contrast. The backgrounds 
themselves may change along the trunk of a tree, 
however. For example, the lower portion may be set 
against the ground surface while the middle section may 
be set against background higher vegetation, mountains, 
and water bodies. The upper portions may be set against 
tree canopies and the sky. These fluctuations do not affect 
fragment detection, as long as the fragments have 
boundaries of opposite contrast. 

Different types of trees will have different appearances 
depending on the texture of the bark, the smoothness of 
the exposed core, and the density of the branches and 
canopy. During the night, IR emissions from tree trunks 
are stable and appear brighter that the surrounding 
material. We exploit this thermal property as well. During 
the day moderate to dense canopies reduce the amount of 
direct sun illumination, resulting in a homogeneous 



appearance of the trunks. Direct illumination from certain 
angles in combination with the viewing angles can result 
in multiple fragments on a single trunk, making the 
diameter estimation difficult.  

Our current implementation runs under real-time 
constraints and thus does not attempt to model the trees 
as complete objects. Rather, we extract fragments on each 
unobstructed trunk, even if they correspond to trees in the 
distance where range data may not be available. Of 
particular importance are trees that are close to the 
vehicle, e.g., within 15 meters, where quick reaction 
maneuvers are needed. In particular, estimating the 
diameter for the portions of the trees that are below 
vehicle height are crucial. 
 
2.  Related Work 
 

Autonomous navigation has been an active area of 
research by space and defense agencies for several years. 
Ground-based and low-flying robots must have the 
ability to operate autonomously with minimal human 
assistance. The vehicle’s navigation systems must be able 
to traverse rough, poorly modeled natural terrain, 
avoiding hazardous situations. Some systems employ 
fuzzy logic methods to mimic human behavior using 
computer vision-based measures of terrain roughness, 
slope and discontinuities [1,2]. Traversability is usually 
defined within the context of path planning [3]. Once the 
obstacles have been detected, the distance of each 
location in a computed terrain map to the obstacles serves 
as a measure of traversability for that location. The map 
cells typically include a measure of terrain type computed 
by a number of terrain classification methods [4]. 
Ultimately these path-planning tasks must translate into 
maneuvering reactions that are safe [5]. The work 
presented here deals with methods to derive a more 
accurate detection and description of the obstacles in the 
scene. Trees in forested scenes in particular, have 
geometric and appearance aspects that can be exploited to 
better populate the world map used to make traversability 
decisions. Currently, we are not aware of other systems 
that attempt to detect trees specifically from intensity 
images acquired by unmanned ground vehicles (UGV) 
under near real-time requirements. A real-time technique 
that uses active sensors, such as laser and radar, to 
determine traversability in terms of object density is 
reported in [6]. 

   
3.  Approach 
 

The tree detection module attempts to detect the 
location and diameter of standing trees in the scene by 
explicitly detecting portions of tree trunks (Fig. 1). 
Trunks that appear darker or brighter than their 
background will have boundaries of opposite contrast. 
Matching pairs of these edges in conjunction with stereo 
range data, results in a set of individual potential tree 

trunk fragments. Matching is performed only in the 
horizontal direction. With support from stereo ranging, 
the distance to the trees and the diameter of the trees can 
be estimated. Trees can then be classified as potential 
hazard depending on the robotic vehicle characteristics.  

We have developed, integrated, and field-tested a tree 
hazard detection module into a real-time passive 
perception system that runs on a UGV. The module 
focuses on tree fragments that can be detected fast, rather 
than in computing a tree model with all its fragments 
integrated into a single volume. This, however, would 
require a grouping operation to produce an extended map 
or a tree survey, for example. 

 

 
Figure 1. Steps in detection of tree trunk 

fragments. 
 

Edge Detection applies a 1-D horizontal edge detector 
to the rectified left intensity image (Fig. 2) of a stereo 
pair. The intensity images are 320x240 pixels, coded to 8 
bits. For expediency, we apply a 1-D edge detector 
followed by a 1-D non-maximal suppression step to thin 
the convolution output and localize the edges.  The edge 
detector uses a first derivative Gaussian kernel having a 
space constant sigma=1. The edge gradient direction is 
used to determine the direction of the edges. We select 
edges that belong in contours that have vertical or near-
vertical directions. 

