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Abstract - Many of NASA's planned missions for the 
coming decade will require a pinpoint landing (PPL) 
capability, whether for sample acquisition and return 
or for precise insertion into hazardous but 
scientifically interesting terrain. Thus, a robust 
spacecraft-based position estimation system is a 
critical near term need. We present in this paper a 
vision-based system, which provides a low power, low 
cost, high accuracy solution with flight proven 
hardware. The key components of our image based 
localization approach are: (1) real-time detection of 
landmarks in descent imagery, (2) real-time 
matching of detected landmarks to a stored database, 
and (3) robust estimation of spacecraft state 
(position, attitude and velocity) from matched 2D-3D 
data. We present an analysis of the performance and 
noise sensitivity of our system and show that the 
suggested technology is able to deliver a spacecraft to 
within 100 meters of a pre-selected landing site in a 
typical Mars landing scenario. 
 
Index Terms: Pinpoint landing, landmark detection, 
landmark matching, position estimation 
 

I. INTRODUCTION 
 

   Current descent and landing technology for planetary 
missions, such as those to Mars, is characterized by a 
greater than 30 x 100 km landing error ellipse with no 
terrain recognition or hazard avoidance mechanism. In 
the next decade, NASA plans to demonstrate an 
ambitious capability – pinpoint landing on another 
planetary body. The primary objective of PPL is to 
deliver a spacecraft to within 100 meters of a targeted 
landing site. In order to accomplish this, several new 
technologies will be developed over the next few years. 
These include new optical guided navigation systems for 
precision entry, an optimized powered descent guidance 
system, advanced parachute technology, a new 
propulsive traverse capability, and a new real-time 
terrain recognition capability for spacecraft localization.  
 
   NASA has successfully flown automated landing 
systems for Lunar and Mars missions,  such as Surveyor, 
Apollo, Viking, Mars Pathfinder and Mars Exploration 
Rover (MER). However, only one of these missions had 
a terrain-relative guidance, navigation and control 

(GNC) system. In MER, the Descent Image Motion 
Estimation System (DIMES) was used to estimate 
horizontal velocities. DIMES consisted of a descent 
imager, a radar altimeter, an inertial measurement unit 
and an algorithm to provide a low cost, robust and 
computationally efficient solution to the horizontal 
velocity estimation problem, which was critical for the 
safe deployment of the air bags during touchdown [9]. 
DIMES is the first ever terrain-relative sensing and 
guidance system used by a real mission. However, 
unlike our proposed system, DIMES has neither terrain 
recognition nor hazard avoidance capabilities.  
 
   Our real-time spacecraft localization scheme, the first 
of its kind, works as follows. A landing site on the 
targeted body is selected on Earth using orbital imagery, 
and the landmarks (e.g. craters) within the landing 
ellipse are mapped. During descent, the lander's initial 
position with respect to the landmarks as well as to the 
selected landing site is determined automatically on 
board. The lander is then guided to the landing site using 
continuous updates of lander position and velocity 
throughout the descent. There are three fundamental 
requirements for this new technology. 
1. The system must be able to recognize the terrain 

(landmarks) reliably and repeatedly over a wide 
variety of environments. During spacecraft descent, 
considerable environmental variations, such as 
lighting angle, atmospheric conditions, viewing 
angle, and spacecraft altitude, can affect the 
appearances of landmarks. The key to success relies 
on defining a class of landmarks that has good 
invariance properties under variable environmental 
conditions and a set of associated algorithms for 
handling this type of landmark robustly. 

2. The system must accomplish the task under extreme 
conditions imposed by the slow flight computer and 
terminal descent time constraints. The projected 
CPU clock speed of the flight computer for a PPL 
mission will be on the order of 100 MIPS, which is 
not ideal for processing large volumes of data. For 
instance, a descent image is typically 1 MB in size. 
There is a roughly 60 second window of opportunity 
for spacecraft localization during the parachute 
stage between the heat shield jettison and powered 
descent. In order to obtain reliable spacecraft state 
information, several images as well as other 



onboard sensor data such from an IMU and 
altimeter must be processed during this period. In 
general, each cycle of spacecraft localization, which 
includes image acquisition, image processing and 
sensor data infusion, should be done in a few 
seconds.  This is a very demanding requirement. 

