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ABSTRACT

Direct-lift micro air vehicles have important applicat®im reconnaissance. In order to conduct persistent slawed

in urban environments, it is essential that these systempedorm autonomous landing maneuvers on elevated ssrface
that provide high vantage points without the help of any mwksensor and with a fully contained on-board software
solution. In this paper, we present a micro air vehicle treswision feedback from a single down looking camera to
navigate autonomously and detect an elevated landingoptaths a surrogate for a roof top. Our method requires no
special preparation (labels or markers) of the landingtlona Rather, leveraging the planar character of urbarctirg,

the landing platform detection system uses a planar horpbgrdecomposition to detect landing targets and produce
approach waypoints for autonomous landing. The vehiclérobalgorithm uses a Kalman filter based approach for pose
estimation to fuse visual SLAM (PTAM) position estimatesiwiMU data to correct for high latency SLAM inputs and
to increase the position estimate update rate in order toowepcontrol stability. Scale recovery is achieved usinmis
from a sonar altimeter. In experimental runs, we demoresaaeal-time implementation running on-board a micro &eria
vehicle that is fully self-contained and independent from external sensor information. With this method, the viehie
able to search autonomously for a landing location and parfivecision landing maneuvers on the detected targets.

1. INTRODUCTION

Unmanned micro air vehicles (MAVs) will play an importantean future reconnaissance, exploration, and search and
rescue applications. While missions in these scenarios likekt involve human supervision, the deployability of MAV

will greatly depend on their ability to perform simple naaipn tasks autonomously to reduce human work load and
increase safety. Additionally, operations in clutterediemments like urban canyons, close to buildings and otinzn
made structure, or under tree canopy, make it much moreectuatig to control these systems manually as there is usually
no external position information (GPS) available in thes@renments to navigate the system. As a consequencegfutur
systems will need the ability to execute limited navigattesks like obstacle avoidance for fast traverse, deteating
possible landing site, flying to a nearby navigation targegntering buildings fully autonomously.

However, because of size weight and power (SWaP) congrairis challenging to deploy heavy power- and CPU
intensive sensor suites on MAVs, and small passive visiois@s have seen increasing use for navigation tasks, as a
single light weight, passive sensor can be employed simedtasly for detection and 3D reconstruction. Using only a
vision sensor nevertheless creates new challenges, asctustrfrom motion approach with a single moving camera can
reconstruct 3D information only up to scale, unless thexation is known. Systems that are deployed outdoors aghigh
altitudes can overcome this issue by using GPS data for paswery, but this is not an option for systems operating in
GPS-denied environments.To cope with this issue, we dpedla vision based navigation system on a small UAV with a
minimal sensor suite - a single camera, sonar altimeter|Mhbid- that operates with on-board resources only. Our system
uses a monocular simultaneous localization and mapping8lapproach that processes images from a down looking
camera for vehicle localization in a constructed global m8pAM position measurements are fused with IMU data to
generate high frame rate low latency position updates asmurt to the vehicle control algorithm. Because of its good
performance and scalability, we adappedallel tracking and mapping (PTAM) on our platform, a visual SLAM algorithm
originally developed by Klein and Murrayand integrated map scaling with a sonar altimeter into therihm to regain
scale.

With this implementation, our vehicle can navigate withaoy external sensors and resources, which we demonstrate
in an autonomous landing experiment, a maneuver that isrtitpkar importance to many persistent surveillance tasks
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Figure 1. Quadrotor landing on the landing platform.

as the capability to land autonomously on elevated vantagglike flat roof tops or the top of poles and other man
made structure is essential for perch and stare missionsimiify this task to a laboratory set up, we implemented our
autonomous landing softwaren-board the system to detect an elevated box shaped lasgifage as a surrogate roof-
top and execute a fully autonomous landing maneuver ontddtexted platform. The landing platform detector follows
a homography based approach, which fits homographies tal\fsature points to detect planar surfaces in view. It runs
independently of the SLAM software, except that featurenfsoin the input images together with frame pose are provided
as a by-product of the SLAM algorithm. In our final implemdita, we run the complete software package - visual
SLAM, sensor fusion filter, landing spot detection, and theigation software - on-board an AscTec Pelican quadtotor

The rest of this paper is organized as follows: Section 2udises related work and how our approach differs. In section
3 we introduce our approach in detail, while section 4 exgldhe actual implementation of the algorithms on-board our
test vehicle. The whole system is evaluated in Section 5 detrating its performance during flight experiments. Secti
6 concludes this paper and discusses future work.

