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Abstract

Micro Aerial Vehicles (MAVs) have built a formidable résumé by making them-
selves useful in a number of important applications, from disaster scene surveillance
and package delivery to robots used in aerial imaging, architecture and construction.
The most important benefit of using such lightweight MAVs is that it allows the ca-
pability to fly at high speeds in space-constrained environments. While autonomous
operations in structured motion-capture systems has has been well studied in gen-
eral, enabling resource-efficient, persistent navigation methods for long-term auton-
omy in unstructured and dynamic environments is still an open problem in current
robotics research. In this thesis, we take a small step in this direction and present a
scalable framework for robust visual navigation of MAVs in the wild.

Our first contribution is a toolbox of approaches for perception, planning and
control of agile, low-cost MAVs in cluttered urban and natural outdoor environ-
ments, based on a monocular camera as the main exteroceptive sensor. In particu-
lar, we present novel geometry and data-driven depth estimation methods for non-
translational camera motion and dynamic scenes, where traditional structure from
motion (SfM) and Simultaneous Localization and Mapping (SLAM) techniques do
not apply, with accuracy comparable to that of a stereo setup.

Second, we propose a generic framework for introspection in autonomous robots.
As robots aspire for complete autonomy in human-centric environments, accurate
situational awareness becomes a critical requirement for verifiable safety standards.
We call this self-evaluating capability, to assess how qualified they are at that mo-
ment to make a decision, as introspection. Inspired by this, we advocate the need to
build systems with the ability to take mission-critical decisions in ambiguous situ-
ations and present a failure prediction and recovery framework for perception sys-
tems.

Finally, our third contribution towards developing a scalable autonomous behav-
ior is a framework for knowledge transfer across robots and environments. We argue
that for many learning based robot tasks, it is not possible to obtain training data.
The ability to transfer knowledge gained in previous tasks into new contexts is one
of the most important mechanisms of human learning. In this work, we develop a
similar technique for learning transferable motion policies i.e. solve a learning prob-
lem in a target domain by utilizing the training data in a different but related source
domain.

The proposed algorithms are quantitatively and qualitatively evaluated on a vari-
ety of datasets and validated through real-world field experiments. Our experiments
demonstrate that our contributions help to build a scalable, accurate, and computa-
tionally feasible visual navigation system for micro aerial vehicles in the wild.
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Chapter 1

Introduction

Contents
1.1 Micro Aerial Vehicles: An Emerging Robotic Platform . . . . . . . . . . . 1

1.2 Biological Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Current State of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Micro Aerial Vehicles: An Emerging Robotic Platform
In recent years, autonomous aerial robots are making themselves useful in a number of impor-
tant applications, from disaster scene surveillance and package delivery to robots used in aerial
imaging, architecture and construction. A variety of remotely piloted aerial vehicles is used for
these applications, including airplanes as well as helicopters, quad-rotors, and octo-rotors. While
fixed-wing vehicles offer the advantage of fast rectilinear flight to cover an extended area quickly
and systematically, rotary aircraft provide the flexibility to explore a smaller area from multiple
vantage points. Micro Aerial Vehicles offer a significant advantage over traditional methods in
terms of costs, as not only the vehicle itself is comparably cheap but also the deployment is fast
and simple.

However, most MAVs are limited to flight at altitudes well above ground-level obstacles, fo-
liage and buildings, where basic path planning techniques and GPS are sufficient for navigation.
The most important benefit of using such lightweight MAVs is that it allows the capability to fly
at high speeds in space constrained environments. Their practical use would expand considerably
if they were capable of flying at high speeds and among obstacles at low altitudes, enabling them
to take detailed measurements of the street level of a city or the terrain in wilderness areas and
cover significantly more ground than the conservative motions of many current aerial robots. In
this thesis, our work is primarily concerned with navigating MAVs that have very low payload
capabilities, and operate close to the ground where they cannot avoid dense obstacle fields.
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(a) (b)

Figure 1.1: (a) Goshawk flying through dense forest (b) An MAV flying through dense clutter in
a disaster rescue scenario.

1.2 Biological Inspiration

It is natural to look to nature for inspiration when approaching such design challenges. Nature
provides many examples of graceful and yet purposeful flight. In particular, several species of
birds have mastered the art of maneuverability, swiftly maneuvering among trees as they are
encountered, during high-speed flights as shown in Figure 1.1a. Inspired by this, flying robots
that can similarly navigate through cluttered environments, such as urban canyons and dense
forests, have long been an objective of robotics research [57, 58, 82, 84, 103]. An autonomous
robot with such capabilities can be envisioned to be extremely useful in applications of search
and rescue, disaster scene surveillance, etc. Although birds differ from aerial robots in a number
of fundamental ways, we still have the opportunity to incorporate avian behaviors in modern
day drones. However, till date, very little have been established so far in realizing the same for
autonomous drones [50]. Motivated by this, we take a small step in the direction of building a
robust system that allows Micro Aerial Vehicles (MAVs) to autonomously fly at high speeds of
up to 1.5 m/s through a cluttered forest environment, as shown in Figure 1.1b.

1.3 Current State of Research

In recent years, the development of autonomous flying robots has been an area of increasing
research interest. The research in such autonomous MAVs is relatively young but advancing
very fast. This research has produced a number of systems with a wide range of capabilities when
operating in outdoor environments. For example vehicles have been developed that can perform
high-speed flight through cluttered environments [81], or even acrobatics [8]. Other researchers
have developed systems capable of autonomous landing and terrain mapping [94], as well as
a host of high level capabilities such as coordinated tracking and planning of ground vehicles
[40, 44], or multi-vehicle coordination [29]. While these are all challenging research areas in
their own right, and pieces of the previous work (such as the modeling and control techniques)

2



carry over to the development of vehicles operating without GPS, these previous systems rely
on external systems such as GPS, or external cameras [65] for localization. Similarly, a number
of researchers have flown indoors using position information from motion capture systems, or
external cameras. In discussing further related work, we focus on flying robots that are able to
operate autonomously while carrying all sensors used for localization, control and navigation
onboard.

Visual Navigation

In general, we consider two approaches using on-board cameras: the first one is tracking a
known, fixed object (like artificial markers, or user-specified points), which implicitly solves
the matching and relocalization problem because the markers are already known as well as their
relative 3D position; the second approach is extracting distinctive natural features whose 3D
position is not known a priori and use them for both motion and structure estimation, and re-
localization (i.e. visual SLAM, visual odometry). Accurate depth estimation and localization
is also possible purely based on passive visual sensors, and several state-of-the-art approaches
exist. An important technique is stereo imaging, which has been successfully used in realtime,
outdoor SLAM systems [61, 142]. Stereo systems use two cameras with a fixed, known distance
(baseline) between them. This has the essential benefit that the depth measurements are retrieved
in metrical scale. When using only one camera, the relative transform between individual camera
poses can be estimated as well, but the overall scale factor remains unobservable unless at least
one metrical distance between poses or map points is known. However, on the one hand the
baseline available to most micro aerial vehicles is quite small and thus there is little benefit for
outdoor usage, and on the other hand the required processing power for stereo image acquisition
and processing is typically higher than for monocular vision.

