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ABSTRACT

This report consists of two parts. In the first, we present a number of enhancements to the

feature recognition work presented in last year’s GN&C Research Report on feature recognition

algorithms [1]. These include improvements to the scale invariance properties of detected features,

greater robustness in feature recognition, and implementation changes intended to decrease pro-

cessing time. The second part focuses on theTwice Around Study in which synthetic imagery of

a virtual camera orbiting a small body is used for catalog generation, feature detection and state

estimation. We will present in this report details of the computer vision aspects of this study. This

includes incorporation of previous algorithmic work, additional enhancements and details of the

implementation.



1 Introduction

In last year’s report [1], we presented a basic infrastructure for scale invariant feature detection

adapted from David Lowe’s SIFT algorithm [2]. The goal of this work was to establish a generic

class of visualGeneral Landmarks which could be generated and cataloged automatically during

a small body mission and then subsequently recognized for precise localization of the spacecraft,

whether for navigation purposes, sample return or reacquisition of a scientifically interesting site.

The focus of feature detection work during this fiscal year has been on testing these techniques

in simulation and adapting them as needed based on performance. Thus, we have developed an

Estimation, Sensing and Perception (ESP) testbed in which the vision and estimation aspects of

the Small Body R&TD task have interfaced. This simulation environment has been the driver for

work in feature detection, both in terms of algorithmic modifications and implementation.

The focus of effort in the ESP testbed has thus far been a simple scenario in which a space-

craft orbits a small body with∼ 500 m radius in an approximately2 km orbit. We refer to this

as theTwice Around Study. The title is derived from a two stage process in which two or more

orbits of a candidate small body are performed. The first orbit is used for catalog generation and

subsequent orbits to evaluate automatic localization and trajectory determination. In the current

version of the simulation, we use the ground truth spacecraft trajectory in combination with stereo

vision techniques to generate a catalog of landmarks, called the Feature Catalog (FCAT). This cat-

alog contains the 3D positions of landmarks with associatedcovariances as well as the descriptors

used for later identification of the landmarks. Later, modified orbits are used to test the ability to

recognize previously seen landmarks. During the second pass, landmarks are detected, matched to

the catalog and stored in a Landmark Table (LMT) on a frame-by-frame basis. The LMT contains

for each landmark, the bearing angles to its 3D position on the target body, associated covariance

estimates, and the landmark descriptors. The LMT is then supplied to the state estimator, which

filters this data to estimate a trajectory for comparison to ground truth. We also produce a vision-

based pose (position and attitude) estimate for the camera from single frame measurements as both

a sanity check for the estimator and as an outlier detection mechanism for the feature detection

algorithm. Finally, we produce an interest operator based frame-to-frame set of feature correspon-

dences. This uses normalized cross correlation to identifyfeatures across adjacent frames. The

information is recorded in the Paired Feature Table (PFT) for delivery to the estimator. While the

PFT datatype lacks an absolute reference, it provides enough information for a velocity-like esti-

mate similar to the Descent Image Motion Estimation System (DIMES) on the Mars Exploration

Rover (MER) landers [3].

A parallel effort [4] is underway to use bundle adjustment techniques for catalog determination.

This will eliminate the current dependence on ground truth trajectory for the catalog generation
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step. However, since the majority of work this year has used the earlier version of the catalog

generation scheme, we will describe it in detail below.

We begin with an overview of modifications made to the work presented in the last fiscal year

in response to challenges posed by integration of vision algorithms into the ESP testbed.

2 Algorithmic Enhancements

2.1 Robustness / Outlier Rejection

Our earliest attempts at integrating vision based landmarkdetection and identification into the ESP

testbed met with only marginal success. This was due in largepart to false matches in the LMT

being reported to the estimator. Thus, outlier rejection and increased robustness of the matching

scheme have been a major focus of effort this year.

2.1.1 Pose estimation and RANSAC

Our current outlier rejection scheme used in constructing the LMT depends heavily on vision based

pose estimation. Pose estimation refers to recovery of the 6DOF position and attitude of a camera

based on image data, specifically known correspondences between 3D points and their 2D image

projections. This is exactly the setting in which the LMT operates, since we match 3D landmarks

in the target coordinate frame with their projections in 2D imagery acquired during orbit. We

presented pose estimation as a possible side benefit of the computer vision work in last year’s

report [1], primarily for use as a sanity check on the estimator. Now, in addition to this, we are

using it successfully for outlier rejection.