3. The system must be able to guide the spacecraft to 
land within 100 meters of the target under noisy 
conditions. Due to the limitations of both hardware 
and software, system noise can only be 
compensated to a limited extent.  The primary noise 
sources are the landmark detection error, the base 
map error (both position and elevation), sensor 
noises (imager, IMU, altimeter), and image and 
IMU sensor misalignment. All of these influence the 
performance of the system. By considering these 
uncertainties, the system must be robust enough to 
provide valid spacecraft state, which meets or 
exceeds the PPL requirement.  

 
   The rest of this paper, we will present a system that 
can meet these requirements in the case of crater 
landmarks, which appear densely on many bodies of 
interest. 
 

II. SYSTEM DESCRIPTION 
   Craters are landforms commonly found on the surface 
of planets, satellites, asteroids, and other solar system 
bodies. A crater, in general, is a bowl shaped depression 
created by collision or volcanic activity. Because of their 
simple and unique geometry and relatively stable 
appearance under different viewing and lighting angles, 
craters are ideal landmarks for spacecraft localization [1-
3]. A large number of craters can be found on the 
surface of Mars, which can generally be divided into 
three regions – heavily, moderately and lightly cratered 
[5, 10]. A statistical study shows that there will be 
adequate craters in a landing ellipse to ensure positive 
spacecraft localization. Therefore, we have chosen to 
focus on craters as our landmark of choice. 
 
 
Real-Time Crater Detection  
     A real–time crater detection algorithm has been 
developed based on previous work in crater detection 
algorithm for autonomous spacecraft navigation [2]. 
This algorithm breaks down into five steps: 
1. Edge Detection: This step detects edges in an image 

and places them in a database.  
2. Rim Edge Grouping: This step groups together 

edges that belong to the same crater. The 
information used for this process includes edge 
shape (convex), the image intensity profile inside a 
crater, and edge gradients. If a pair of edges 
corresponding to the lit and shaded side of a single 
crater is found, they will be used to fit an ellipse. 

3. Ellipse Fitting: This step fits an ellipse to each 
group of crater edges using an iterative algorithm – 

the reweighting least squares method, which 
robustly removes outliers in the input data.  

4. Precision Fitting: This step adjusts the detected 
crater’s geometry directly in the image domain to 
reduce errors introduced in edge detection and 
ellipse fitting. A multidimensional iterative 
nonlinear minimization algorithm based on 
conjugate gradients is used to lock an ellipse 
precisely onto the rim of a crater. 

5. Crater Confidence Evaluation: This step evaluates 
every detected crater and assigns a confidence value 
to it. 

 
   After extensive optimization, the algorithm outlined 
above is able to meet the PPL time and performance 
requirements for the first time.  The performance 
improvement stems from the following modifications 
 
1. Reorganization of data to allow maximum usage of 

pointer operations.  
2. Conversion and analysis of image features in vector 

data format.  
3. Use of a hash table vector database for fast data 

retrieval. 
4. Extensive use of lookup tables for repetitive 

computations.  
 
   The current algorithm is able to detect craters from a 
512 x 512 image in less than 0.8 second on a 333 MIPS 
Ultra SUN station, thus meeting the Mars PPL 
requirement. 
. 

 
Figure 1: Example of a crater detection result from 
MER–A descent imagery. The detected craters are 
shaded for easy visualization. 
 
   Extensive experimentation shows that the detection 
rate is better than 94% and the false alarm rate is less 
than 7%. The position error is less than 0.3 pixel and the 
geometric error in shape is less than 0.5 pixel.  
 