Contour extraction eliminates single pixels, bridges 
one-pixel gaps along the contours, and filters out weaker 
edges and short contours. In the example illustrated in 
Fig. 2, edge contours have 10 pixels or more. The color-
coded contours illustrated in Fig.2 show the direction of 
contrast.  

 

 
Figure 2. Rectified left view of a 30 cm baseline 
stereo pair and the contours extracted. Green 
and blue contours indicate contrast polarity. 

 
Contour Matching looks for and matches pairs of 

edges of opposing contrast along the horizontal direction. 



The search process starts at an edge and searches up to a 
maximum distance for an edge having opposite contrast. 
Edges having the same contrast are skipped if the 
underlying range data does not indicate a range 
discontinuity there. As a result, bark texture does not 
impede finding the matching tree boundary. Trees may 
overlap in 2-D and may be merged into a single fragment. 
Thin trees in the distance may be too thin to be resolved 
by the edge detector. These effects, however, are 
typically resolved as the vehicle approaches the trees to a 
distance where the ambiguity is reduced. The search 
process has been designed to incorporate the use of cues 
derived from other sources to help validate the matches 
between edges. In the example illustrated in Fig. 2, the 
cue comes from the intensity images themselves, by 
simply indicating that the tree trunks appear darker than 
the background. The directions associated with the edges 
indicate on which side of the edge the tree is. Regions 
having intensities darker than the mean intensity of the 
image, therefore, are likely to include the dark tree trunks. 
A similar situation occurs in nighttime infrared images, 
where the trees appear brighter than the background. As 
mentioned earlier, we also use the disparity data to verify 
depth discontinuities at the matched tree boundaries. 
Other cues can be easily incorporated, if available, such 
as pixel classifications of multi- or hyperspectral data. 
The mean intensity of the image illustrated in Fig. 2 
above is 80 (out of 255), and we look for tree trunks 
having a projected 2-D diameter up to 30 pixels. The 
matching process results in the binary mask, shown in 
Fig.3a for our example.  The same mask is overlaid in red 
on the input image, as shown in Fig. 3b.  
 

(a) Match traces form a raw 
fragments mask 

 
(b) Fragments overlaid on the 

intensity image 
Figure 3.  Building the fragments mask. 

 
Fragment selection traces the boundaries of the 

individual fragments and generates best-fitting ellipses, 
shown in red in Fig. 4a, to the individual fragments. This 
provides a representation that encodes the fragments 
shape, position, and orientation. A best -fitting ellipse [7] 
equates the second order central moments of the ellipse to 
those of the distribution of the pixels in each fragment, 
and thereby effectively defines both the shape and size of 
the ellipse. Currently, we require that these fragments 
represent “elongated” shapes having an aspect ratio better 
than 3:1, and that their orientation (angle of major axis) 
be consistent with a near-vertical pose (90 degrees with a 
22 degree tolerance.) We allow smaller aspect ratios for 
large fragments that are close to the vertical direction. 

The ellipse parameters are used to approximate the tree 
fragments by parallel straight linear segments that have 
the same length, width and orientation than the ellipses. 
These are illustrated in Fig. 4b. The labels on the selected 
fragments correspond to the 2-D description shown in 
Table 1.  

In general, we can expect multiple fragments on a 
single trunk due to branches or a non-linearly changing 
background. This occurs less along portions of the trees 
that are near the ground where branches are not usually 
found. The desirable result, however, is that at least one 
fragment per tree be found. 

 

(a) Ellipse fit 
 

(b) Tree trunk segments 
Figure 4. Tree trunk fragment representation. 

 
Frag 
No. 

Area Perimeter Major 
Axis 

Minor 
Axis 

Angle 

1 79 39.89 16.83 5.97 94.10 
2 448 176.52 75.71 7.53 92.84 
3 713 197.59 72.63 12.49 94.90 
4 380 168.87 53.06 9.11 92.82 
5 294 82.28 21.83 17.14 87.29 
8 98 37.89 12.50 9.97 106.67 
9 61 33.89 12.62 6.150 80.82 