The principal is simple. Say(R, T ) ∈ SE(3) is the Euclidean transformation between the

target and camera coordinate frames represented as a rotation matrix and translation vector. Then

in homogeneous pixel coordinates the camera projectionp of a 3D pointP expressed in the body

frame of the target is given by
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Figure 1: A point (Px, Py , Pz) is first transformed into the camera coordinate frame by the Euclidean

motion(R,T ). The resulting image on the sensor plane is transformed intopixel coordinates byA.

where the pixel coordinates ofp are(px, py) = ( p̂x

p̂z

,
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p̂z
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with fx, fy representing the horizontal and vertical focal lengths of the virtual camera,κ the skew-

ness of the sensor plane, and(ux, uy) the pixel coordinates of the image center. In our simulations,

these parameters are computed from an explicit set of rendered images using standard calibration

techniques. In a real sensor, we must also compensate for non-linearity in the camera projection

model. However, this is a well understood process and we ignore it here. The steps in Eq. 1 are

shown in graphical form in Fig. 1.

If (R, T ) is known accurately, we can determine whether a given match in the LMT is false by

measuring its deviation in pixel coordinates from Eq. 1. More precisely, if the pointP projects to

(xproj, yproj) = (px

pz
, py

pz
) following Eq. 1 and the location of the matched image point extracted by

the feature detection algorithm is(xmeas, ymeas), then outlier amounts to a threshold on

εreproj =
√

(xproj − xmeas)2 + (yproj − ymeas)2 (2)

Any point for which the reprojection errorεreproj in Eq. 2 is too large is rejected.
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However, our only mechanism for determining(R, T ) in the first place is the LMT. Provided

there are enough matches and under the assumption that most are correct, we solve the pose prob-

lem using the RANSAC framework [5]. This involves recovering the camera pose by standard

methods [6, 7] for several minimal subsets of the LMT. We thenaccept as valid the camera pose

which produces the smallest median error in Eq. 1 over all points in the LMT. The resulting(R, T )

is used for outlier detection. We outline the procedure.

• Form iterations:

- Randomly selectn entries from the LMT

- If n = 4 use [6] to solve pose

- If n > 4 initialize with [6] and refine with [7] to solve pose

- Compute the median error from Eq. 2 over all points in LMT

- If median error is smaller than previous smallest median error, save(R, T ) as best

model

• Compute error for all points in LMT using best(R, T )

• Reject outliers using test based on fourth spread of errors (discussed below)

• Construct LMT using landmark matches not rejected

• Recompute(R, T ) using all inliers

In the above discussion,m is chosen in a statistically meaningful way following [5] and based on

estimates for likelihood of any given point in the LMT being valid. We typically choosen = 5

unless there are too few points. Note that the algorithm described in [7] is an iterative technique

that requires a minimum of5 points. By its nature, it is subject to convergence and localminima

issues. On the other hand, the algorithm described in [6] is algebraic, does not become trapped

in local minima, and works with as few as 4 points. However, itis somewhat less accurate. The

combination of the two has proved quite useful in our work.

The use of the median error for model estimation in the inner loop above is less prone to bias

due to single extreme outliers. Finally, the fourth spread is a well established, simple procedure

for outlier elimination for many symmetric 1-dimensional distributions. Given a distributiond, let

med(d) represent the median. Then the fourth spread,F is defines by

dlo = {p ∈ d : p < med(d)} mlo = med(dlo)

dhi = {p ∈ d : p > med(d)} mhi = med(dhi)

F = mhi − mlo
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Outliers are marked as points in the set

{p ∈ d : p < mlo − 1.5 ∗ F} ∪ {p ∈ d : p > mhi + 1.5 ∗ F}

In the case of a zero-mean, Gaussian distribution, the cutoff for the fourth spread, i.e.mhi + 1.5F ,

corresponds to approximately2.7 standard deviations.

Observe in the above discussion that if the size of the LMT is< 5, pose estimation does not

help. Also, while we can characterize the probability of finding a poor model given the likelihood

of any given match being bad, this probability is always greater than zero. Hence, pose estimation

even in the case of sufficiently many points will minimize butnot eliminate the possibility of bad

matches in the LMT.