Crater Matching 
We use geometric recognition techniques to match 
craters extracted from an image to a database containing 
the 3D locations of the craters.  Each crater is treated as 
an attributed point corresponding to the center of the 
crater, where the attributes are the radius and orientation 
of the crater. The efficiency of the basic method is 
improved by two means.   First, the crater attributes are 



used to remove matches that are incompatible.  Second, 
an initial estimate of the spacecraft position is used to 
filter matches that are not feasible.  The information 
from other sensors such as altitude from the altimeter 
and attitude from the IMU can help to reduce the search 
scope even further. The attitude is in the inertial frame 
and   available at all times.  The offset between the 
inertial frame and local map, which could be off by a 
few degrees, is incorporated into the matching. The 
altitude will not be available until the lander is a few 
kilometers  (3 km is typical) from the ground. Until then 
a larger scale range is searched. However the problem 
can be reduced by use of conic invariants[4]. A pair of 
coplanar conics c1 and c2 has two invariants  
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Since under a linear transformation x = TX, c1 and c2 
map to C1 = Ttc1T, and C2 = Ttc2T, we have 
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The same derivation holds for Ic2c1.   These invariant 
moments are also valid under roll, pitch and shearing 
because the relationship of a planar surface between two 
image views is a homography.  

   In Fig. 2 we show the result of matching the craters 
detected in Fig. 1 to a 2048 x 8366 Mars Orbiter Camera 
(MOC) image strip with approximately 1.41 meter/pixel 
resolution and 1,777 detected craters. The MOC data 
serves as our map for this test. As shown in Fig. 2, the 
crater matching algorithm successfully matches the 
craters from the descent image to the map.  

 

Figure 2: An example of the crater matching result 
between MER descent image (top) and MOC image. The 
color rim indicates the correspondences. 

Robust Position Estimation  
   From a suitable number of matched landmarks for 
which we have prior geometric data, we accurately 
estimate the position and orientation of the spacecraft 
with respect to the surface of the planetary body. In the 
case of craters, the relevant structures are crater 
centroids, which are estimated carefully to account for 
perspective distortion effects. 
 
   Given a collection of points in 3D and their 2D 
projections, we recover camera pose as follows. The 3D 
points are originally presented with respect to some 
reference coordinate frame, typically dependent on the 
landing ellipse and independent of the location of the 
camera. The first step in recovering camera pose is to 
determine the coordinates of these points in a coordinate 
frame centered on the camera. From prior calibration of 
the camera, we know the exact 2D coordinates of a pixel 
on the image plane (CCD or CMOS device). If (x,y) are 
the 2D coordinates of an image point p arising from a 
3D point P, then P can be expresses in the coordinate 
frame of the camera as (λx, λy, λ) for some suitable 
scale factor λ. Note that the distances between 3D points 
are independent of coordinate system. Hence, for a 
collection of image points {pi} and associated 3D points 
{Pi}, we know {dij=||Pi-Pj||}. This can be expressed as 
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resulting in a set of quadratic equations in the unknown 
{λι}. We use an efficient and robust linear algorithm to 
solve for the λι [6]. Once these quantities are known, the 
3D coordinates of all points are known in both the 
coordinate frame of the camera and the reference frame. 
Recovery of the camera pose is then equivalent to 
finding the Euclidean transformation that maps one of 
these point clouds onto the other. This absolute 
orientation problem has several known linear solutions 
[6]. For small numbers of points, the proposed method is 
fast and robust. It requires no initialization because there 
is no iterative component. Consequently, there is no 
issue with slow convergence or local minima. Given an 
initial estimate from the above algorithm, we use a fast 
iterative method [8] to refine the result. Finally, we use a 
robust estimation approach to decrease sensitivity to 
outliers.  We perform position estimation over a 
statistically meaningful number of trials using a subset 
of the data and a Least Median Squares (LMedS) 
criterion based on image reprojection errors.  
 

III. PERFORMANCE ANALYSIS 
   The ultimate objective of pinpoint landing is to deliver 
a spacecraft to within 100 meters of a targeted site.  
However, the uncertainties of hardware, software and 
landing site topography can influence system 
performance. The primary noise sources are landmark 
detection error, base map error (both position and 
elevation), sensor noise (imager, IMU, altimeter), and 
image and IMU sensor misalignment. Although these 



uncertainties cannot be eliminated, we show that their 
influence will not drive the estimate beyond the required 
landing error envelope. In addition, terrain recognition, 
(i.e. crater matching) must be unambiguous.  In this 
section, we study the influence of a few major 
uncertainties. 
 