Early visual SLAM systems using a single camera as the main perceptual sensor were in-
spired by traditional SLAM methods using recursive filtering approaches. The Bayesian network
allows handling of uncertainties in position and scale in a way that robust localization is possible.
Davison [37] fused measurements from a sequence of images by updating probability distribu-
tions over features and extrinsic camera parameters using an Extended Kalman Filter (EKF). This
requires tracking and mapping to be closely linked, as the camera pose and feature locations are
updated together at every single frame. Based on this approach Davison et al. [38] proposed
MonoSLAM. They extend the previously proposed method of monocular feature initialization
by a feature orientation estimation. This successfully increased the range in which landmarks
are detected and hence improved tracking. However, MonoSLAM only worked for slow camera
motions or in combination with additional sensors.

Outdoor Visual Control

While outdoor vehicles can usually rely on GPS, there are many situation where relying on GPS
would be unsafe, since the GPS signal can be lost due to multi-path, satellites being occluded by
buildings and foliage, or even intentional jamming. In response to these concerns, a number of
researchers have developed systems that rely on vision for control of the vehicle. Early work in
this area by [7] used a stereo camera to enable position hold capabilities. Other researchers have
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developed capabilities such as visual servoing relative to a designated target [66], landing on a
moving target, and even navigation through urban canyons [42]. While the systems developed
by these researchers share many of the challenges faced by indoor or urban MAVs, they operate
on vehicles that are orders of magnitude larger, with much greater sensing and computation
payloads. In addition, the outdoor environments tend to be much less cluttered, which gives
greater leeway for errors in the state estimation and control.

1.4 Contribution of the Thesis
Visual navigation for MAVs based on a monocular camera is a challenging task, and several
problems have to be tackled to enable autonomous flight. In this thesis, we propose techniques to
build a computationally feasible, robust and scalable visual navigation system. In the following,
we summarize our key contributions towards this goal.

1.4.1 Accurate, Robust and Computationally feasible Visual Navigation

We present a toolbox of approaches for perception, planning and control of agile, low-cost MAVs
navigation in cluttered urban and natural outdoor environments, based on a monocular camera
as the main exteroceptive sensor. In particular, we present two novel approaches for depth es-
timation for non-translational camera motion and dynamic scenes: a Deep learning based data-
driven approach and a Direct Visual Odometry based geometry-driven approach. Furthermore,
we augment our depth estimation techniques with state-of-the-art visual inertial fusion, multiple
list prediction techniques and a novel method for wind-resistant control to demonstrate robust,
accurate and computationally feasible autonomous flight in real-forest environments.

1.4.2 Safe, Reliable and Verifiable Autonomy

We propose a generic framework for introspection in autonomous MAVs to enable them with the
ability to assess how qualified they are at any given moment to make a decision. Using a spatio-
temporal Convolutional Neural Network, we present a failure prediction and recovery strategy
for perception systems. We demonstrate through extensive experiments that we are reliably able
to predict failures reliably, and better than confidence based systems. This helps us build safe,
reliable robot behaviors that can carry out emergency verifiable behaviors when uncertain.

1.4.3 Scalable, Adaptive Learning of Policies

In order for robots to have long-term autonomy and scale to dynamic environments, it is nec-
essary to be able to transfer knowledge across tasks and domains. In this work, we present a
technique to learn domain-adaptive policies using deep neural networks and imitation learning.
We demonstrate the effective learning of policies for a target domain by using only labeled data
from the source domain. We study the transfer of policies in the context of MAV control policies
across physical systems, dynamic environments and also weather conditions.
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1.5 Outline
This thesis is organized as follows. Chapter 2 introduces the monocular visual navigation system.
we explain how robust, accurate depth can be obtained from single image. We also discuss op-
timized strategies for wind-resistant control. In Chapter 3, we introduce our novel introspection
system to predict failures in visual systems and in Chapter 5, we show how to learn transferable
policies across domains. Finally, we show a direction for future work and conclude.
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Chapter 2

Robust Monocular Visual Navigation

Contents
2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Monocular Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Multiple Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Planning and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Experimental and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Recently, there have been numerous advances in the development of biologically inspired
lightweight Micro Aerial Vehicles (MAVs). While autonomous navigation is fairly straightfor-
ward for large UAVs as expensive sensors and monitoring devices can be employed, robust meth-
ods for obstacle avoidance remains a challenging task for MAVs which operate at low altitude in
cluttered unstructured environments. Due to payload and power constraints, it is necessary for
such systems to have autonomous navigation and flight capabilities using mostly passive sensors
such as cameras. In this chapter, we describe a robust system that enables autonomous naviga-
tion of small agile quad-rotors at low altitude through natural forest environments. We present a
direct depth estimation approach that is capable of producing accurate, semi-dense depth-maps
in real time. Furthermore, a novel wind-resistant control scheme is presented that enables stable
way-point tracking even in the presence of strong winds. We demonstrate the performance of
our system through extensive experiments on real images and field tests in a cluttered outdoor
environment.

2.1 System Overview

In this section, we describe the hardware platforms and overall software architecture. Developing
and testing all the integrated modules of an MAV ”in the wild” is very challenging. Therefore,
in addition to a MAV (Figure 2.1a), we also assembled a rover (Figure 2.1b) to be able to test
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Arm-based 
Linux computer

IMU Microstrain 
3DM-GX3-25

PlayStation Eye camera
(640x480 @ 30Hz)

Onboard ARM-based
Linux computer

PlayStation Eye camera
(640x480 @ 30Hz)

Bumblebee Stereo 
color camera

(1024x768 @ 20Hz)

Ardupilot for low level control. 
Same chip is used on UAV.

Figure 2.1: Hardware Platforms. (Left) Quadrotor used as our development platform. (Right)
Rover assembled with the same hardware and software configuration as the MAV for rapid tan-
dem development and validation of modules.

various modules separately. Along with facilitate parallel development and testing of modules,
the rover was also used for data collection purposes.

Quadrotor Platform

We have used a modified version of the 3DR ArduCopter 2.1 with Odroid XU-3, a quad-core
ARM processor that runs Ubuntu 14.04 and ROS Groovy. The base chassis, motors and autopi-
lot are assembled using the Arducopter kit. Due to drift and noise of the IMU integrated in the
Ardupilot unit, we added a Microstrain 3DM-GX3-25 IMU, that aids with real-time pose esti-
mation. Onboard, there are two monocular cameras: one PlayStation Eye camera (320× 240 at
60 fps) facing downward for state estimation and one high-dynamic range PointGrey Chameleon
camera (640× 480 at 30 fps) for monocular navigation. A single beam lidar based sensor is used
to resolve the metric altitude.

Mobile Ground Robot

We built a skid-steered ground robot that has all the software and hardware aspects exactly as the
MAV, other than the low-level controllers, to allow seamless transfer of modules. In addition, for
data collection purposes, a Bumblebee color stereo camera pair (1024× 768 at 20 fps) is rigidly
mounted with respect to the front camera using a custom 3D printed fiber plastic encasing. Even
though the validation images are from a slightly different perspective than encountered by the
MAV during flight, we found in practice that modules generalized well.

Software Architecture

We have a distributed processing framework for the high-level planning as shown in Figure 2.2,
where an image stream from the front facing camera is streamed to the base station (at 15 Hz)
where the perception module produces a local 3D scene map; the planning module uses these
maps to find the best trajectory to follow and transmits it back to the on-board computer where
the control module does trajectory tracking. The resulting desired velocity control commands
are sent to the Ardupilot which sends low level control commands to the motor controllers to
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Figure 2.2: Software Architecture. The flow of data and commands across our distributed pro-
cessing framework. Pose estimation and trajectory tracking is done online, whereas the high-
level planning is done off-board on a base-station. The communication is done over WiFi at 15
Hz.

achieve the desired motion. The pose estimation and trajectory following modules is run on-
board to minimize the effects of latency.

