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ABSTRACT

Camera systems with automated zoom lenses are inherently more useful than those with �xed-parameter lenses. Variable-
parameter lenses enable us to produce better images by matching the camera's sensing characteristics to the conditions
in a scene. They also allow us to make measurements by noting how the scene's image changes as the lens settings are
varied. The reason variable-parameter lenses are not more commonly used in machine vision is that they are di�cult to
model for continuous ranges of lens settings.

In this paper we present a methodology for producing accurate camera models for systems with automated, variable-
parameter lenses. To demonstrate our methodology's e�ectiveness we applied it to produce an \adjustable," perspective-
projection camera model based on Tsai's �xed camera model. Our model was calibrated and tested on an automated
zoom lens where it operated across continuous ranges of focus and zoom with an average error of less than 0.11 pixels
between the predicted and measured positions of features in the image plane.

Keywords: camera modeling, camera calibration, zoom lens, computer vision

1 FIXED VERSUS ADJUSTABLE CAMERA MODELS

Conventionally camera models have been used to capture the imaging properties of �xed-parameter lenses. For �xed
lenses the image-formation process is static, and thus the camera model's terms are constants. In variable-parameter
lenses the image-formation process is an adjustable function of the lens control settings, and thus the terms in the camera
models must also be variable. The question is, \How do the terms in the camera models vary with the lens settings?"
This question is di�cult to answer for two reasons: First, the two traditional models of the image-formation process |
the pinhole camera and the thin lens | are idealized, high-level abstractions of the real image-formation process, and
the connection between the model terms and the lens's physical con�guration is not direct. Second, the relationship
between the lens's physical con�guration and the control settings is complex and typically we have very little a priori
knowledge about the underlying mechanisms involved. We have no good theoretical basis for these relationships. Since
every model term is potentially a function of every lens control, the actual relationships between the model terms and
the lens controls must be determined empirically.

Unlike the calibration of �xed-parameter lenses, the calibration of variable-parameter lenses requires measurements over
ranges of lens settings. This raises several challenges. First, the dimensionality of the data is the same as the number of
controls that are to be concurrently modeled. Even if we just took 10 measurements across the ranges of focus, zoom,
and aperture controls, 1000 settings would have to be calibrated for, compared to just one for a �xed-parameter lens
system.

A second challenge are certain imaging situations that cause problems for taking measurements. As the lens is zoomed
in (i.e. the focal length is increased) the number of features in the camera's �eld of view may decrease below the number
necessary to perform an accurate calibration. Conversely, as the lens is zoomed out the features may become too small
and/or crowded to be accurately measured. As a result, di�erent calibration setups may be required to cover the full
range of zoom. Similar problems can occur with the focus and aperture controls.



The approach we use to model variable-parameter camera systems is to empirically characterize how the parameters of
a �xed camera model vary with lens settings. The approach has three steps:

1. Collection of calibration data for the �xed camera model across ranges of lens settings.

2. Calibration of the �xed camera model at each measured lens setting.

3. Characterization of the relationships between the �xed camera model's parameters and the lens settings.

The equations for the �xed camera model plus the calibrated parameter models constitute an adjustable camera model.

1.1 Collecting calibration data

The �rst step in building an adjustable camera model is determining the range of lens settings the model is to be
calibrated for. Physical ranges for the lens settings can be expressed quite directly (e.g. 1000 � mf � 3000 motor units
where mf is the focus motor setting). However, often we would like to express the operational limits for the model in
terms of imaging properties such as focused distance, or depth of �eld, or e�ective focal length. Unfortunately the models
relating the lens's settings to its imaging properties are often the models we are trying to build. When we have no models
the only approach left is to conduct experimental surveys of the lens's control space to �nd approximate limits.

To formulate and calibrate the adjustable camera model we need to take measurements of the camera system at various
points throughout its physical operating space. In sampling the physical operating space the sampling frequency must
be su�ciently high along each lens control so that the underlying variations in the model parameters can be accurately
characterized. Since we start with little or no a priori information about the relationships between the lens controls and
the camera model parameters the sampling strategy must be determined empirically.