2. RELATED WORK

The problem of localizing a moving vehicle in its environrhasually involves measuring the position of 3D world refer-
ence points and estimating pose with respect to the locafitirese points. Methods that use beacon type referencespoin
like radio aids or GPS emitters, can solve this problem bguating body positions at each frame independently. Ir con
trast, if arbitrary point observations are used to caleugtomotion, reference points have to be identified overitrieh

introduces a tracking problem that usually also includesctieation of some kind of map to store previous observations

Various methods have been proposed to solve this problerthariderature is vast. Examples range from visual odom-
etry approaches (VO) that focus on egomotion estimatiorsimultaneous localization and mapping (SLAM) algorithm
that emphasize on the creation of a global fiepTo track features in the environment, some approaches tise eange
sensors and match 3D point clouds over time (e.g. sohidar,> %9 or kinect?. Other approaches track image features
obtained from camera images and reconstruct 3D point loesitvith a structure from motion approach (single caméra
or with range from stereo (stereo vision based approdcts

Most of the above algorithm are computationally very deniaga@nd therefore not suitable for running on a small
UAV platform with its limited resources. Although new re#he visual SLAM approaches have been proposed in recent
years that reduce the computational load by introducingyafteene based mapping approdch- 13 these approaches
usually make heavy use of multi-core CPU/GPU implementiatio achieve real-time performance. Nevertheless, alvisua
key-frame based approach can be sufficiently down scaleghteven on a very limited platform. An example of such a
method is the parallel tracking and mapping (PTAM) apprazainally developed by Klein and MurrayIn this approach
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tracking and mapping are split and distributed to two défértasks that run independently. With this architecture, t
tracking task can run efficiently at a higher frame rate amdige localization, whereas the mapping task is only trigde
when sufficiently new feature points are observed and a ngvirkene needs to be added to the map. Klein and Murray
demonstrated that such an algorithm can be executed on aaasiephone (iPhone3G with an ARM11 proces$band
Weiss et ak® and Achtelik et al® successfully implemented a down scaled version of thisagmtr on a small UAV
similar to the one that is used in our approach. An examplesifnplified Lidar based SLAM approach which also runs
on the Asctec Pelican platform and reduces the full 3D amgré@a 2D occupancy grid-based incremental SLAM method
was introduced by Shen et%l.

Despite the effort of implementing a ‘lean’ SLAM algorithm a limited hardware platform, the real-time performance
of such an algorithm is usually barely sufficient to run a eghcontroller directly with position estimates from the/SU
algorithm, as low frame rates and large latencies resulbor pontrol performance. As a result, a standard approach fo
many platforms is the Kalman filter-based fusion of low-freqcy global position data, which could be from SLAM, GPS,
or VO, with high frequency inertial data to compensate fteraies and increase the position update frame®rat¥

We follow a similar approach and demonstrate that such &isysain be used for autonomous navigation of a MAV,
which involves detection of a landing platform and perfarghan autonomous landing maneuver.

Detecting navigation targets has a long history in termsatécting and localizing artificially labeled landing sités
number of image-based methods have been proposed to deéethfarkers’~1° or terrain featured—22for landing site
identification. In this paper, we deploy an approach thas useltiple homography decomposition to detect an elevated
planar surface without any artificial labelfghich relates more to other homography based methods fofifidation of
a single planar surface as potential landing sites for uariwelicopter and aircraft applicatiofs?*

3. APPROACH

Our approach consists of three main parts that are all ingai@ad on-board an Asctec Pelican quadrotor: vehicle ciégrtro
position estimation, and the navigation system which idetilanding platform detection.

3.1 Vehiclecontrol

The vehicle is controlled with three different control ledp The inner loop, implemented in the quadrotor’s firmware,
stabilizes attitude using high frame rate IMU inputs. Tuter loop controls the vehicle position in a world coordinate
frame with inputs from our pose estimation filter. It is implented as three PID position controllers, one for each dxis o
the world north east down (NED) frame. Thatonomy loop is responsible for the navigation of the vehicle. It recsive
inputs from the landing platform detector and triggers higkel maneuvers including take-off, landing and trajegtor
following.