2.2 Monocular Depth Estimation

The perception system runs on the base station and is responsible for providing a 3D scene
structure which can be used for motion planning and control strategies. Depth estimation from a
monocular video sequence is a fundamental problem in computer vision. Most existing methods,
such as structure from motion (SFM) and motion stereo, are only applicable to static scenes and
require the camera motion to introduce parallax. In contrast, in this section, we present two
monocular depth estimation techniques for video sequences acquired by an MAV, that involves
non-translational cameras.

2.2.1 Deep Learning based Depth Prediction

In recent years, deep learning approaches have achieved significant success on a large variety of
computer vision tasks like image classification [39, 53, 85, 90], object detection [33], semantic
segmentation [62]. Such methods have recently outperformed even humans in image classifi-
cation tasks [39, 90]. Most of these methods use various neural network (NN) architectures
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for learning complicated non-linear models from large amount of supervized data. Neural net-
works have been used in the past for learning autonomous driving policies from camera streams
[70, 74]. Fouhey et al. [28] have used deep networks for surface normal prediction from single
images, Eigen et al. [23] have used CNN’s for both surface normal and depth prediction from
single images. In this section we leverage recent advances in deep learning to train a convo-
lutional neural network [53] for predicting depth at every pixel for a video sequence from the
front-facing camera stream of the MAV.

Convolutional neural networks (CNN) are a particular kind of neural network particularly
suited for vision tasks. A typical CNN architecture has many successive layers of filters which
are convolved over the output of previous layers, and their outputs are passed on to subsequent
layers. The input to the network is the image and the output in our case is depth in meters at every
pixel of the image. These networks are trained by backpropagation [76] on a differentiable loss
function appropriately designed for the task at hand. To handle large amounts of data stochastic
gradient descent (SGD) [6] is usually used as the solver. SGD only computes the gradient needed
for backpropagation with respect to small batches of the data instead of with respect to the entire
dataset (as is the case in regular batch gradient descent). Modern implementations like Caffe [47]
and Theano [5] can use modern graphical processing units (GPUs) for fast training and inference.
Furthermore they can seamlessly switch to CPU for both training and inference if a suitable GPU
is not available. This is very convenient since once can train these networks on expensive but
fast GPUs and then do inference on regular CPUs mounted on a robot or in a laptop serving as
the base station.

Network Architecture

Figure 2.3 shows the CNN architecture we have used for predicting depth at every pixel of an
incoming image. The network architecture is the same as that used by Krizhevsky et al. [53]
for classifying images in the ImageNet classification challenge in 2012. This network is also
known informally as “AlexNet”. The difference is that our loss function is the squared loss
for regressing to the ground truth depth value as opposed to the softmax loss function used for
multi-class classification in the ImageNet task. In Figure 2.3, the image is passed in as the first
layer which is the data layer. This is followed by two sets of convolution, rectified linear unit,
local response normalization and pooling layers. These are indicated in the diagram as conv1,
relu1, norm1, pool1 and conv2, relu2 etc. These are further followed by another three
sets of convolution and rectified linear unit layers followed by a final pooling layer (pool5). The
output of pool5 is given to two fully connected layers fc6 and fc7 which finally feed their
outputs to the last layer which is also fully connected fc8. During training phase, the output of
fc8 layer goes to the squared loss layer which determines how off we are from the ground truth
depth data obtained from stereo. This squared error is then used to compute the gradients needed
for backpropagation which tweaks the weights of each neuron such that the output will in turn
lower the error. During inference time, the loss layer is not used anymore and the output of fc8
constitutes the depth image which is then used for trajectory evaluation by the planning layer.
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Figure 2.3: We use the AlexNet architecture from [53] to train a CNN for depth prediction. The
input is an image from the front camera of the MAV and the output at the last layer (fc8) is a
56 × 56 depth image. The network is trained by using backpropagation and stochastic gradient
descent as the solver. Depth images obtained from stereo image processing are used as the ground
truth values for computing the squared error and gradient used in backpropagation.

Figure 2.4: Example results from our deep network based depth regression scheme. (Left)
Image, (Middle) Ground truth (Right) Predicted depth map.

Implementation Details

The front camera image stream is resized to 227× 227 pixels for input to the CNN. For training,
ground truth depth values are obtained from the Bumblebee stereo camera registered to the front
camera of the MAV. We collected a dataset of 60k images and their corresponding stereo depth
images. 50k images were used for training while 10k images were used for validation. We take
the logarithm of depth values for training the network to keep errors scale-independent. During
inference time the predicted depth values are exponentiated back. The depth images are also
binned into 4 × 4 windows to produce a 56 × 56 depth image. All depth values which are less
than 1 m are filtered out. This is because if the MAV gets less than 1 m to any obstacle then it
is inevitably going to crash and the CNN should concentrate on accurately predicting obstacles
further than 1 m away. The parameters of stereo processing are set conservatively so that only
high confidence regions are kept and others are rejected and marked invalid with the special value
0 in the resulting depth image. During backpropagation, these invalid pixel values are ignored for
error calculation. We use the Caffe [47] toolbox and a NVIDIA Titan Z graphics card [72] with
5760 parallel GPU cores and 12 gb of gpu ram for training the depth prediction model. Inference
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is done off-board but online on the ground station laptop on a quad core Intel i7 processor which
is able to do depth prediction at 13Hz on 640× 480 pixel images from the front camera stream.
Figure 2.4 shows example image, and predicted depth images.

2.2.2 Direct Visual Odometry based Depth Estimation
In the last few years, direct approaches [31, 89, 93, 101] for scene geometry reconstruction
have become increasingly popular. Instead of operating solely on visual features, these methods
directly work on the image intensities for both mapping and tracking: The world is modeled as
a dense surface while in turn new frames are tracked using whole-image alignment. In addition
to higher accuracy and robustness, in environments with few features, this provides substantially
more information about the geometry of the environment. In this section, we build upon recently
published work on monocular visual odometry [12, 25] to present a complex system focusing on
depth map estimation for fast obstacle avoidance and then introduces our contributions for robust
behavior in cluttered environment as explained below.

Mapping:

The depth estimates are obtained by a probabilistic approach for adaptive-baseline stereo [24].
This method explicitly takes into account the knowledge that in video, small baseline frames
occurs before large baseline frames. A subset of pixels is selected for which the disparity is
sufficiently large, and for each selected pixel a suitable reference frame is selected and a one di-
mensional disparity search is performed. The obtained disparity is converted to an inverse-depth
representation, where the inverse depth is directly proportional to the disparity. The map is then
updated using this inverse depth estimate. The inverse depth map is propagated to subsequent
frames, once the pose of the following frames has been determined and refined with new stereo
depth measurements. Based on the inverse depth estimate d0 for the pixel, the corresponding
3D point is calculated and projected onto the new frame and assigned to the closest integer pixel
position providing the new inverse depth estimate d1. Now, for each frame, after the depth map
has been updated, a regularization step is performed by assigning each inverse depth value the
average of the surrounding inverse depths, weighted by their respective inverse variance (σ2).
An example of the obtained depth estimates has been shown in Figure 2.5. Note: In order to
retain sharp edges, which can be critical for detecting trees, we only perform this step if the two
adjacent depth values are statistically similar i.e. their variance is within 2σ.