10 1640 263.49 125.26 16.66 97.27 
11 296 121.21 60.37 6.24 94.43 
12 106 41.31 13.64 9.88 104.08 
13 315 101.55 47.09 8.51 87.98 
14 179 84.14 41.66 5.47 88.92 
16 252 109.45 43.95 7.30 97.54 
17 205 84.38 39.96 6.53 98.05 
18 263 90.97 29.48 11.35 79.45 
19 75 33.07 11.30 8.45 80.19 
21 111 53.07 25.51 5.54 91.00 
22 108 53.55 24.10 5.70 101.59 
23 526 129.21 56.78 11.79 96.84 
24 280 89.21 40.72 8.75 97.02 
25 44 26.48 10.32 5.42 103.00 
27 160 75.799 29.569 6.889 93.858 
28 60 33.071 14.424 5.296 86.496 
30 440 134.627 64.740 8.653 89.777 
31 85 35.314 11.242 9.627 28.001 
32 38 25.899 11.238 4.305 101.402 
33 173 62.142 25.808 8.535 87.798 

Table 1. 2-D description of selected fragments.
 



Diameter Estimation estimates the diameter, D, of the 
tree fragments using the range data computed by stereo 

raging. By similar triangles: 
f

dRD = ,  where d is the 2-

D projection of the diameter on the image, f is the focal 
length of the camera lens, and R is the distance, to the 
tree. Additional details are given below in Section 6. Fig. 
5a shows the range image from stereo ranging.. Fig. 5b 
shows the range data overlapping the tree fragments 
shown above in Fig. 5b. We arbitrarily require that at 
least 5 % of the area of the fragment have range 
information available. To determine the range to the tree 
(R in the equation above), we compute the average range 
within the linear region representing the trunk fragment. 
Specifically, we do not include range data along the 
borders of these regions to minimize contributions near 
the boundaries of the trees, where the range values may 
incorporate background range values. These averages are 
illustrated pictorially in Fig. 5c, where blue colors 
indicate trees that are closer. Yellows and white indicate 
trees farthest away. Note that fragments shown in Fig. 4b 
that do not have sufficient range data available (Fig. 5b), 
are not represented in Fig. 5c. Fig. 5d shows pictorially 
an image of the fragments with the pixel values encoding 
the estimated diameters. Darker grays indicate thinner 
trees. 

 
(a) Range image. Blues are 

closer. White is farthest. 

 
(b) Range data available for 

each fragment. 

 
(c) Averaged range to the 

trees. Blue is closer, white is 
farthest. 

 

 
(d) Linear segments. 

Intensity encodes diameter. 
Darker values represent 

thinner trees. 
Figure 5. Estimation of tree diameters. 

 
4.  Tree Hazard Map 
 

Three-D estimates of tree ranges and diameters can be 
used to make traversability decisions as a function of the 
vehicle characteristics and speed of travel. Conservative 
assessments based on diameter alone can be made until, 

say, spectral information becomes available to provide 
information about the type of tree, and measures of 
anticipated bark and core densities can be incorporated 
into the traversability decisions. Fig. 6 illustrates the tree 
fragments as color-coded markers derived from the tree 
diameter estimates. Using arbitrary limits, in this 
example, tree fragments larger than 15 cm are coded red, 
or non-traversable. Fragments coded yellow are 
borderline fragments having a diameter between 10 and 
15 cm. Fragments having diameters less than 10 cm are 
coded green, or traversable (see next example below.) 

 
(a) Red is non-traversable. 
Yellow may be traversable 

 
(b) Nearby trees, within 12 

meters 
Figure 6. Traversability markers. 

 
The tree hazard detection module reports range to the 

trees and an estimate of tree diameters. This information 
is used to localize the trees in world coordinates, and to 
evaluate the hazard level as a function of vehicle 
characteristics. An overhead view of the north-oriented 
world map is shown in Fig. 7. The circles denote 10-
meter intervals, and the non-traversable trees detected 
within 50 meters are illustrated by red marks. The gray 
areas indicate range data. 

 
Figure 7. Overhead view of north-oriented 

world map with tree markers. 
 
The example illustrated in Figures 2-7 is from a 

sequence of hundreds of frames from Ft. Polk, VA. Fig. 8 
shows results for a few additional frames including thin 
and thick trees, nearby trees and trees in the distance. 
Note the absence of false alarms. 



Figure 8. Result for few additional frames. 
 