3.2 Visual SLAM based localization

To localize the vehicle in the world frame, we use a monocuikual SLAM approach to generate pose estimates and fuse
this global position measurement with IMU data for latenegtuction and to generate a high frame rate control input to
the outer loop controller. We implemented a tailored varsibPTAM (parallel tracking and mappingdn the on-board
embedded computer of the Asctec Pelican which runs on inthgésre acquired from a downward looking camera. We
streamlined PTAM’s tracking task to accommodate the lichtemputational resource on a MAV platform, and included
map scaling by inputs from a sonar altimeter which we exglaimore detail in section 4.

3.3 Sensor fusion with IMU

Since the quadrotor is a fairly agile vehicle, the achiewatntrol performance is dominated by the rate and latency
of the 6DOF pose estimation loop in addition to accuracy afepestimates. While the accuracy of SLAM algorithms
is usually acceptable for vehicle control, computatiorjuirements especially on low power platforms preventehes
algorithms from running at reasonable speeds to servetljiras a position input to the outer loop controller without
compromising performance. To overcome this issue, we fligdvBposition measurements with data from an on-board
IMU via an Extended Kalman Filter (EKE to obtain accurate and decreased latency 6DOF pose. Our &isbisfusion
filter models 9 states: the error in positiadp), velocity (0v), and accelerometer biadlf). As mentioned above, attitude
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Figure 2. Structure of the EKF based pose estimation filter.

is provided by the low-level firmware filter, and we do not mioaitude and gyro biases within the filter to decrease
computational cost. The architecture of the sensor fusitam 6 shown in figure 2.

The quadrotor dynamics for positiop)(and velocity ¢) are shown in eq. 1-3.

pl=V" 1)
V'=Cp(@—bd) — ¢ (2)
b2=0 ®3)

The superscriph stands for the NED frame, the supersciignhdicates the IMU (body) frame, ar@]) is the cosine
direction matrix that rotates a vector from the body to theDNEame. &° is the measured acceleration in body fraif,
the accelerometer bias ag@ gravity in the NED frame.

The filter equations are shown in eq. 4-6 while the measureatgration is illustrated in eq. 7.

op" = oV (4)

OV =Cobl + na ()

b2 = 0+ Npa (6)

Z=YpTAM — Yatrapdown, H = [13:3,03x3, 03,3] (7)

YpTAM @NdYsrapdown € RR3 are the quadrotor positions as computed by PTAM and by iatemy the accelerometers.
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Figure 3. Latency reduction with the sensor fusion filter: Filter output &aMPposition measurement at time of availability compared
to quasi ground truth (PTAM measurements at time of image acquisition).
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Figure 4. Inflight image processing steps: (a) original input imagedébected feature points that are used by PTAM to localize; (c)
the landing detector separates those features as located on the grawan¢bplia) and on the elevated surface (purple); the final target
waypoint is marked in green.

The EKF update step is triggered anytime a PTAM measurengmuairbes available. To compensate for PTAM latency,
the accelerometer, position, and velocity data is saved bofeer and after every EKF update the current position is
computed by reintegrating the acceleration data from PTihé of validity (image acquisition time) to current time.

Figure 3 shows the effect of the latency reduction duringghegperiment. The filter is able to largely compensate the
latency introduced by the PTAM algorithm. In this figure andidg the experimental evaluation we use PTAM position
measurements at image acquisition time as a quasi grouhdasiPTAM accuracy at flight altitudes of 1m was better than
lcm.

3.4 Autonomouslanding

To detect an elevated landing platform as a surrogate rgofvuse a multiple homography approach to separate image
feature points that are located on the ground and on thetetbydatform. The landing platform detection is similar to
previous work with the difference that visual image features and framegpase directly provided from the visual SLAM
algorithm. As a result, in this implementation the landitgtiorm detector uses PTAM’s FAST corner features as inputs
A RANSAC based homography estimation first detects all fegpoints that are located on the ground surface (e.g. floor).
In a second step, the algorithm fits a second homography terakining feature points to detect an elevated surface. If
a second plane is detected, the plane parameters of botspaa refined by homography alignmérf. Once sufficient
feature points are detected on the elevated surface andrttimg platform is completely in view (fig. 4c) a 3D waypoint
is generated on top of the landing surface at its estimatecdf the platform height is above a minimum threshola, th
3D waypoint is than added to a sample pool that contains alpwiats that were generated previously in different camera
frames. If the pool surpasses a minimum number of samplethantiean variation drops below a threshold, the landing
platform is assumed to be detected stably and the mean 3D aiayip passed to the autonomy loop as the new target
waypoint. Once detected, the autonomy loop generates aihgyeoint directly over the target waypoint at the current
height and commands the vehicle to this new hovering poifterAhe vehicle hovers stably at the hovering point, it $jow
descends towards the target waypoint until it reaches amimi altitude above the landing platform, where the motags ar
cut off to let the vehicle settle on the landing platform.