1.2 Characterizing variations in the �xed model's parameters

If we take the parameter values from the calibrated �xed camera models and just store them in lookup tables then we
need to make no assumptions about how they vary with the lens settings. However, if we want to use a more compact,
algebraic form for the parameter values or interpolate between the sampled lens settings, we must determine expressions
for the individual parameter models. For our camera systems we �nd that simple polynomials work well. We choose the
polynomial orders based on design objectives for the �nal adjustable model and on an examination of the data.

Having chosen the form of the parameter models we next need to �t them to the their respective data. Instead of �tting
all of the parameter models independently and in one step, we work with the parameters one at a time. In our approach
we �t one polynomial model to the data for one parameter, set it aside, and then reestimate the remaining �xed camera
model parameters from the calibration data. This process is repeated until all the parameter models have been �t.

Naturally, as each freely estimated parameter in the �xed camera model is replaced with a parameter model, the error
between the camera model and the calibration data increases. For a given set of parameter models the �nal level of error
generally depends on the sequence in which the models are �t. We �t the parameter models from lowest polynomial order
to highest order, using a greedy algorithm whenever two or more parameter models have the same polynomial order. We
call this algorithm ascending-polynomial-order, greedy-within-order sequencing.

After the all parameter models have been �t we cycle through the parameters again, reestimating and then re�tting
the parameter models to improve the �t between the adjustable camera model and the calibration data. This process
continues until no further improvement is seen in the error between the adjustable camera model and the calibration
data.
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Figure 1: Fixed perspective-projection camera model geometry

2 TSAI'S FIXED PERSPECTIVE-PROJECTION CAMERA MODEL

The basis for our adjustable camera model is the 3D to 2D perspective-projection model described by Tsai [2].

Tsai's camera model consists of 11 parameters: six extrinsic, \exterior-orientation" parameters (Rx;Ry;Rz; Tx; Ty; Tz)
that describe the position and orientation of the camera's coordinate frame with respect to the world-coordinate frame,
and �ve intrinsic, \interior-orientation" parameters (f; Cx; Cy; sx; �1) that describe the camera's image-formation process.
For a �xed lens all 11 camera parameters are constants estimated from calibration data taken from a single camera view
(i.e. the exterior and interior orientation of the camera is �xed). Whenever the camera is moved in the world-coordinate
system its exterior orientation must be recomputed while its interior orientation remains unchanged.

In Tsai's model, illustrated in Fig. 1, the origin of the camera-centered coordinate system (xc; yc; zc) coincides with the
front nodal point of the camera, the zc axis coincides with the camera's optical axis. The image plane is assumed to be
parallel to the (xc; yc) plane and at a distance f from the origin, where f is the pinhole camera's e�ective focal length.

The relationship between the position of a point P within the world coordinates (xw; yw ; zw) and the point's image in
the camera's frame bu�er (Xf ; Yf ) is de�ned by a sequence of coordinate transformations. The �rst transformation is
a rigid body rotation and translation from the world-coordinate system (xw; yw; zw) to the camera-centered coordinate
system (xc; yc; zc). This is described by
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is the 3 � 3 rotation matrix describing the orientation of the camera in the world-coordinate system. R can also be
expressed as

R = Rot(Rx)Rot(Ry)Rot(Rz) (3)

the product of three rotations around the x, y, and z axes of the world-coordinate system.

The second transformation is a perspective projection (using an ideal pinhole-camera model) of the point in the camera
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Figure 2: Transformation from undistorted sensor to distorted frame coordinates

coordinates to the position of its image in undistorted sensor-plane coordinates, (Xu; Yu). This transformation is described
by

Xu = f
xc
zc

(4)

and
Yu = f

yc
zc

(5)

The third transformation, illustrated in Fig. 2, is from the undistorted (ideal) position of the point's image in the sensor
plane to the true position of the point's image, (Xd; Yd), which results from geometric lens distortion. This is described
by

Xu = Xd(1 + �1�
2); (6)

Yu = Yd(1 + �1�
2) (7)

and

� =
q
X2

d + Y 2

d (8)

where �1 is the coe�cient of radial lens distortion.