Tracking:

Given an image IM : Ω → R, we represent the inverse depth map as DM : ΩD → R+, where
ΩD contains all pixels which have a valid depth. The camera pose of the new frame is estimated
using direct image alignment. The relative pose ξ ∈ SE(3) of a new frame I , is obtained by
directly minimizing the photometric error:

E(ξ) :=
∑

x∈ΩDM

‖IM(x)− I(w(x,Dm(x), ξ))‖δ (2.1)
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Figure 2.5: Semi-dense Depth Map Estimation. (Top left) Example image frame (Bottom left)
Depth map. Colormap: Inverted Jet, Black pixels are for invalid pixels (Right) Corresponding
3D point cloud. Color based on height

where w : ΩDM
× R × SE(3) → ω projects a point x from the reference frame image into the

new frame and ‖ · ‖δ is the Huber norm to account for outliers. The minimum is computed using
iteratively re-weighted Levenberg-Marquardt minimization [25].

Scale Estimation:

Scale ambiguity is inherent to all monocular visual odometry based methods. This is not critical
in visual mapping tasks, where the external scale can be obtained using fiducial markers [13, 78,
79]. However, for obstacle avoidance in real-time, it is required to accurately recover the current
scale so that the distance to the object is known in real world units. We resolve the absolute scale
λ ∈ R+ by leveraging motion estimation from a highly accurate single beam laser lite sensor
onboard. We measure, at regular intervals (operating at 15 Hz), the estimated distance traveled
according to the visual odometry xi ∈ R3 and the metric sensors yi ∈ R3. Given such sample
pairs (xi, yi), we obtain a scale λ(ti) ∈ R as the running arithmetic average of the quotients ‖xi‖‖yi‖
over a small window size. We further pass the obtained set of scale measurements through a
low-pass filter in order to avoid erroneous measurements due to sensor noise. The true scale λ
thus obtained is used to scale the depth map to real world units.
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2.2.3 IMU Pre-Integration on Lie-Manifolds
Visual Odometry (VO) based approaches, like the one described above, are inherently suscep-
tible to strong inter-frame rotations. One possible solution is to use a high frame rate camera.
However, this has its own limitations in terms of power and computational complexity. Rather we
build upon the recent advancements in visual-inertial navigation methods [48, 83, 99] that use an
Inertial Measurement Unit (IMU) to provide robust and accurate inter-frame motion estimates.

We denote with Iij the set of IMU measurements acquired between two consecutive keyframes
i and j. We denote with Ci the camera measurements at keyframe i and Kk denotes the set of all
keyframes up to time k. Usually, each set Iij contains hundreds of IMU measurements. The set
of measurements collected up to time k is

Zk = {Ci, Iij}i,j∈Kk
(2.2)

We use this to infer the motion of the system from IMU measurements. All measurements
between two keyframes at times k = i and k = j can be summarized in a single compound
measurement, named preintegrated IMU measurement, which constrains the motion between
consecutive keyframes. This concept was first proposed by Lupton and Sukkarieh [64] using
Euler angles and Forster et al. [27] extended it, by developing a suitable theory for preintegration
on Lie-manifolds. The resulting preintegrated rotation increment is given as:

∆R̃ij
.
=

j−1∑

k=i

Exp((w̃k − bi)∆t) (2.3)

where w̃k ∈ R3 is the instantaneous angular velocity of the kth frame, relative the world frame.
bi is a constant noise bias at time ti and the shorthand ∆t

.
=
∑j

k=i ∆t. Equation 2.3 provides an
estimate of the rotational motion between time ti and tj , as estimated from inertial measurements.

Now, the warp function w as described in Eq. 1 can be written as:

w(x,DM , T ) = π(Tπ−1(x,DM(x))). (2.4)

where π−1(x,DM) represents the inverse projection function and T ∈ SE(3) represents the 3D
rigid body transformation. The estimated motion transform is updated using the calculated prein-
tegrated inertial rotation from the previous step such that

Timu =

[
∆R̃imu t

0 1

]
(2.5)

where ∆R̃imu ∈ SO(3) and t ∈ R3. During optimization, a minimal representation for the
pose is required, which is given by the corresponding element ξ ∈ SE(3) of the associated Lie-
algebra such that ξ(n)

imu = logSE(3)(Timu). In the prediction step, the new estimate is obtained by
multiplication with the computed update:

ξ(n+1) = δξ(n) ◦ ξ(n)
imu (2.6)

where δ(ξ)n is computed by solving for the minimum of a Gauss-Newton second order approxi-
mation of the photometric error E. As the optimizer is fed with more robust rotational estimates,
the resulting pose after visual-inertial fusion is less susceptible to strong inter-frame rotations.
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Figure 2.6: Illustration of the complicated nature of the loss function for collision avoidance.
(Left) Groundtruth tree locations (Middle) Bad prediction where a tree is predicted closer than it
actually is located (Right) Fatal prediction where a tree close by is mispredicted further away.

2.3 Multiple Predictions

The monocular depth estimates are often noisy and inaccurate due to the challenging nature of
the problem. A planning system must incorporate this uncertainty to achieve safe flight. Figure
2.6 illustrates the difficulty of trying to train a predictive method for building a perception system
for collision avoidance. Figure 2.6 (left) shows a ground truth location of trees in the vicinity
of an autonomous MAV. Figure 2.6 (middle) shows the location of the trees as predicted by the
perception system. In this prediction the trees on the left and far away in front are predicted
correctly but the tree on the right is predicted close to the MAV. This will cause the MAV to
dodge a ghost obstacle. While this is bad, it is not fatal because the MAV will not crash but make
some extraneous motions. But the prediction of trees in Figure 2.6 (right) is potentially fatal.
Here the trees far away in front and on the right are correctly predicted whereas the tree on the
left originally close to the MAV, is mispredicted to be far away. This type of mistake will cause
the MAV to crash into an obstacle it does not know is there.

Ideally, a vision-based perception system should be trained to minimize loss functions which
will penalize such fatal predictions more than other kind of predictions. But even writing down
such a loss function is difficult. Therefore most monocular depth perception systems try to
minimize easy to optimize surrogate loss functions like regularized L1 or L2 loss [80]. We try
to reduce the probability of collision by generating multiple interpretations of the scene to hedge
against the risk of committing to a single potentially fatal interpretation. Specifically we generate
3 interpretations of the scene and evaluate the trajectories in all of them. The trajectory which
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Figure 2.7: The scene at top is an example from the front camera of the MAV. On the left is
shown the predicted traversability map (red is high cost, blue is low cost) resulting from a single
interpretation of the scene. Here the MAV has selected the straight path (thick, green) which will
make it collide with the tree right in front. While on the right the traversability map is constructed
from multiple interpretations of the image, leading to the trajectory in the right being selected
which will make the MAV avoid collision.

is least likely to collide on average in all interpretations is then chosen as the one to traverse.
One way of making multiple predictions is to just sample the posterior distribution of a learnt
predictor. In order to truly capture the uncertainty of the predictor, a lot of interpretations have
to be sampled and trajectories evaluated on each of them. A large number of samples will be
from around the peaks of this distribution leading to wasted samples. This is not feasible given
the real time constraints of the problem