We are still investigating techniques for systematic outlier rejection in these and other difficult

cases. However, we currently have a few heuristics in place which have resulted in noticeable

improvements.

2.1.2 Heuristics

In the current version of the ESP testbed, the vision component does no intelligent pruning of

FCAT based on prior knowledge of spacecraft position. We have greatly increased the likelihood

of correct matches in the LMT by introducing a simple pruningtechnique that processes the LMT

twice. In the first pass, we compute matches and then average the 3D vectors describing these

matched landmarks. This defines a principal direction. We then prune the full catalog so that the

inner product of any vector with this principal direction ispositive. Let

v̄ = mean({v ∈ FCAT : v ∈ LMT})

FCAT2 = {v ∈ FCAT : v · v̄ > 0}

In the shorthand notation above,v refers only to the 3D vector associated with landmarks as ex-

pressed in the target coordinate frame, not the full contents of the FCAT or LMT associated with

a given landmark such as covariance data and descriptor information. A second pass computes

a new LMT from FCAT2 only. This effectively restricts the catalog search to the portion of the

body facing the spacecraft. Even this minimal constraint leads to significant improvements. First,

spurious matches on the other side of the body are ignored. Second, those matches which fail to

pass the uniqueness criterion for entry in the LMT (see [1]) because of similar features on the far

side of the body are now more likely to match correctly.

Another simple heuristic, which is useful in the case of only1 or 2 matches, is to admit any

landmark with a very strong match. In other words, if the descriptor extracted from an orbital
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Figure 2:Example of outlier rejection on one frame, using synthetic imagery in ESP testbed. Valid matches

to the catalog are shown in green, rejected outliers in red.

image matches a catalog descriptor to within some tolerance(variable, depending on the body),

the match is always accepted.

In Fig. 2 we show the effect of applying the techniques outlined above. Those landmarks

which are rejected as outliers are shown in red, while those which are accepted as valid are shown

in green.

2.1.3 Homography and RANSAC

For direct frame-to-frame comparisons, we have also implemented a simple homography-based

outlier rejection scheme similar to the pose estimation scheme outlined in§2.1.1. This assumes

that two images are related by a plane homography so that ifq1 is any point in the first image

expressed in homogeneous coordinates, there exists a3 × 3 matrixH such that the corresponding

point q2 in the second image satisfies

q2 = H · q1 (3)

We explain Eq. 3 in a little more detail. LetP be a plane inR3 spanned by vectors{v,w}

expressed in some global coordinate frame.{v,w} represents an explicit choice of basis forP ,

but the following discussion is independent of the particular choice. Suppose a camera images the

plane from two different positions given by{(Ri, Ti) | i = 1, 2}. Any point onp ∈ P can be

6



expressed as

p = αv + βw (4)

in the global frame. The homogeneous image coordinatesqi of p in each of the two camera frames

is given by

qi = A[Ri · p + Ti] (5)

following Eq. 1. If we now substitute Eq. 4 into Eq. 5 and simplify, we obtain

qi = A[Ri · (αv + βw) + Ti]

= A[Ri · v Ri · w Ti] · [α β 1]T

= Ĥi · [α β 1]T (6)

One can show that ifTi is spanned by{Ri · v, Ri · w} the planeP contains the image center of

the camera in positioni. If we ignore this singular case,̂Hi has full rank and is invertible. It then

follows from Eq. 6 that in homogeneous coordinates

q2 = Ĥ2 · [α β 1]T

= Ĥ2Ĥ
−1

1 · q1

= H · q1

Note that the above discussion holds strictly only if all points lie on a plane in space. However, in

many situations a near-planar assumption is adequate. For outlier rejection we proceed as with the

pose estimation framework replacing Eq. 1 with Eq. 3.

2.2 Enhancement to Scale Invariance

We now describe a change to the core implementation of the feature detector. This has given us

much better invariance to changes in scale than the previousversion of the algorithm. We briefly

summarize the relevant portion of the previous approach.