5.  Nighttime Mid-Wave FLIR Example 
  

We have tested our algorithm on mid-wave infrared 
wide baseline (33.5cm) stereo pairs acquired during the 
night. Fig. 9 shows one example. The top left portion of 
the image has saturation problems, but sufficient 
information is available to extract tree fragments and to 
estimate their diameters. The edges extracted from the 
image are illustrated in Fig. 9b. The thin stocks from the 
tall grass in the foreground, however, are close, and their 
boundaries can be resolved well. The directed linked 
edge contours extracted are shown in Fig. 9c. Matching 
the corresponding edges along these contours uses the 
thermal cue that trees appear bright at night. In this 
example, regions having intensity higher than the mean 
intensity help verify the presence of a tree, or other kinds 
of vegetation. The raw fragments are shown in Fig. 9d 
overlaid on the input image. The selected fragments 
represented by linear segments are shown in Fig. 9f. Note 
that the thin tall grass stock in the foreground is well 
represented. Fig. 9e shows the range data from stereo 
ranging. The selected fragments and their linear segment 
approximation are shown in Fig. 9f. The range data lacks 

density but some 3-D information is available at the tree 
locations (Fig. 9g.) The color-coded traversability 
assessment is illustrated in Fig. 9h.  The diameter of the 
large tree on the right is overestimated because a portion 
of the ground vegetation appears as a smooth 
continuation from the bottom of the tree trunk. The 
current analysis does not look specifically for sudden 
changes in width at the bottom of the tree, as many trees 
may have large root systems that may be visible. The 
amount of overestimation, however, is not large, and 
tends to occur at the bottom of large trees that typically 
are not traversable. 
 

(a) Rectified left view 

 

(b) Detected edges 
 

(c) Selected contours 

 

(d) Extracted raw fragments 
 

(e) Range data 

 

(f) Selected fragments 
 

(g) Range information 
available at the fragments 

 

(h) Traversability markers. 
Green is traversable 

Figure 9. Nighttime FLIR example. 
 

6.  Tree Diameter Accuracy Assessment 
 

To determine the accuracy of the tree diameter 
estimates, we measured the circumference of thirty trees 
in a forested area. Ten of the 30 measured trees are 
shown in Fig. 10. The range data were obtained using a 
narrow baseline  (9.5 cm) stereo ranging.  



 

105.3 
115.5 
87.4 
115.2 
83.4 
131.6 
120.8 
148.5 
77.5 
125.0 
(cm.) 

Figure 10. Ten of the 30 trees measured. 
 
Fig. 11 shows results for one of the scenes. The scene 

is cluttered and helps demonstrate the feasibility of 
detecting useful tree trunk fragments from this type of 
scene. Fig. 11b shows the range data, Fig. 11c the 
detected fragments, and Fig. 11d, the approximated 
selected fragments. 

 
(a) Image of forest 

 
(b) Range data 

 
(c) Extracted raw fragments 

 
(d) Tree trunk fragments 

Figure 11. Example of cluttered forest scene. 
 
 The plot in Fig. 12 illustrates the measured and estimated 

tree diameters for all thirty samples. The horizontal axis lists the 
thirty trees, from left to right, sorted by range. The same plot 
illustrating relative measurements is shown in Fig. 13; it 
illustrates one outlier and a relatively small error at ranges out to 
30 m. 

The expected error in the tree diameter estimates is given as 
a function of the error in the range to the tree. This range error, 
is given by: 

B
kFR

range

2

=σ ,  where R = range, k = 0.2 (subpixel 

precision), F=0.3 mrad (IVFOV), and B=9.5 cm (baseline.) 
Fig. 14 illustrates the geometric relationships useful to 

derive the expected error in the diameter estimates as a 
function of range error. Fig. 15 illustrates a plot of the 
expected and actual error of tree diameter errors for the 
thirty trees measured.  

 

 
Figure 12. Absolute measurements and 

differences. 
 

Figure 13. Relative difference as a percent of 
measured to estimated diameters. 

 
 

 
d = projection of diameter onto image 
R = range to tree center 
f = focal length of camera lens 
D = diameter of tree 

Figure 14. Expected error in diameter 
estimation as a function of range error. 

 
7.  More Results 
 

At another location, the scenes consist of wooded 
rolling hills having many trees left over from a forest fire. 
The trees have more visible branches than those 



illustrated earlier in Section IV. The tree model, however, 
remains the same. The majority of the trees appear darker 
than the background and reasonable edge contours, 
however fragmented, can be extracted from the images. 

Figure 15. Expected and actual error in 
estimates for the thirty trees measured. 