The �nal transformation is between the true position of the point's image on the sensor plane and its coordinates in the
camera's frame bu�er, (Xf ; Yf ). This is described by

Xf = d�1x Xdsx +Cx (9)

and
Yf = d�1y Yd +Cy (10)

where Cx and Cy are the coordinates (in pixels) of the intersection of the zc axis and the camera's sensor plane; dx and
dy are the e�ective center-to-center distances between the camera's sensor elements in the xc and yc directions; and sx is
a scaling factor to compensate for any uncertainty in the ratio between the number of sensor elements on the CCD and
the number of pixels in the camera's frame bu�er in the x direction.



2.1 Fixed camera model performance metrics

One of the �rst questions we have about any camera model is how accurately it captures the camera's imaging behavior.
This information is necessary both for measuring progress during model calibration and estimating the performance or
accuracy of any application the model is used in.

Given the measured coordinates of a point in the object space (xw; yw; zw) and the measured position of the point's image
in the frame bu�er (Xf ; Yf ) we can de�ne an error metric for the model anywhere along the model's chain of coordinate
transformations. One obvious error metric is the di�erence between the position of a point's image we measure and the
position the camera model predicts. If we use the di�erence in positions following the last coordinate transformation (i.e.
after the lens distortion e�ects have been added to the point's projection through the camera model) we can de�ne the
distorted image plane error (DIPE) as

DIPE =
q
(Xf �X0

f )
2 + (Yf � Y 0

f )
2

where (Xf ; Yf ) is the measured position of the point's image and (X0

f ; Y
0

f ) is the position of the point's 3D coordinates
(xw; yw; zw) projected through the camera model.

In many applications it is desirable to operate in a virtual, undistorted image plane in the camera. In fact, Tsai's
�xed camera model is designed to allow converting directly from distorted sensor coordinates (Xd; Yd) into undistorted
sensor coordinates (Xu; Yu), while going in the opposite direction requires signi�cantly more computation. We de�ne the
undistorted image plane error (UIPE) as

UIPE =
q
(�Xfu)

2 + (�Yfu)
2 (11)

where

�Xfu = d�1x (Xu2 �Xu1)sx;

�Yfu = d�1y (Yu2 � Yu1):

(Xu2 ; Yu2) are calculated from the measured position of the point's image (Xf ; Yf ) using equations (6), (7), and (8),
while (Xu1 ; Yu1) are calculated from the 3D coordinates of the point (xw; yw; zw) using (1), (4), and (5). The algorithms
that we use to calibrate the camera model minimize the sum-of-squared error in the undistorted image plane for the
calibration data.

Our estimation of the unknown parameters in Tsai's �xed camera model is based on calibration data consisting of 3D
object space coordinates and corresponding 2D image coordinates. For the experiments described in this paper we used
a planar calibration target mounted on a translation stage. The calibration target contained 1/8-inch-diameter, black
reference points precisely spaced out on a regular, 1-inch grid.

For any set of images of the calibration target the relative 3D coordinates (xw; yw ; zw) of the reference points was known
from their position in the target plane and from the position of the target plane along the translation stage. The (Xf ; Yf )
positions of the reference points in the image plane were measured to sub-pixel accuracy using the procedure described
in [3].

When calibrating our �xed camera models we assumed that the six exterior orientation parameters (Rx;Ry;Rz; Tx; Ty; Tz)
and �ve interior orientation parameters (f;�1;Cx;Cy; sx) were all unknown and had to be estimated from the calibration
data. We calibrated the �xed camera model in two steps. First we used Tsai's algorithm to obtain approximate estimates
for nine of the model's 11 parameters and then we used iterative, non-linear optimization to re�ne all 11 parameters.