In previous work, Dey et al. [18] have developed techniques for predicting a budgeted number
of interpretations of an environment with applications to manipulation, planning and control.
These approaches try to come up with a small number of relevant but diverse interpretations of
the scene so that at least one of them is correct. In this work, we adopt a similar philosophy
and use the error profile of the deep learning based depth regressor described in the Section
2.2.1 to make two additional predictions: For each depth value predicted by it, the average over-
prediction and under-prediction error is recorded. For example the predictor may say that an
image patch is at 3 meters while it is actually either, on average, at 4 meters or at 2:5 meters.
We round each prediction depth to the nearest integer, and record the average over and under-
predictions as in the above example in a look-up table (LUT). At test time the predictor produces
a depth map and the LUT is applied to this depth map, producing two additional depth maps:
one for over-prediction error, and one for the under-prediction error.
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In a similar spirit, we make multiple predictions by utilizing the variance of the estimated
inverse depth which is already calculated in our direct visual odometry framework. At every
pixel, the variance of the inverse depth is used to find the inverse depth value one standard
deviation away from the mean (both lower than and higher than the mean value) and inverted
to obtain a depth value. So, a total of 3 depth predictions are made: 1) mean depth estimate 2)
depth estimate at one standard deviation lower than the mean depth at every pixel and 3) depth
estimate at one standard deviation greater than the mean depth at every pixel. Figure 2.7 shows
an example in which making multiple predictions is clearly beneficial compared to the single
best interpretation (using the deep learning based depth estimation method).

2.4 Planning and Control

2.4.1 Receding Horizon Planner

We use a semi-global planning approach in a receding horizon planning scheme [51]. To the
best of our knowledge, this is the first demonstration of receding horizon control with monocular
vision implementation on a MAV. Once the planner module receives a scaled-depth map from
the perception module, it projects it to a 3D point cloud representation, and the local map is
updated using the current pose of the MAV. A trajectory library of 78 trajectories of length 5
meters is budgeted and picked from a much larger library of 2401 trajectories using the maximum
dispersion algorithm by Green et al. [35]. This is a greedy procedure for selecting trajectories,
one at a time, so that each subsequent trajectory spans maximum area between it and the rest of
the trajectories. Figure 2.8 shows our quadrotor evaluating a set of trajectories on the projected
depth image obtained from monocular depth prediction and traversing the chosen one.

Our system accepts a goal direction as input and ensures that the vehicle makes progress
towards the goal while avoiding obstacles along the way. For each of the budgeted trajectories
a score value for every point in the point cloud, is calculated by taking into account several
factors, including the distance to goal, cost of collision, etc., and the optimal trajectory to follow
is selected. Further, the receding horizon module maintains a score for every point in the point
cloud. The score of a point decays exponentially the longer it exists. After some time when it
drops below a user set threshold, the point is deleted. The decay rate is specified by setting the
time constant of the decaying function. This fading memory representation of the local scene
layout has two advantages: Firstly, it prevents collisions caused by narrow field-of-view issues
where the MAV forgets that it has just avoided a tree, sees the next tree and dodges sideways,
crashing into the just avoided tree. Secondly, it also allows emergency backtracking maneuvers
to be safely executed if required, since there is some local memory of the obstacles it has just
passed.

The control module takes as input the selected trajectory to follow and generates waypoints
to track using a pure pursuit strategy [10]. Specifically, this involves finding the closest point
on the trajectory from the robot’s current estimated position and setting the target waypoint to
be a certain fixed lookahead distance further along the trajectory. The lookahead distance can
be tuned to obtain the desired smoothness while following the trajectory; a larger lookahead
distance leads to smoother motions, at the cost of not following the trajectory exactly. Using the
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Figure 2.8: (Left) Example of receding horizon with a quadrotor using monocular vision. The
lower left images show the view from the front camera and the corresponding depth images from
the monocular depth perception module. The rest of the figure shows the overhead view of the
quadrotor and the traversability map (builtby projecting out the depth image) where red indicates
higher obstacle density. The grid is 1 × 1 m2. The trajectories are evaluated on the projected
depth image and the one with the least collision score (thick green) trajectory followed. (Right)
Receding horizon control on MAV in motion capture. A library of 78 trajectories of length 5 m
are evaluated to find the best collision-free trajectory. This is followed for some time and the
process repeated.

pose estimates of the vehicle, the MAV moves towards the next waypoint using a LQR controller
as described in Section 2.4.3. Figure 2.9 shows the overall flow of data and control commands
between various modules. For further details on our planning approach, we direct the reader to
previous work by Daftry et al. [14], Dey et al. [19].

2.4.2 State Estimation

In receding horizon, one only needs a relative, consistent pose estimation system as trajectories
are followed only for a short duration (3 seconds in our implementation). As looking forward to
determine pose is ill-conditioned due to a lack of parallax, we use a downward looking camera in
conjunction with a single beam lidar for determining this relative pose. There are still significant
challenges involved when looking down. Texture is often very self similar making it challenging
for traditional feature based methods [52, 71] to be used. We used a variant of a Kanade-Lucas-
Tomasi (KLT) tracker [95] to detect where each pixel in a grid of pixels moves over consecutive
frames, and estimating the mean flow from these after rejecting outliers. We do the outlier
detection step by comparing the variation of the flow vectors obtained for every pixel on the grid
to a specific threshold. Whenever the variance of the flow is high, we do not calculate the mean
flow velocity, and instead decay the previous velocity estimate by a constant factor. However,
this estimate of flow however tries to find the best planar displacement between the two patches,
and does not take into account out-of-plane rotations, due to motion of the camera. Out-of-plane
camera ego-motion is compensated using motion information from the IMU and the metric scale
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Figure 2.9: The overall flow of data and control commands between various modules. The pure
pursuit trajectory follower and low-level controller (purple boxes) are shown in greater detail at
the bottom.

is estimated from sonar. The computed instantaneous relative velocity between the camera and
ground is integrated over time to get position. This process is computationally inexpensive, and
can be run at very high frame rates. Higher frame rates lead to smaller displacements between
pairs of images, which in turn makes tracking easier.

2.4.3 Wind-Resistant LQR Control

In this section, we describe our proposed approach for wind-resistant LQR control. The problem
under consideration can be described as follows: Given the knowledge of the current and past
states of the MAV, can we estimate the current wind conditions and determine appropriate control
actions that would help recover from these expected disturbances? To this end, we propose to
learn a dynamic model of our MAV and observe the errors in the model’s predictions in windy
conditions, and compare them to errors in calm conditions in order to determine the magnitude
and direction of the wind. These observations can be built into a learned model for wind behavior,
which allows for future control commands to be adjusted for the predicted effects of the wind.
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System Identification:

Given the application and the requisite desired performance, we are only interested in the vehi-
cle dynamics involving small angular deviations and angular velocities. Thus, we linearize the
dynamics and approximate the MAV as a linear system. Now, while this is trivial for roll and
pitch, yaw is not limited to small angles in our motion model, resulting in a non-linear behavior.
This non-linearity can be removed by building our model in the world frame and transforming
the results to the robot frame when necessary. Thus, the robot’s motion model can be represented
by the following state space equation:

x(t+ 1) = Ax(t) + Bu(t) (2.7)

where the state vector x = [x, y, ẋ, ẏ, θ] consists of x and y positions, x and y velocities and the
yaw angle and u = [η̃, φ̃, θ̃] is the control input vector consisting of roll, pitch and yaw control
commands. The matrices A and B can be obtained analytically by system parameters such as
mass, moment of inertia, center of mass, etc. However. these parameters are difficult to obtain
in practice. Moreover, this approach cannot model the effects of the time varying aerodynamic
forces. Alternatively, we run a large number of experiments to record the state and command
data from actual flight and then learn the matricesA and B that best fit the data. In this work, we
recast the system identification problem into a least square solution to an overdetermined set of
linear equations. Specifically, the state space equations can be condensed into the form

X(t+ 1) = [A,B]

[
x(t)
u(t)

]
(2.8)

where the matrix [A,B] can be solved using linear regression.