 
Crater Constellation Uniqueness Analysis 
   To be used for unambiguous position estimation, the 
constellation of landmarks must be unique in terms of 
size and location in the landing ellipse.  We have 
conducted two studies in this area. The first uses an 
Odyssey THEMIS image containing 917 detected craters 
(Fig. 3).  A call a set of neighboring craters a crater 
constellation. We performs a pairwise comparison of 
constellations with regard to size and relative 
configuration (to within 1 pixel) to determine the 
likelihood of ambiguity in the selection. 

 
Figure 3: Odyssey THEMIS image (left). Detected 
craters (center). Crater density map (right) 
 
   The probability of an ambiguous constellation in this 
dataset is shown in Table 1, which indicates that given 
the size and position of craters, the probability of an 
ambiguous configurations is very small (< 0.0001%) 
when the number of craters in a constellation is greater 
than 5. 

 
Table 1: Probability of ambiguous configuration from a 
real crater database 
Number of 
craters 

Total # valid 
configurations 

# Ambiguous 
configurations 

% probability 
of confusion 

2 7.1 x 105 71,898 10.1 
3 1.3 x 107 7,394 5.8 x 10-2 

4 1.8 x 108 1027 5.7 x 10-4 

5 2.2 x 109 221 1.0 x 10-5 

 
   The second study is a statistical analysis of the 
likelihood of confusion given a model for crater 
distribution [10]. This again takes into account the crater 
sizes and relative distances. We present a sketch of the 
derivation and the results. The probability of having two 
pairs of craters at the same relative distance d in a disk 
(region of attention) of radius R can be computed as: 

We omit the complete derivation of this and some other 
quantities for space considerations. 
 
   Assuming a tolerance δp for distances to be considered 
"equal," the probability of having any two pairs of 
craters at the same relative distance in the disk is given 
by integrating P1 over all admissible distances to get a 
probability P2. Suppose there are N total craters in the 
disk and we use m of them for position estimation, 
leaving n = N - m. The probability of having another m 
craters with the same geometric configuration can be 
computed as  

 
Given a model for crater distribution from [10], we find 
by integrating over all craters from size dmin to dmax that 
the total number of craters in our disk is: 

where A is the area of the disk and K and α determine 
crater size distribution.  This also gives a probability 
density σN(dmin,dmax) = N/A for craters within the given 
size. The probability of having two craters with the same 
size (up to a tolerance δs can by computed by integrating 
σN(d ,d+ δs)

2 over all admissible d. Let this quantity be 
P3. Then the probability of m craters out of a candidate 
population of n having the same size as our m selected 
craters is 

mn
size pP ))1(1( 3−−=                      

   Finally, the probability of an ambiguous constellation 
is the product of the size probability and the geometric 
configuration probability  

geomsizetot PPP =  
    
   For a heavily cratered region, we get (K,α) = (0.3, 1.8) 
from [10]. With disk diameter = 8 km, δs = δp = 30 m, 
dmax = 4 km and dmin = 100 m, we obtain the results in 
Table 2. These match the results in Table 1 up to order 
of magnitude, which is as much as we can expect for this 
relatively vague notion of  "heavy" cratering.. 
 
Table 2: Probability of ambiguous configuration from 
crater distribution models. 
Number of craters Lightly cratered Heavily cratered 
2 5.4 44.4 
3 5.2 x 10-3 0.20 
4 2.9 x 10-6 8.4 x 10-4 