2.2 Fixed camera model calibration example

To demonstrate the calibration of a �xed camera model we calibrated our camera system for one lens setting. The
calibration data for the model came from two images of the calibration target taken with sensor-to-target ranges of 1.5m



Parameter Value Units
f 60.013 mm
Cx 267.198 pixels
Cy 255.040 pixels
�1 -0.000103 1/mm2

sx 1.079
Rx -0.084 degrees
Ry 0.589 degrees
Rz 0.182 degrees
Tx -521.238 mm
Ty -527.935 mm
Tz 1581.238 mm

mean UIPE 0.064 pixels
standard deviation UIPE 0.033 pixels

maximum UIPE 0.182 pixels

Table 1: Example of a calibrated �xed camera model

and 2.5m. The absolute position of the origin for the world-coordinate system was arbitrarily assigned to be in the target
plane at 1.5m range, approximately 520mm up and 520mm to the left of the center of the camera's �eld of view. The
two images provided 186 data points.

Table 1 shows the calibrated �xed camera model after the �nal non-linear optimization step. The small values for the
mean UIPE and maximum UIPE indicate that the calibrated camera model does a good job of capturing the lens's 3D
to 2D imaging behavior.

3 AN ADJUSTABLE PERSPECTIVE-PROJECTION CAMERA MODEL

Before we proceed in developing our adjustable camera model we introduce the following notation.

Lens setting: A three-tuple containing the control settings for the focus, zoom, and aperture motors on the lens.

S = fmf ;mz;mag

Calibration data point: A �ve-tuple containing the 3D world coordinates of a point and its 2D frame-bu�er coordi-
nates.

d = fxw; yw; zw; Xf ; Yfg

Calibration data set: A set of calibration data points, di, taken at one lens setting, in one world coordinate system,
from one �xed camera position and orientation.

D = fd0; . . . ; dng

Fixed camera model: An 11-tuple containing the intrinsic and extrinsic parameters for the �xed perspective-projection
camera model.

Mf = ff;Cx;Cy; �1; sx;Rx;Ry; Rz; Tx; Ty; Tzg

Parameter model: A polynomial with coe�cients a0; . . . ; an that describes the relationship between a �xed model
parameter P and a lens setting S.

gP (S) = polynomial(S; a0; . . . ; an)



Adjustable camera model: A set of 11 parameter models that describe the values of the intrinsic and extrinsic pa-
rameters for the �xed perspective-projection camera model at any given lens setting S.

Ma(S) = fgf (S); gCx(S); gCy(S); g�1(S); gsx(S);

gRx
(S); gRy

(S); gRz
(S); gTx(S); gTy(S); gTz(S)g

Mean undistorted image plane error (M UIPE): The average value of the UIPE for model M and all points di
in a dataset D.

M UIPE(M;D) =
1

n

nX
i=1

UIPE(M;di)

Sum of the squared undistorted image plane error (SS UIPE): The sum of the square of the UIPE for model
M and all points in a dataset D.

SS UIPE(M;D) =
nX
i=1

[UIPE(M;di)]
2

3.1 Adjustable camera model performance metrics

Our objective has been to develop a model of the camera's imaging behavior that \holds calibration" across ranges of
lens settings. By \holds calibration" we mean that the model maintains an acceptable level of accuracy at any setting.
Since our \ground truth" is limited to the set of calibration data used to develop the model, the best we can do is have
a model that \holds calibration" at the settings used for the calibration data.

Given calibration data for a particular lens setting, the performance of the adjustable camera model can be expressed
using any of the �xed camera model metrics presented earlier. To be able to measure progress during calibration and to
compare di�erent adjustable camera models we require an aggregate measure of the model's performance for all of the
calibrated lens settings.

There are many ways to combine the adjustable camera model's performance statistics at each calibrated lens setting
into a set of statistics for all lens settings. If we are interested in the total �t between the adjustable model Ma and the
calibration datasets Di at each and every data point, then \per point error" metrics can be used, such as the sum of the
sum of the squared undistorted image plane error,

SSS UIPE =
nX
i=1

SS UIPE(Ma(Si);Di)

A drawback with per point error metrics is that the number of data points in each set of calibration data Di may vary
with lens setting Si so that di�erent lens settings receive di�erent weightings in the performance metric.