Wind Modeling, Detection, and Resistance:

Traditional approaches for wind detection, model the gust forces assuming a static dominant di-
rection derived from the Drysden model [88]. However, this model is only applicable to MAVs in
open terrain and fails for MAV flights in cluttered environments like forests, as the gush of wind
has a profile of varying velocity on a time-scale shorter than the scale of the vehicle flight time.
Thus, we use an alternate approach for determining the wind disturbance, which relies on the
use of the acceleration data. In our proposed approach we attempt to understand the behaviors of
our learned system model in both windy and wind-free conditions. Any deviations that should
occur, given the current state and inputs, can be attributed to wind disturbances. In particular,
the effects of the wind on the system dynamics can be observed by analyzing the differences in
model errors in both conditions (See Figure 2.13a). The magnitude of the difference at a given
time represents the current wind impact on the MAV and the direction can be determined by x
and y components of the velocity error since the wind should cause unexpected acceleration in
the direction of the wind. Furthermore, the differences in model errors between the average error
distribution and the current real time distribution at a given time can be broken down into each
state’s error. Additionally, if we assume that the current wind magnitude and direction is the

20



same as it was in the previous time step, the MAV model’s state can be extended to include wind
resulting in a new model:

x(t+ 1) = Ax(t) + Bu(t) + w(t) (2.9)

where w = [wx, wy, wẋ, wẏ, 0] are the wind-bias correction terms corresponding to x, y positions
and x, y velocities. We assume the wind to have no impact on the yaw angles. The validity
of these assumptions can be determined by observing the variance in the previous N errors. If
the variance is low, it is likely that the next error will be the same as the past few and so the
model should be updated to correct for this error since wind comes in low frequency bursts. If
the variance is high, then the error is can be attributed to random noise or other modeling error
and it is ignored in future predictions. This process can be executed in real time during flight
allowing for current estimates for the wind force.

Controller Design:

The system dynamics model is used to implement an output feedback control law to track a
given trajectory. An LQR controller [108], u = −Kx was designed to minimize the following
quadratic cost function

J = lim
N→∞

E(
N∑

k=1

x(t)TQx(t) + u(t)TRu(t)) (2.10)

where Q ≥ 0 and R ≥ 0 are the weighing matrices that reflect the tradeoff between regulation
performance and control effort. The diagonal entries in the weighing matrices are iteratively
tuned [17] to ensure a good transient response without saturating the control inputs.

2.5 Experimental and Results
In this section we analyze the performance of our proposed method for robust monocular MAV
flight through outdoor cluttered environments. All the experiments were conducted in a densely
cluttered forest area as shown in Figure 3.4, while restraining the MAV through a light-weight
tether. It is to be noted that the tether is only for compliance to federal regulations and does not
limit the feasibility of a free flight.

2.5.1 Performance Evaluation of Monocular Depth Estimation
Ground truth

In order to collect groundtruth depth values, a Bumblebee color stereo camera pair (1024 ×
768 at 20 Hz) was rigidly mounted with respect to the front camera using a custom 3D printed
fiber plastic encasing. We calibrate the rigid body transform between the front camera and the
left camera of the stereo pair using the flexible camera calibration toolbox from Daftry et al.
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Figure 2.10: (Top Left) Testing area near Carnegie Mellon University, Pittsburgh, USA and
(Right) An example image illustrating the density of the forest environment during summer.
(Below) Example images during winter conditions

[11]. Stereo depth images and front camera images are recorded simultaneously while flying the
drone. The depth images are then transformed to the front camera’s coordinate system to provide
groundtruth depth values for every pixel. The corpus of train and test data consists of 50k and
10k images respectively, and was acquired from the same test site.

Accuracy compared to Ground truth

We evaluate performance of the perception module for depth map accuracy. Figure 2.11 shows
the average depth error against ground truth depth images obtained from stereo processing as
explained above. As baseline, we compare our method to state-of-the-art approaches for real-
time monocular depth estimation using non-linear regression [19] and Depth CNN [23]. The
error plots have been binned with respect to the ground-truth, in order to show the quality of
depth maps at different working scale (For a receding horizon scheme, accurate reconstruction
of objects only upto a 10 m range is relevant). It can be observed that direct visual odometry
performs really well with low error values up to [15, 20] m. Please note that both the baseline
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Figure 2.11: Average root-mean-squared-error (RMSE) binned over groundtruth depth buckets
of [1, 5] m, [5, 10] m, etc. Groundtruth depth images are obtained from stereo image processing.

methods are learning-based approaches and thus have been trained on the training data collected.
This graph nevertheless serves to show the accuracy of the our proposed perception method.

Benefits of Visual-Inertial Fusion

As discussed previously, tracking-based methods are highly susceptible to strong inter-frame ro-
tations. We can observe from Figure. 2.11 that fusion of inertial data according to out proposed
formulation improves the accuracy of the eventual depth maps. In particular, this can be directly
attributed to two reasons: First, better initial conditions to the optimizer leads to faster conver-
gence and prevents it from being stuck in a local optima. Secondly, lesser number of tracking
losses; each time tracking is lost, the depth maps are initialized to random values and hence
results in poor depth maps for the initial few frames till the VO recovers. Quantitatively, we
observed the total tracking loss was reduced by 55% in average over a distance of 1 km. Quali-
tatively, the estimated depth maps can be observed to be within the uncertainty range of stereo,
as shown in Figure 3.7. Its interesting to note from the qualitative results that our method is able
to robustly handle even poor quality images that suffer from over- or under-exposure, etc.
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Figure 2.12: Qualitative analysis of depth maps produced by our proposed depth estimation
approach with respect to stereo ground-truth. (Left) Image (Middle) estimated depth map and
(Right) ground-truth depth map. Note: Jet colormap

2.5.2 Performance Evaluation of Wind Estimation and Resistance
To evaluate the performance of the wind correction, we compared the accuracy of the original
model and the adaptive wind correction on state and command data collected during flight under
windy conditions. Figure 2.13b demonstrates how the wind correction can adjust the model’s
prediction during windy conditions. Specifically, the mean error in y velocity estimation during
windy conditions was significantly shifted away from zero due to the force of the wind. Addi-
tionally, after wind correction, the mean modeling error returns to being centered around zero.
Furthermore, our experiment demonstrated that overall, this wind correction performed signifi-
cantly better than the original model during windy conditions. To elaborate, figure 2.13c shows
the resulting difference between the wind corrected error and the original model’s error during
windy flight conditions sorted by their magnitude. As depicted by the magnitude and number
of negative errors, the wind corrected model made better predictions then the original model on
about 70% of the test data. Overall the wind corrected model demonstrated solid improvement
across all elements of the state during flight in windy conditions.