5 1.4 x 10-9 3.4 x 10-6 

 
Position Estimation Analysis 
   From a suitable number of matched landmarks for 
which we have prior geometric data, we can accurately 
estimate the position and orientation of the spacecraft 
with respect to the surface of the planetary body. We 
identify 3D to 2D point correspondences between our 
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database and descent or orbital imagery. In the case of 
craters, the relevant structures are crater centroids. We 
study the accuracy of this approach via a detailed set of 
simulations parametrized by insertion altitude, 
orientation, imager resolution and camera field of view 
(FOV). The virtual onboard camera takes a snapshot of 
the visible portion of the 3D terrain. The true 2D image 
coordinates of the crater centroids are distorted with zero 
mean Gaussian noise of a given standard deviation and 
truncated beyond some maximum value. If there are not 
enough craters (a tunable parameter n with a minimum 
value of 4) for position estimation, we mark the insertion 
point as a failure. Otherwise, we randomly select n of 
the visible craters for position estimation. Assuming 
matches between the 2D and 3D datasets, we use our 
position estimation algorithm to estimate spacecraft 
position and orientation and compare to the preset 
ground truth.  For simulation purposes, we corrupt 
image data with noise with standard deviation of 1 pixel. 
In Fig. 4 we show the result for position estimation for 
our base algorithm and for the statistically robust version 
described previously. In each case, we assume 12 point 
matches and a 1 pixel random image noise with a 
variable percentage of outliers. The camera is assumed 
to be 8 km above the surface. 
 

 
Figure 4: Position estimation error as a function of 
outliers in matched craters 
 
Spacecraft Velocity Estimation Analysis 
   As a prelude to integration of a full Kalman filter 
solution for velocity estimation, we evaluate a simple 
estimation scheme based on integrated IMU acceleration 
data and position estimates provided by our algorithms 
above. Our analysis gives an upper bound for expected 
velocity error.  
 
   Without acceleration data, two camera frames provide 
an estimate of average velocity only. However, if 
acceleration is present, we can compute an instantaneous 
velocity depending on IMU sampling accuracy by 
integration. If the frames are taken at times to and tf with 
recovered positions P(to) and P(tf) we compute V(t) 
from the acceleration a(t) as follows: 
 
 

If more than two frames are available, we take all pairs 
and compute a weighted sum. We have determined 
empirically that weighting linearly by time interval 
between frames and inversely by distance from the 
ground plane at time of frame capture works well. In 
Fig. 5., we plot the velocity error for a trial trajectory 
with varying frame numbers and frame intervals. With 
the current simulation framework in place, we will be 
able to do much more sophisticated analysis of velocity 
estimation using varying trajectories and error models 
for IMU and image noise as well as crater matching. 
 
 

Figure. 5: Velocity estimation error using varying frame 
numbers and intervals. 
 
   With the simple scenario tested, we obtain velocity 
estimates at least an order of magnitude better than those 
currently available in mission scenarios.  
 
Landing Error Analysis 
   We consider only the landing error arising from our 
position estimation system. We do not attempt to 
duplicate the sophisticated guidance algorithms to be 
used during a powered descent. Instead we simply report 
landing error arising from vision based position 
estimates as the sum of the position estimate at start of 
powered descent and the drift due to instantaneous 
velocity estimation error. Thus, if LE = landing error, PE 
= position estimation error at powered descent, VE = 
velocity error at powered descent, and t = time 
remaining to the ground, we have 
 

tVEPELE ⋅+=  
    
   In Fig. 6 we show the landing error for the case of the 
trajectory discussed above for various starting points of 
powered descent. Observe, that for this case of perfect 
acceleration knowledge, we are well within the 
requirements for pinpoint landing with integrated IMU 
data.  
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Figure 6: Landing error for MSL-like trajectory 
assuming IMU integrated (green) 
 
   If the base map errors (both position and elevation) are 
also considered, the landing error increases.  Fig. 7 and 8 
show the landing error vs. map error for start of powered 
descent at 1 km and 3 km, respectively. We see that the 
landing error is well within the requirements of pinpoint 
landing if the map and elevation error are less than 5 
meters. 
 

 
Figure 7: RMS landing error vs. map error when the 
spacecraft starts dead reckoning at 1 km. 
 

 
Figure 8: RMS landing error vs. map error when the 
spacecraft starts dead reckoning at 3 km. 
 
 
 
 

IV. CONCLUSIONS  
   In this paper, a landmark (crater) based position 
estimation system is suggested.  The performance 
analysis shows that this system is able to guild a 
spacecraft to land on Mars within 100 meter of a 
targeted landing site under likely noise conditions. 
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