If we are more concerned with the performance of the adjustable modelMa at each lens setting Si, then we need a metric
that is invariant to the number of data points involved, for example the M UIPE. One useful performance metric of this
type is the mean of the mean undistorted image plane error,

MM UIPE =
1

n

nX
i=1

M UIPE(Ma(Si); Di)

For the following adjustable model we base calibration decisions (i.e. initial �tting sequence and iterative re�nement) on
the SSS UIPE metric because it gives the same weight to every data point.

For displays of the adjustable model's performance we use the MM UIPE metric because it has a more direct (and
intuitive) relationship with the model's accuracy in a given application.
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Figure 3: Variation in X coordinate of autocolli-
mated laser's image with focus and zoom motors
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Figure 4: Variation in Y coordinate of autocolli-
mated laser's image with focus and zoom motors

3.2 Example - an adjustable camera model for focus and zoom

For the operating range for this model we chose a focus range of 1500 � mf � 4000 motor units, which corresponds
roughly to a focused distance of 1.5m to 2.5m. The correspondence is not exact as the lens's focused distance is also
a�ected by the zoom and aperture controls. For the zoom we chose a range of 1500 � mz � 4000 motor units, which
corresponds to focal lengths from approximately 130mm down to 45mm. For the aperture we used a �xed setting of 380
motor units, which corresponds roughly to f=16.

Figures 3 and 4 show the x and y image coordinates of an autocollimated laser plotted against the focus and zoom
settings for the lens. The plots show a relatively smooth variation in the laser's position across the full operating space.
Thus, for the sampling strategy for this lens we arbitrarily chose a regular 11�11 sampling of focus and zoom settings for
a total of 121 separate settings (S1; . . . ; S121) across the operating space for our camera model. Had the plots revealed
discontinuities in the lens's imaging properties di�erent sampling strategies and parameter model formulations would
have to be used.

Calibration data for the adjustable camera model was obtained using the target and translation stage described earlier.
At each sample position in the camera operating space three images of the target were taken at ranges of 1.5m, 2.0m,
and 2.5m between the target and the camera's sensor plane. For the 121 di�erent lens settings (S1; . . . ; S121) we obtained
121 sets of calibration data (D1; . . . ;D121). Each set contained between 110 and 429 calibration data points.

For each set of data (D1; . . . ;D121) we calibrated �xed camera models (Mf1 ; . . . ;Mf121 ). Figures 5 through 16 show the
values for the 11 �xed model parameters and the M UIPE plotted against the focus and zoom settings. Despite the
apparent noise in many of the model parameters, the M UIPE for the individual �xed camera models lies between 0.090
pixels and 0.123 pixels across the full operating space chosen for the camera model. The MM UIPE over the operating
space is 0.099 pixels.

For the 11 parameter models we used bivariate polynomial functions with the same model order for each independent
variable. The largest bivariate polynomial that can be �t to the 121 data points is 14th order (120 coe�cients).
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Figure 15: Fixed camera model sx versus focus and
zoom motors
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Figure 16: Fixed camera model M UIPE versus fo-
cus and zoom motors



To �t the polynomial functions to the parameter values we used least-squared-error �tting. Ideally the noise in the
parameter values would be zero mean Gaussian. Unfortunately the parameter values are determined using an iterative
non-linear optimization on a criterion surface that, in practice, has many local minima. As a result, the �xed camera
models are multi-valued. That is, for any given set of calibration Di the �xed camera model calibration can potentially
produce several di�erent sets of �xed camera model parameters. The set that is found depends on the noise in the data
and on the initial conditions used in the non-linear optimization. Thus, the variation in the �xed model parameter values
is not due to Gaussian, zero mean, constant standard deviation noise. This has two implications for �tting the parameter
models. The �rst is that least-squared-error �tting is not a maximum likelihood estimator for the models. Even so,
since the least-squared-error �tting can be accomplished with a direct, non-iterative approach this is our preferred �tting
method. Tests using much slower but more robust �tting techniques using local M-Estimates [1] showed no signi�cant
improvement in the performance of the �nal adjustable camera model in this example.