2.5.3 System-wide Performance Evaluation
Accuracy of State Estimation:

We evaluated the performance of the flow based tracker in motion capture and compared the true
motion capture tracks to the tracks returned by flow based tracker. The resulting tracks are as
shown in figure 2.14
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(a) (b) (c)

Figure 2.13: Wind Modeling, Detection and Correction. (a) Analysis of the differences in model
prediction errors can be used to estimate the effects of the wind on the MAV. (b) Example of
wind correction using our learned system model (c) Difference between the wind corrected error
and the original model’s error during windy flight show that wind corrected model made better
predictions.
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Figure 2.14: Comparison of the differential flow tracker performance vs ground truth in motion
capture. Yellow tracks are the true trajectories as determined by the very accurate motion capture
system, green are those determined by the algorithm. Note that due to constant replanning every
3 second, small drift in following a specific trajectory can be easily tolerated. So as long as the
drift is not more than a few centimeters over a trajectory, collision avoidance is not compromised.

Autonomous Flight Tests

Quantitatively, we evaluate the performance of our system by observing the average distance
flown autonomously by the MAV over several runs (at 1.5 m/s), before an intervention. An inter-
vention, in this context, is defined as the point at which the pilot needs to overwrite the commands
generated by our control system so as to prevent the drone from an inevitable crash. Experiments
were performed using both the proposed multiple prediction approach and single best prediction,
and results comparing to previous state-of-the-art approaches on monocular reactive control [77]
and receding horizon control [19] has been shown in Figure 3.6. Tests were performed in regions
of low and high clutter density (approx. 1 tree per 6× 6 m2 and 12× 12 m2, respectively).

It can be observed that using our perception approach MAVs can fly, at an average, 6 times
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Figure 2.15: Average flight distance per intervention for (a) Low and (b) High density regions.
For both, the corresponding multiple prediction variant performs significantly better.

further than pure reactive control in high density regions. While this is not surprising given
the accuracy of the depth maps produced, it affirms our claim that even when we are moving
forward, which is the direction of least parallax, good depth maps can be realized. Moreover,
multiple predictions gives a significant boost (upto 78% improvement in low density regions) to
the average flight distance over corresponding single prediction approach. In particular, the MAV
was able to fly autonomously without crashing over a 580 m distance at average. This validates
our intuition from Section ??-C that by avoiding a small number of extra ghost obstacles, we can
significantly reduce crashes due to uncertainty.

2.6 Summary
In this chapter, we have presented a robust approach for high-speed, autonomous MAV flight
through dense forest environments. Our direct depth estimation approach enables real-time com-
putation of accurate dense depth maps even when the MAV is flying forward, is robust to pure
rotations and implicitly handles uncertainty through multiple predictions. Further, we also pro-
pose a novel formulation for wind-resistant control that allows stable waypoint tracking in the
presence of strong gusts of wind. During a significant amount of outdoor experiments with
flights over a distance of 2 km, our approach has avoided more than 530 trees in environments
of varying density. In future work, we hope to move towards complete onboard computing of
all modules to reduce latency. Another central future effort is to integrate the purely reactive
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approach with the deliberative scheme detailed here, for better performance. This will allow us
to perform even longer flights, in even denser forests and other cluttered environments.
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Chapter 3

Introspection for Failure Recovery
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As autonomous robots aspire for long-term autonomous operations in complex dynamic en-
vironments, accurate situational awareness from perception becomes a pivotal requirement for
verifiable safety standards. Thus, there has been a recent push towards building systems with
the ability to mitigate potentially overconfident actions by an appropriate assessment of how
qualified it is at that moment to make a decision. We call this self-evaluating capability as intro-
spection1. In this chapter, we take a small step in this direction and propose a generic framework
for introspective behavior in perception systems. Our goal is to learn a model to reliably predict
failures in a given system, with respect to a task, directly from input sensor data. We present
this in the context of vision-based autonomous MAV flight in outdoor natural environments, and
show that it effectively handles uncertain situations.

3.1 Risk-Aware Perception

3.1.1 Need for Failure Prediction in Vision Systems
Perception is often the weak link in robotics systems. While considerable progress has been
made in the computer vision community, the reliability of vision modules is often insufficient for
long-term autonomous operation. Of course this is not surprising for two reasons. First, while
vision algorithms are being systematically improved in particular by using common benchmark

1Introspection. The act or process of self-awareness; contemplation of one’s own thoughts or feelings, and in
the case of a robot, its current state.
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datasets such as KITTI [30] or PASCAL [26], their accuracy on these datasets does not neces-
sarily translate to the real-world situations encountered by robotics systems. We advocate that
for robotics applications, which often involve mission-critical decision-making, evaluating per-
ceptions systems based on these standard metrics is desirable but insufficient to comprehensively
characterize system performance. The dimension missed is that spawned by a robot’s ability to
take action in ambiguous situations. Second, even if a vision algorithm had perfect performance
on these off-line datasets, it is bound to encounter inputs that it cannot handle in the stream
of sensor data continuously processed by a typical autonomous system. For example, over- or
under-exposed images, images with massive motion blur would confound a vision-based guid-
ance system for a mobile robot. As we aspire for long-term autonomous operation, autonomous
robotics systems have to contend with vast amounts of continually evolving, unstructured sen-
sor data from which information needs to be extracted. In particular, the problem aggravates
for perception systems where the problems are often ambiguous, and algorithms are designed to
work under strong assumptions that may not be valid in real-world scenario. Several factors -
degraded image quality; uneven illumination; poor texture - can affect the quality of visual input,
and consequentially affect the robots’ action, possibly resulting in catastrophic failure. While it
is possible to anticipate some of these conditions and hardcode ad-hoc test to reject such inputs,
it is impossible to anticipate all of the conditions encountered in a real world environment.

This presents a challenge and an opportunity particularly to the robotics community as the
real cost of failure can be significant. For example, an autonomous drone that misses to detect an
obstacle can suffer disastrous consequences. They can cause catastrophic physical damage to the
robot and its surroundings, which may also include people. We thus believe that it is essential to
identify as early as possible, i.e., based on sensor input, situation in which a trustable decision
cannot be reached because of degraded performance of the perception system. Crucially, and
central to this paper, this requires the perception system to have the ability to evaluate its input
based on a learned performance model of its internal algorithm. We call this capability intro-
spection, a precursor to action selection. In this chapter, we explore the possibility of building
introspective perception systems that can reliably predict their own failures and take remedial
actions. We argue that while minimizing failures has been the primary focus of the community,
embracing and effectively dealing with failures has been neglected.

We propose a generic framework for introspective behavior in perception systems that en-
ables a robot to know when it doesn’t know by measuring as as to how qualified the system it is
to make a decision. This helps the system to mitigate the consequences of its failures by learn-
ing to predict the possibility of one in advance and take preventive measures. We explore these
ideas in the context of our autonomous MAV flight, where mission-critical decisions equate to
safety-critical consequences. This requires the MAV to successfully estimate a local map of its
surrounding in real-time, at minimum the depth of objects relative to the drone, and based on this
map to select an optical trajectory to reach its destination, while avoiding any obstacle. It is cru-
cial to note that this kind of a system, like most other real-world robotics applications, involves
pipelines, where the output of one system is fed into another as input. In such cases, decisions
based on overconfident output from one subsystem, in this case a perception module, will lead to
catastrophic failure. In contrast, anticipation of a possible failure based on previous experience
allows for remedial action to be taken in the subsequent layers. Providing this more germane
prediction is the introspective ability that we seek.
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3.1.2 Uncertainty Propagation

Our work addresses an issue that has received attention in various communities. The concept
of introspection as introduced here can be closely related to active learning [41, 49, 61], where
uncertainty estimates and model selection steps are used to guide data acquisition and selection
for an incremental learning algorithm. KWIK ‘Knows What It Knows’ frameworks [60] allow
for active exploration which is beneficial in reinforcement learning problems. Further, reliably
estimating the confidence of classifiers has received a lot of attention in the pattern recognition
community [22, 56, 69]. Applications such as spam-filtering [15], natural language processing
[2] and even computer vision [106] have used these ideas.