Given an image, the algorithm extracts salient features at different scales. In this context,

“scale” refers to the portion of the frequency spectrum occupied by the feature. In other words,

a filter tuned to the appropriate frequency will have a high response at the given feature. This is

accomplished by constructing a stack of bandpass filtered copies of the image and finding extrema

in the stack. See [1] for details. In the past, we organized this stack into a collection of octaves,

each containing multiple scales. Each octave contained data with frequency content starting at

roughly half that of data at the same relative scale in the previous octave. This organizational

scheme followed the description in a pre-print version of [2]. It is intended to optimize the scale
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Figure 3:A) The scale/octave organization used in earlier versions of the feature detection algorithm. B)

The uniform scale spacing used in current version. The new organization sacrifices some efficiency for

greater versatility.

calculation by requiring explicit computation of only one octave in the scale-space followed by

successive resampling to obtain other octaves.

We have found that at little expense to computational cost (see§2.3), we are able to produce

much greater invariance to scale by modifying this scheme. Instead of organizing in octaves and

scales, we create a simple image pyramid with uniform distribution in scale. We illustrate the

difference in Fig. 3.

We now present the new scheme in greater detail. LetI(x, y) represent the original intensity

image, where the functionI returns the gray value of the image at pixel coordinates(x, y). Let

fscale be a scale factor controlling the image resampling between successive layers of the pyramid,

which we will call In. In other words, if dim(I0 = I) = rows× cols is the original image size,

then

dim(In) =
rows
fn

scale

×
cols
fn

scale

Let G(x, y, σ) be the 2D Gaussian kernel defined by

G(x, y, σ) =
1

2πσ2
exp(−

x2 + y2

2σ2
)

The equivalent to the Difference of Gaussians (DoG) space asdefined in [1], i.e. the bandpass
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filtered stack resulting from the original image, is given by

Dn(x, y) = In(x, y) ∗ {G(x, y, σ · fscale) − G(x, y, σ)} (7)

where the∗ operator represents convolution. The{Dn} are pictured in part B. of Fig. 3. In parallel,

we also compute and save{D−
n } and{D+

n } defined as

D−
n+1(x, y) = In(x, y) ∗ [G(x, y, σ · f 2

scale) − G(x, y, σ · fscale)]

D+

n−1(x, y) = In(x, y) ∗ [G(x, y, σ) − G(x, y,
σ

fscale

)]

Note that because of the combination of image rescaling and the change in the width of the Gaus-

sian kernels,D+

n−1 has the same frequency content asDn−1 but the same image dimensions asDn.

Similarly,D−
n+1 has the frequency content ofDn+1 but also has the dimensions ofDn. This allows

us to easily identify salient points in the DoG stack by directly comparing images of identical size

but separated uniformly in frequency. In other words, a point (xo, yo) ∈ Dn is a candidate for a

feature provided

(xo, yo) = argmax
||x−xo||≤1,||y−yo||≤1

(max(Dn(x, y), D+

n−1(x, y), D−
n+1(x, y)))

or

(xo, yo) = argmin
||x−xo||≤1,||y−yo||≤1

(min(Dn(x, y), D+

n−1(x, y), D−
n+1(x, y)))

We demonstrate the effectiveness of this new scheme using imagery from the Deep Impact

mission. In Fig. 4 can be seen four images of the Tempel 1 comettaken by the Impactor imager

at widely varying distances. Using the previous version of the feature algorithm, we were unable

to find enough valid matches between frames to compute image transforms and register one frame

to another. With the new version of the algorithm, we can match over scale changes exceeding a

factor of 2. Note that the registration shown in E), F) and G) of Fig. 4 uses matched landmarks

directly and is completely automatic; there is no human interaction or guidance involved. The

match between successive frames is illustrated in red. Suppose for any image pair, the first frame

is calledIa and the second is calledIb. The feature matching algorithm produces discrete sets

of matched features{qa
i ∈ Ia : i = 1..n} and{qb

i ∈ Ib : i = 1..n} expressed in homogeneous

coordinates. Image warp is then accomplished by computing aplane homographyHb
a such that

ε =

n
∑

i=1

||Hb
a · q

a
i − qb

i ||

is minimized. Then for all points{p ∈ Ib}, we compute the coordinates{H−1p} and superimpose

the result onIa in red. The computed homography directly indicates the relative scale change
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Figure 4:A)-D) Four images of Tempel 1 acquired by the Deep Impact impactor. E) Automatic registration

of first image pair using feature algorithm. F) Automatic registration of second image pair. G) Automatic

registration of third image pair. H) Registration of 1st and4th images by concatenation of pairwise trans-

forms.

between frames. This is a factor of∼ 2 for the first to second frame and∼ 3 for the second to third

and third to fourth frames. Suppose that the three pairwise homographies are labeledHb
a, Hc

b and

Hd
c . Then we compute a joint homography across all three image pairs by

Hd
a = Hb

a · H
c
b · H

d
c

In H) of Fig. 4, we show the results of usingHd
a to register the first and last of the four frames.