The second implication of the non-Gaussian noise is that we cannot use a Chi-Squared test to determine how high a
polynomial order to use in each parameter model. Instead we chose the model order based on design requirements for
the adjustable camera model and on an examination of the data. To partially decouple the intrinsic from the extrinsic
parameters and make the adjustable model easier to use the Rx, Ry, Rz, Tx, and Ty parameters were modeled with zero-
order polynomials. Since the sx parameter was related to uncertainties in �xed elements in the camera system, it was also
modeled with a zero-order polynomial. We tried a wide range of polynomial orders for the remaining parameter models.
The �nal values we used represented an arbitrary tradeo� between increased complexity and improved performance for
the �nal adjustable model. In [3] we discuss alternate strategies for choosing parameter model orders.

Table 2 summarizes the parameters, the orders chosen for their parameter models, and the rationale for the choice of
order. The �nal adjustable camera model required a total of 96 coe�cients for the 11 parameter models.

To �t the parameter models to the calibration data we used ascending-polynomial-order, greedy-within-order sequencing.
Table 3 shows the sequence in which the parameter models were �t, along with the MM UIPE, maximum UIPE, and
SSS UIPE statistics for the adjustable camera models at each stage. The �rst entry in the table is for the initial �xed
camera models. Steps 1 to 11 are for the individual parameter model �ts. Steps 12 and 13 are for iterative re�nement.
The last entry is for the �nal adjustable camera model.

Figures 17 through 21 show the �nal adjustable camera model surfaces for the parameters having second- and �fth-order
polynomials (the zero-order models are constants). While the �nal f , Tz, and �1 models are all similar in shape to their
original un�tted parameters, the remaining models are all rather di�erent than their original data.

Figure 22 shows the �nal M UIPE for the adjustable camera model. The �nal MM UIPE across the full range of lens
settings is 0.108 pixels, which is a 9% increase over the average of 0.099 pixels for the individual �xed camera models.
Figure 23 shows the di�erence between the M UIPE for the �nal adjustable camera model and the M UIPE for the
individual �xed camera models. For mz > 3750 and mf > 2000 the adjustable camera model's M UIPE is actually
better than that of the individual �xed camera models.

If we were to calibrate this model for another copy of the same lens the shapes of the Cx and Cy surfaces would be
di�erent due to the di�erent optical misalignments in each lens. However, the shapes of the f , Tz, and �1 surfaces for
both lenses would be similar, as would the positions of any image property discontinuities in the lens's control space.

3.3 Recalibrating exterior orientation

Having spent a great deal of time and e�ort to produce an adjustable camera model for the lens, the next obvious question
is how can it be used. As with the �xed camera model, when the camera system is moved to a new pose the adjustable
model's interior orientation functions (gf ; gCx ; gCy ; gCz ; gsx) will be una�ected

1. However, the exterior orientation of the
camera system (Rx; Ry; Rz; Tx; Ty ; Tz) will have to be recomputed for the new pose. By design our adjustable camera
model was built with zero-order functions for the �rst �ve exterior orientation parameters Rx, Ry, Rz, Tx, and Ty . The

1The adjustable cameramodel can only be guaranteed to be accurate over the range of distances and camera parameters that the calibration

data covered.



Parameter Polynomial Reason
Order

sx 0 Changing the camera's image formation process should not change
the relative scale factor between the x and y axes so we only permit
a constant for this parameter.

Rx Ry Rz Tx Ty 0 For ease of use of the adjustable camera model we would like the
position and orientation of the camera's coordinate frame relative
to the world coordinate frame to remain unchanged as the lens
parameters are varied so we only permit constants for these pa-
rameters.

Tz 5 Changing the lens's hardware con�guration redistributes the opti-
cal components along the camera's optical axis shifting the posi-
tions of the lens's front and rear nodal points. This in turn changes
the separation of the origins of the world and camera coordinate
systems. Empirically we �nd that a �fth-order polynomial works
well.

f 5 While primarily a function of the zoomactuator, f is also a function
of the focus, aperture, and image band. Empirically we �nd that
a �fth-order polynomial works well.

Cx Cy 5 Changing the lens's hardware con�guration changes the alignment
of the lens's optical components causing the camera's �eld of view
to shift. Empirically we �nd that a �fth-order polynomial works
well.