4. IMPLEMENTATION
4.1 Platform description

We implemented our algorithms on an AscTec Pelican quad(éigure 1), which is a 750g, 50cm diameter quadrotor
that can carry up to 500g payload. In addition to the origg®aisor suite that comes with the vehicle (IMU, magnetome-
ter, barometric pressure sensor) we installed a downwankirlg camera to track features on the ground (a PointGrey
Chameleon USB camera with a Fujinon fisheye lens capturi®g E®V, 640x480 images) and a MaxSonar EZ1 sonar
altimeter (2.5cm resolution, 20Hz, 0.12-6.45m range) @wihicle. Two ARMY processors on a flight electronics board
and an additional Intel Atom 1.6GHz CPU on an embedded cangiioard are available for on-board computation.
Additionally, the embedded computing board is linked to sebstation via WiFi for telemetry monitoring and for safety
intervention.
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Figure 5. Software distribution on the quadrotor hardware.

4.2 Software architecture

In our implementation, we use the firmware attitude stadiion that ships with the vehicle, which includes a filter to
estimate attitude angles in NED frame. This filter is runnimgone of the ARM7s (LL processor) at 1kHz. The other
ARMY (HL processor) runs our vehicle outer loop controlldrieh communicates with the autonomy loop that is executed
on the Atom board.

Figure 5 illustrates the different software components lamd they are implemented on our system. The inner loop
controller runs at 1kHz and the outer loop controller at 5@zthe low level ARM processors. PTAM is running at
approximately 15Hz and feeding into our pose estimatioerfilthich is executed at 100Hz on the Atom. The autonomy
loop runs at 5 Hz, with inputs from pose estimation and thdilemplatform detector. It also communicates with the base
station computer that is linked via WiFi for data monitoriagd for safety commands (engine cut-off). All inter-praces
communication on the Atom and the base station computerggeimented using ROZ.

4.3 PTAM adaption

We amended PTAM’s map making thread to scale the generatpduitta measurements from a sonar altimeter during
the initial map generation phase. In this phase, height anreagents from a downward pointing sonar sensor are coflecte
whenever a new key frame is added, and an average scaleifactdculated to scale PTAM’s map to a metric map. This
initial phase is terminated after a fixed number of key framvese added to the global map, which fixes the map scale
for the rest of the map making process. All key frame genemadind tracking parameters were adapted for fast tracking
performance. Additionally, the tracking part of PTAM ditlgcpasses the rectified 2D feature point positions of detict
image features to the landing spot detector. As a result,dditianal image pre-processing is needed by the landing
detection subsystem.

5. EXPERIMENTAL RESULTS

We conducted two experiments to evaluate the control acgwhour system. In the first experiment the quadrotor is
commanded to hover over a fixed position in the world framethBsecond experiment we evaluate the autonomous
landing performance of our system.

For both experiments, we used pre-built PTAM maps to comitea@erformance of several experimental runs which
all use the same global map. Additionally, this approachrantaes that delays introduced by PTAM’s map making task -
PTAM’s bundle-adjustment usually generates a substatialy when incorporating a new key-frame into its map - do not
corrupt flight performances evaluations. Computationatipning only the localization part of PTAM results in a shnal
speed up of the on-board implementation. For flight configma that include on-board mapping, a good strategy td limi



delays from the map making thread to a non-critical value ietiuce the number of key-frames in the map to a very small
number in a sliding window approaéh. Nevertheless, while generating a local map on the fly angéting’ old key
frames the position will drift over time.

To generate a map for our experiments the quadrotor washatiao a boom via a tether and moved manually with
PTAM’s localization and mapping thread running on-boarel guadrotor. Once the flight area was mapped sufficiently,
the map making process was terminated and the collected msptared to be used during the actual experiment.