This shows a correct registration over a scale factor approaching 20.

This has important implications for FCAT. It indicates thatwe can construct a chain of matches

to identify landmarks from very close imagery (e.g. during descent) to counterparts on a distant

scale, allowing us to maintain global context even during close approach.

2.2.1 Illumination Invariance

In the previous report, we showed a number of simple techniques to enhance illumination invari-

ance. The basic idea was to perform an approximation of a highpass filter by doing background
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subtraction prior to computing features. Thus, ifI is the original intensity image, we compute

J = I − (I ∗ B) for Bn an averaging box filter of sizen × n. We have since concluded that even

this simple scheme introduces problems in scale invariance. Assuming the inherent scale of objects

in the scene has changed, usingBn of the same size in both images has the effect of shifting the

DoG pyramids in Fig. 3 in a way that fails to reflect scene content. The ideal scheme is as follows:

If objects inIb are scaled by a factor off with respect to their counterparts inIa. We should use

Ja = Ia − (Ia ∗ Bn)

Jb = Ib − (Ib ∗ Bn·f)

This implies some knowledge of the factorf . While we cannot assume thatf is known with

accuracy, even a rough approximation from altimetry or state information is adequate. As an

example, consider frames A) and B) of Fig. 4. In the earlier fixed box filter approach we found a

total of 8 matches after filtering, one of which was false. In the new scheme, the filter size used

for the first image is chosen to be approximately one third thesize used for the second. The actual

scale change as determined from the homography transform computed between the two frames is

2.28. With this modification, we obtain 26 matches, all of which are correct.

2.3 Speedup

The feature detection algorithm can be divided into four stages:

• Stage 1: Scale-space generation

• Stage 2: Interest point detection and filtering

• Stage 3: Feature vector generation

• Stage 4: Feature matching

Although our current ESP testbed is primarily for proof of concept and is written mostly in Matlab,

we have, nevertheless, made a number of modifications to decrease computation time. The most

significant impact has been through information reuse. Earlier versions of the algorithm performed

a number of redundant gradient computations during both theinterest point detection and feature

vector generation stages. Some additional allocation of processing time and memory during the

early scale-space generation stage has greatly reduced computational time for these later, more

expensive stages. The final feature matching stage has been sped up by a factor of 10 by rewriting

the most time consuming part of the code in C with a MEX interface to Matlab. Components of

the gradient computation and image rescaling also now use MEX. Since the two versions of the
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Figure 5:Imagery used for test results recorded in Table 1. The right image is approximately 30% smaller

than the left.

algorithm produce different numbers of features and matches, runtime comparison must be done

with caution. We show results for representative run of the two algorithms on the512 × 384 reso-

lution imagery shown in Fig. 5. Note that there is a moderate30% scale change between frames.

We compare the scale-space generation times directly, but for both stages 2 and 3 above, we divide

total time by the number of detected features. For stage 4, wedivide total time by the product of

the number of features detected in each of the two images to give a time per comparison for match

evaluation. Finally, we record the total number of matches and the total runtime per match. These

results are recorded in Table 1. The dramatic increase in thetotal number of matched features is

entirely due to the algorithmic changes in§2.2. The more relevant numbers for evaluating speedup

are the total time/match and time/feature vector. These processes have been sped up significantly.

Old Implementation New Implementation

Stage 1 time 3.15 s 5.60 s

Stage 2 time/feature 3.16 × 10−3 s 1.99 × 10−3 s

Stage 3 time/feature 9.06 × 10−3 s 5.84 × 10−4 s

Stage 4 time/comparison 9.37 × 10−6 s 9.32 × 10−7 s

Features matched 36 341

Total time/match 0.95 s 0.07 s

Table 1: Runtimes for old and new algorithm implementations for a sample feature pair shown in Fig. 5

with moderate scale change.
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3 Twice Around Study

The computer vision component of the Twice Around Study consists of 3 primary contributions.

These are (1) catalog generation, (2) landmark identification and (3) frame-to-frame tracking.