�1 2 Changing the optical con�guration of the lens changes the factors
causing radial lens distortion. Empirically we �nd that a second-
order polynomial works well.

Table 2: Choice of polynomial orders for the parameter models
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Figure 17: Adjustable camera model f versus focus
and zoom motors
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Figure 18: Adjustable camera model Tz versus fo-
cus and zoom motors
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Figure 19: Adjustable camera model Cx versus fo-
cus and zoom motors
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Figure 20: Adjustable camera model Cy versus fo-
cus and zoom motors



-0.00062

-0.0006

-0.00058

-0.00056

-0.00054

-0.00052

-0.0005

-0.00048

-0.00062
-0.0006-0.00058-0.00056-0.00054-0.00052
-0.0005-0.00048

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000

40003750350032503000275025002250200017501500
ka

pp
a1

  [
1/

pi
xe

ls
^2

]

focus position  [motor units] zoom positi
on  [m

otor u
nits]

Figure 21: Adjustable camera model �1 versus fo-
cus and zoom motors
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Figure 22: Adjustable camera model M UIPE ver-
sus focus and zoom motors
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Figure 23: Di�erence between the �nal adjustable model M UIPE and the initial �xed model M UIPE



Fitting Parameter Polynomial MM UIPE max UIPE SSS UIPE
Step Order [pixels] [pixels] [pixels2]

individual �xed models 0.099457 0.707898 404.268858
1 Rz 0 0.099341 0.719303 403.835679
2 sx 0 0.099357 0.735674 403.760237
3 Ty 0 0.099868 0.732523 408.106362
4 Tx 0 0.101027 0.736067 417.610304
5 Ry 0 0.102501 0.735245 426.124820
6 Rx 0 0.109440 0.770797 467.337702
7 �1 2 0.109468 0.770712 467.920357
8 f 5 0.109449 0.771996 467.958315
9 Tz 5 0.109530 0.772310 469.284819
10 Cy 5 0.109681 0.774827 470.673135
11 Cx 5 0.110829 0.776854 480.119280
12 Cx 5 0.109681 0.774828 470.673046
13 Rx 0 0.107671 0.776371 458.842669

�nal adjustable model 0.107671 0.776371 458.842669

Table 3: Fitting sequence for parameter models

only interaction between the camera's exterior orientation and the lens settings is through the gTz (mf ;mz) function. To
deal with this interaction we de�ne a new function,

g0Tz (mf ;mz) = Tz0 + [ gTz (mf ;mz) � gTz (mf0 ;mz0 ) ]

= Tz0 +�Tz(mf ;mz ;mf0 ;mz0)

which separates gTz into a �xed exterior orientation component, Tz0 , and a variable interior orientation component, �Tz.
The �xed component, Tz0 , is estimated along with the other �ve exterior orientation constants when the lens is set to a
base setting, (mf0 ;mz0 ). For more precise estimates of the new pose additional base settings can be used. The variable
component, �Tz, accounts for the shift of the lens's principal point along the camera coordinate frame's z axis, relative
to the base lens setting. Figure 24 illustrates these relationships in the 2D xz camera coordinate plane.
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Figure 24: Extrinsic (and intrinsic) parameter changes with lens settings



4 SUMMARY

In this paper we have presented a methodology for empirically building camera models for systems with variable-parameter
lenses. The methodology involves �rst calibrating a conventional �xed camera model at a number of settings spanning the
desired range of lens settings for the adjustable model. We then characterize how the parameters of the �xed model vary
with lens settings by alternately �tting polynomials to individual model parameters and reestimating the as yet un�tted
parameters using the calibration data. This process is repeated until all of the �xed camera model's terms have been
replaced with polynomial functions of the lens control settings. The resulting adjustable camera model can interpolate
between the original sampled lens settings to produce | for any lens setting | a set of values for the parameters in the
�xed camera model.

This approach makes no a priori assumptions about the dependencies between the �xed camera model parameters and
the lens settings. It is general and can be applied to produce an adjustable camera model from any �xed one and allows
any number of lens controls to be incorporated. The degree of accuracy and complexity, and consequently the required
calibration e�ort, can be chosen arbitrarily.
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