5.1 Hoveringin place

To evaluate the performance of the outer loop position odletrindependently, we conducted a hover in place exparime
were we command the vehicle to hover over a fixed place in gprerated PTAM map and recorded position estimates
from PTAM as a quasi ground truth to monitor the vehicle lara(figures 6 & 7). To quantify the effect of the sensor
fusion filter, we first feed the outer loop controller with g@msn measurements from PTAM-only (figure 6). In this case
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Figure 6. Hovering with PTAM-only position estimates: (a) top-down viewediicle position during steady hover; (b) XYZ position
estimates from PTAM.
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Figure 8. Overview of the landing experiment.

Figure 9. PTAM global map: the coordinate systems represent the positio
of the camera and the vehicle in the world frame. Colored dots are feature
points in the global map with color coding feature scale.

velocity was calculated from PTAM position estimates, wh@ame in at about 15Hz. The controller was running at a
20Hz rate, using pose from PTAM that was extrapolated withAN®Velocity to cope with occasional large PTAM delays.

Figure 7 depicts the hovering performance of the quadrotoenamunning our sensor fusion filter. The size of the
hovering ellipse when flying with PTAM-only is abotit 15cm (RMS=9.91cm). The sensor fusion approach reduces the
ellipse by a factor of 2 ta- 7.5cm and reduces the RMS by a factor of 3 to 3.44cm. Thisgelaidue to the reduction of
latency and the increase of control frequency.

5.2 Autonomous landing experiment

The setup for the autonomous landing experiment is showrgindi8. The quadrotor is initially positioned on a stand
to guarantee PTAM localization from the beginning of theexipent. To start the experiment, an operator initiates-tak
off to a predefined height. Once the vehicle hovers at thightgit is commanded to fly in a straight line towards the
experimental landing platform - a card box with the dimensi®7cm x 57cm x 14cm (WxHxD). After this command
is issued, the vehicle flies fully autonomously, detectsl#meling platform during overflight, and performs a landing
maneuver onto the landing target.

The pre-built map for the landing experiment contained 1dy'fkames and is shown in figure 9. Figure 10 shows the
trajectory (measured with PTAM) of the vehicle performihg autonomous landing experiment. The quadrotor was able
to land on the platform for both control input configuratiomgen running with PTAM measurements as the sole inputs

Landing

(@) (b)

Figure 10. Trajectory of quadrotor landing on the landing platform: [@N-only (flight time 57s); (b) sensor fusion filter (flight time
47s); (c) fast flight with sensor fusion filter (flight time 18s).
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Figure 11. Estimated landing platform height.

to the outer loop controller, and when using pose estimates the sensor fusion filter. The better performance of the
sensor fusion approach is directly visible in the smallajetctory fluctuations when controlling the vehicle with pios
estimates from our sensor fusion filter during flights of gamduration (fig. 10a & b). Additionally, the improved coaoltr
stability permitted us to increase the vehicle speed bytarfad 3 with the same flight performance (fig. 10c).

To validate the accuracy of the landing platform detectioftvgare, the calculated platform height during detecti®n i
shown in figure 11 until convergence. The true platform hiigbur experiment was 14cm, which was approximated with
sufficient accuracy by the landing platform detection atbon.

6. CONCLUSIONS AND FUTURE WORK

Being able to navigate autonomously in unknown environsevithout any external input is crucial for future MAV
reconnaissance applications. This paper presents a \daged position estimation approach that enables small W&\Vs
navigate autonomously when no external position inforamais available. Our approach fuses position measurements
from a low-frequency, high latency visual SLAM approachhmMU data to estimate a high frame rate, low latency
pose that can be used to navigate the vehicle within a global mihe algorithm was implemented on-board an AscTec
Pelican quadrotor using only on-board sensors and resnuiier demonstrating accurate performance of the system
when hovering in place, we fused our autonomous landing-tietesoftware with the new system and demonstrated fully
autonomous detection and landing on an elevated landirtfpptathat does not need artificial labeling. Future work
will include the transition of the landing detection appibao more general landing surfaces (sloped surfaces, ,poles
tree branches) and the addition of a safety layer in betwleerinher loop attitude stabilization and the high level map
localization, which takes over control when the high levieA® system fails to provide localization data (lost trac)n

In this case, a fast optical flow based approach can providmetjon estimation until the high level SLAM relocalizes.
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