These three components results in the FCAT, LMT and PFT, respectively. We have reported in

[4] recent advances in generating the feature catalog from Bundle Adjustment, in the absence of

trajectory information. However, for the purposes of this report, we present a trajectory based

solution used this year for the majority of our tests.

3.1 Catalog Generation

The current version of the twice around study begins with an initial orbit with known time history

and target to camera transformations. Rendering software generates the camera view during orbit.

The current version of the rendering drapes a simple image over a 3D model of the target. Work is

currently underway to produce more photo-realistic model based renderings [8].

We populate FCAT by computing feature matches across successive image pairs or triplets.

Spurious matches are eliminated using the epipolar constraint (See [1]) in the case of pairwise

matching and the trifocal constraint in the case of image triplets. Like the epipolar constraint, the

trifocal constraint is a linear set of relationships between 3 images of a static scene encoded in

the so-called trifocal tensor. Details can be found in [9]. This formulation, like the fundamental

matrix in the epipolar case, does not require explicit computation of camera pose or 3D structure.

It provides a direct pixel level constraint on point correspondences across 3 frames.

Our early implementation of FCAT used the epipolar constraint. The latest version uses the

trifocal constraint for greater stability of landmarks across viewpoints. In other words, a landmark

which is seen in at least 3 frames and satisfies the trifocal constraint is (1) less like to be a false

match and (2) more likely to remain stable over multiple viewpoints. The end result is fewer but

better landmarks in FCAT. An example run using∼ 200 images in a single orbit around a model

of the asteroid Itokawa produced a catalog with 3050 entrieswith the epipolar constraint and 1367

entries with the trifocal constraint.

Once a match is made across two or three images, we use stereo triangulation techniques to

localize the point in space. The 3D data is recorded along with the feature descriptors in FCAT.

A second pass through the just generated FCAT prunes any duplicate entries. Duplicates are eval-

uated by their proximity in 3D. Currently, any two landmarkswithin 3 meters of one another are

considered redundant. This threshold is a function of target size and image resolution. Imagery of

several frames of an orbit of the Itokawa model and the associated pruned FCAT are shown in Fig.

6.
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Figure 6:Three rendered frames from orbit of Itokawa model shown above. Reconstructed points in FCAT

shown below.

Naturally, the quality of the 3D estimate of any point depends on the feature localization in

the image as well as on the relative camera and scene geometry. This information is essential to

the state estimation portion of the ESP testbed. In order to capture this, we compute an explicit

covariance.

3.1.1 Covariance estimates in FCAT

The 3D triangulation error in generation of the catalog is a function of the camera motion, the

intrinsic camera parameters, and the image plane match error. Since the trajectory is known and

the camera is assumed calibrated, the first two error sourcesdo not contribute. We consider the

match error.

Suppose a coordinate frame is attached to the camera withẐ along the optical axis and̂X and

Ŷ on the image plane. Suppose further that we have match errorsbetween the first and second

frame of magnitude∆x and∆y pixels in the image plane with∆p =
√

(∆x)2 + (∆y)2.

The dependence of stereo triangulation on these errors is well understood. See [10] for an

overview. Assuming the camera has approximately the same viewing directionẐ in consecutive

images, a generally valid assumption over two or three frames, the stereo error in this direction is
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related to the image plane match error∆p by

∆Z =
Z2

f · B
∆p (8)

where the camera focal length in pixels isf , the baseline of the motion isB in meters and the

distance to the 3D target point isZ. If ∆p is interpreted as a standard deviation, then∆Z is the

standard deviation in recovered distance along the viewingdirection. The lateral errors∆X and

∆Y in triangulation assuming match errors of∆x and∆y in the image plane are given by

∆X =
X

f
∆x (9)

∆Y =
Y

f
∆y

In the trifocal case, we average the quantities in Eqs. 8 and 9over all three stereo pairs arising

from the 3 camera positions. In the frame of the camera, the error covariance can be approximated

by

Ccamera =







(∆X)2 0 0

0 (∆Y )2 0

0 0 (∆Z)2







Let R be the rotation matrix relating the average over all camera frames in the pair or triplet used

for triangulation to the body frame of the target. Then

Ctarget = RT CcameraR

What remains to be determined are the quantities∆x, ∆y and∆p. In standard stereo methods,

these quantities can be determined from the subpixel approximation in the correlator. However, in

our case, we match only points in descriptor space and rely wholly on the localization accuracy

of the feature detection algorithm. There is no direct imagebased match. Thus, the match error

is not easily quantified. However, we have determined empirically that∆x = ∆y = 0.5 pixel

is a reasonable figure, and our estimates are currently basedon these numbers. More systematic

techniques for evaluating this match error are under consideration. One candidate method is to use

a directly measured triangulation error on a known 3D structure to infer the associated match error.