 
Fig. 16 illustrates a number of representative frames 

from a dataset collected during the fall season, and the 
results from the tree hazard detection module. In the left 
column, we show the left image from the stereo pair. The 
column on the right shows the detected tree trunks with 
the trunk fragments approximated by a color marker. The 
colors denote the level of hazard by comparing the 
computed tree diameters with an arbitrary hazard table. 
Red denotes a severe hazard, yellow denotes moderate 
hazard, green denotes a mild hazard, and cyan denotes 
detection where range data is not available to estimate the 
diameter, but the tree fragment geometry is satisfied. 

Note that thin and thick trees can be detected reliably 
whether they are near or far away. The fragmentation of 
the boundaries extracted depends on the background and 
on the branching of the trees. A number of parameters 
can be adjusted to compensate for scene specific 
conditions. In these results, however, we used the same 
parameter settings used to illustrate results presented 
above in Section IV. Note also that this technique detects 
only standing trees. 

A third dataset was acquired during the winter with 
snow on the ground and in overcast conditions. For this 
type of scene, the contrast of the edges along the 
boundaries of the trees is low and needs to be adjusted to 
allow significant contours to be available.  Fig. 17 shows 
results for several frames. In the left column, there are a 
number of images (left view) of the scene.  In the right 
column, we show the detected tree fragments overlaid on 
the images. Recall that cyan denotes a fragment detection 
without range data available for diameter estimation.  

Note that we can expect that the lower portions of 
nearby trees have a high contrast against the snow on the 
ground, and thus improve the possibility of detection. 
These frames include representative conditions where 
some of the trees are close by and some trees are located 
at some distance. They also have different widths. Some 

frames include standing water that reflects the objects in 
the background.  Note also that vehicle tracks on the 
snow are also elongated features that are thin and have 
boundaries of opposing contrast, thus satisfying our 
generic tree model. The availability of range data at these 
locations indicates that the stereo disparities of the 
features are similar to the disparities of the background, 
thus allowing correct disambiguation. 

Figure 16. Tree detection and hazard 
determination in fall dataset. 

 
8.  Future Work 
 

Scenes that contain some trees that appear brighter 
than the background and some trees that appear darker 
than the background require two passes and the results 
are simply combined. Under some illumination 
conditions, however, part of the same tree trunk appears 
bright and part appears dark. Fig. 18 shows two 
examples. The figure illustrates the raw “bright” and 
“dark” fragments that satisfy the geometric requirements 
for tree fragments. To verify tree trunks, we look at the 
range data available at the location of the fragment. The 
intensity discontinuities that gave raise to the trunk 
fragment must have corresponding depth discontinuities 
near by. The region “inside” the fragment must contain 
smooth consistent disparities, while the regions “outside” 
and on both sides of the fragment must have lower 
disparities. The fragments illustrated in Figure 18 cannot 
be verified by this criterion, and additional work is 
needed to make the verification step more general 
without incurring unwanted false alarms. Therefore, only 
tree fragments that appear wholly darker or brighter that 
the background can be verified by the current algorithm. 
A process that can detect these conditions, determine that 



two passes are needed, and combine and verify these 
fragments is under development. 

 

 

 

 
Figure 17. Tree detection and hazard 

determination in winter dataset. 
 
9.  Conclusion 
 

 A number of classes of obstacles in natural scenes can 
be described as traversable by a vehicle of certain given 
physical characteristics and speed of travel. This requires 
knowledge about the objects that can be measured by the 
sensors available. One such class of objects is thin trees, 
bushes and other low vegetation that exhibit salient 
geometric properties. Tree trunks in particular can be 
expected to stand vertically (or near vertically) and to 
have discernable boundaries against the background. The 
combination of tree types (and therefore appearance) and 
backgrounds, nevertheless, can make the task of detecting 
a full tree difficult. Portions of the trunks of trees 
however are in general discernable, as we have 
illustrated. The ability to detect and estimate the 
diameters of trees depends on the ability of the edge 
detector to resolve the tree boundaries, and the ability of 
the stereo algorithm to produce range information.  

 
(a) Scene 1 (b) Scene 2 

(c) Bright fragments from (a) (d) Bright fragments from 
(b) 

(e) Dark fragments from (a) (f) Dark fragments from (b) 
Figure 18. Mixed appearance trees. 
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