3.2 Landmark Detection

Once the catalog has been produced, we generate modified orbits with known trajectories around

the same body and render new images. For each frame in the new orbit sequence, we find features

and match to FCAT. This data is recorded in the LMT and passed to the state estimator. For each

15



Figure 7: On the left is the final frame of the second pass in an example run of the twice around study

showing correctly matched features. On the right is shown the ground truth trajectory as a moving frame in

green, and the vision based camera localization from the LMTas black dots. The error is uniformly bounded

by ∼ 10 m for this2 km orbit.

matched landmark, the LMT records the 3D position of the landmark from FCAT, bearing angles in

the image frame to the landmark along with covariance estimates, and the full landmark descriptor.

The details of the match mechanism are covered in [1] and modifications to the basic method

to enhance robustness were described above in§2.1. We show in Fig. 7 the results from a repre-

sentative run of the twice around study using the body also pictured in Fig. 2. The original catalog

was produced from a sequence of 200 images in one complete near-circular orbit of the∼ 500 m

body at a distance of∼ 2 km from the center of mass. In the second pass, we took a similar but

modified orbit and matched landmarks against 70 frames. Fig.7 shows the ground truth orbit as

a moving coordinate frame in green and the recovered camera position as a series of black dots.

Note that these are single-frame position estimates using vision based methods only. We do not

record the integrated result of the estimator. Our only purpose is to verify the quality of matches

in the LMT. We computed the error covariance to find that the1σ error in the direction of largest

uncertainty was 5.7 m. The absolute position error (norm of 3D error) was uniformly bounded by

23 m and had an RMS value of 8 m.
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Figure 8: Frame-to-frame matches recorded in the PFT. Detected interest points on in the first image are

shown in blue. Matched points from correlation are shown in green on the second image. The correspon-

dence is indicated by red lines connecting matching points.

3.3 Frame-to-Frame Matching: PFT

We now describe our implementation of the PFT or Paired Feature Table, which records frame to

frame matches. These are not necessarily landmarks, but salient image points which are expected

to remain stable only over a short duration (e.g. between successive frames). The approach taken is

to identify interest points using the Harris operator [11],a standard corner detector well established

in computer vision. Details were also reviewed in a slightlydifferent context in [1].

Once a set of interest points are detected, we attempt to match these in the second frame using

the normalized cross-correlation borrowed from standard stereo vision techniques. After integer

correlation, we perform a subpixel refinement using correlation scores from the3×3 neighborhood

of the best match. Suppose interest pointp in the first frame matchesq = (xo, yo) in the second

after correlation. LetCp(x, y) be the correlation score betweenp in the first frame and(x, y) in

the second. We find the quadraticS which best approximatesCp in a3 × 3 neighborhood ofq by

minimizing

ε =

xo+1
∑

x=xo−1

yo+1
∑

y=yo−1

(S(x, y) − Cp(x, y))2

Then the subpixel approximation is the pointq̃ = (x̃o, ỹo) such thatS(x̃o, ỹo) is a local minimum.

An example of the frame to frame match recorded in the PFT is shown in Fig. 8.
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4 Conclusion and Future Work

We have presented in this report a number of enhancements andadditions to the feature detec-

tion work reported last year. Much of this effort has been driven by the needs of the Twice Around

Study. For example, robustness became a prime issue which wehave attempted to address through-

out this year. Various other implementation details required change or update to earlier methods.

We have also greatly enhanced the scale invariance exhibited by the early version of the feature

algorithm.

From the vision perspective, the most significant challenges for next year will involve extending

the regime of applicability of the feature algorithms. We intended to test more widely varying

orbits and changes in illumination. The latter has not yet been adequately addressed, but we are

investigating work in the literature on simple parametrized lighting models. We are also continuing

to explore techniques for outlier rejection to accommodatethe more challenging tests we anticipate

in the next year, should the task be funded.
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