In robotics, the concept of introspection was first introduced by Morris et al. [68] and has
recently been adopted more specifically for perception systems by Grimmett et al. [37, 38]
and Triebel et al. [96]. They explore the introspective capacity of a classifier using a realistic
assessment of the predictive variance. This is in contrast to other commonly used classification
frameworks which often only rely on a one-shot (ML or MAP) solution. It is shown that the
accountability of this introspection capacity is better for real world robotics applications where a
realistic assessment of classification accuracy is required.

However, in all the above work, the analysis proceeds by examining the output of a system
to assess its confidence on any given input. Thus, the confidence evaluation has to be designed
specifically for each system. This is also particularly undesirable when the underlying system is
computationally expensive. Instead, we explore the alternative approach of evaluating the input
itself in order to assess the system’s reliability. The main motivation for such an approach is
that while perception system may not be able to reliably predict the correct output for a certain
input, predicting the difficulty or ambiguity of the input may still be feasible. Moreover, this is
applicable to any vision system because the reliability estimate is agnostic to the actual algorithm
itself and based on the input alone.

3.2 Introspection Perception
Introspective robot perception is the ability to detect and respond to unreliable operation of the
perception module. In this section, we describe a generic framework for introspective robot
perception using Deep Convolutional Neural Nets, which we illustrate in the context of vision-
based control of MAVs in the next section.

3.2.1 Introspection Paradigm

Introspection is distinct from conventional elements of robot architecture in that introspective
processes do not reside in the path of architectural data flow as shown in ??. Instead, the in-
trospective layer envelops all other layers. This allows the introspective system to observe the
robot’s computational activity as a whole. Through observation, introspection produces estimates
of the reliability of operational state and delivers system-level feedback to deliberative facilities.
Our goal is to learn a model for the performance of a perception system relative to a specific task,
e.g., trajectory evaluation for autonomous flying, solely based of the visual input; and use it to
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I think I might fail. 

Figure 3.1: Robot Introspection: Having a self-evaluating facility to know when it doesn’t know
will augment a robot’s ability to take reliable mission-critical decisions in ambiguous situations.

reliably predict whether the system is likely to fail on a given test instance.
In a similar spirit, Jammalamadaka et al. [45] recently introduced evaluator algorithms to

predict failures for human pose estimators (HPE). They used features specific to this application;
Welinder et al. [100] and Aghazadeh and Carslsson [1] predict the global performance of a
classifier on a corpus of test instances by analyzing statistics of the training and test data. Another
line of research involves the domain of ‘rejection’ - refusing to make a decision on an instance,
is related to systems that identify an instance as belonging to none of the classes seen during
training [97]. Zhang et al. [105] learn a SVM model to predict failures from visual input. Bansal
et al. [4] learn a semantic characterization of failure modes. The biometrics community has
been using image quality measures as predictors for matching performance [91]. In this context,
the concept of input ‘quality’ is closely tied to the underlying perception system. Our work
follows the same philosophy. Such methods, as do we, only analyze the input instance (e.g.,
fingerprint scan) to assess the likely quality of match. Our method is complementary to all the
previous approaches: it uses generic image appearance features, provides an instance-specific
reliability measure, and the scenario we consider is not only concerned with unfamiliar instances
arising from discrepancies in the distributions of the training and test data but also addresses
familiar but difficult instances. In addition, we show the effectiveness of such predictions in a
mission-critical decision making scenario such as robot navigation. We argue that a similar level
of self-evaluation should be part of all perception systems as they are involved in a variety of
real-world applications.

3.2.2 Deep Introspection
We frame this as a multi-step supervised learning algorithm: A deep spatio-temporal convolu-
tional net is trained to learn good invariant hidden latent representations. The corresponding hid-
den variables of data samples are then used as input to train a linear SVM [43], which generates

32



Image 

Optical Flow 
Temporal ConvNet 

Spatial ConvNet 

Input Video Stream 

Conv1 Conv2 Conv3 Conv4 Conv5 fc6 fc7 

Conv1 Conv2 Conv3 Conv4 Conv5 fc6 fc7 

fc8 

L
in

ea
r 

  S
V

M
 

Figure 3.2: Spatio-temporal convolutional neural net architecture for deep introspective percep-
tion. The layer schematics are same as AlexNet [53]

a failure prediction score as output. SVMs in combination with CNN features are a widely used
alternative to softmax for classification and regression tasks [92]. The output score is between
0 and 1 with higher scores indicating images for which the perception algorithm is predicted to
be unreliable. The score can then be used by the rest of the system to decide whether to plan an
action based on this input or to discard it and generate an alternate behavior.

Learning Spatio-Temporal ConvNets

In recent years, deep convolutional neural net (CNN) based models and features [53] have been
proven to be more competitive than the traditional methods on solving complex learning prob-
lems in various vision tasks [75]. Now, while great progress have been made in the domain
of single images for multimedia applications, the temporal component in the context of videos
is generally more difficult to use. We argue that in robotic applications video data is readily
available, and can provide an additional (and important) cue for any perception task.

We advocate that the use of this temporal component is crucial to introspective perception.
The challenge, however, is to capture complementary information from still frames and motion
between frames. To that end, we propose a two-stack CNN architecture as shown in Figure 3.2,
which incorporates spatial and temporal networks. This architecture is reminiscent of the human
visual system processes which uses the ventral pathway for processing the spatial information
[54], such as shape and color, while the dorsal pathway is responsible for processing the motion
information [46].

The layer configuration of our spatial and temporal ConvNet is similar to AlexNet [53]. Both
the spatial and temporal stacks contain five feature extraction layers of convolution and max-
pooling, followed by two fully connected layers. Dropout is applied to the two fully connected
layers. The spatial stack operates on individual video frames, while the input to our temporal
ConvNet stack is formed by trajectory stacking [98] of optical flow displacement fields between
several consecutive frames. Simonyan et al. [86] have shown that such an input configuration,
in the context of action recognition from videos, explicitly describes the motion between video
frames. This makes the learning easier, as the network does not need to estimate motion implic-
itly. The outputs of the fc7 layers from both the stacks are concatenated and fed to the fc8
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Figure 3.3: (a) Illustration of receding horizon control (b) Receding horizon control using depth
images from stereo. Red trajectories indicate that they are more likely to be in collision. Note:
Best seen in color.

layer, which builds a shared, high dimensional hidden representation.
The output of fc8 layer goes to the softmax loss layer which estimates the deviation from

the given target. This loss is then used to compute the gradients needed for back-propagation.
During inference time, the loss layer is not used anymore and the output of fc8, represented as
a d-dimensional feature vector: xi ∈ Rd, constitutes the deep features we seek. Responses from
the higher-level layers of CNN have proven to be effective generic features with state-of-the-art
performance on various image datasets [20, 75]. Thus, we use these responses as generic features
for introspection.

3.2.3 Quantifying Introspection

In order to characterize the introspective capacity of a perception framework, a quantifiable
measure is required. During training, we assume that we are given a dataset of N instances,
X = {x1, ..., xN} and targets Y = {y1, ..., yN}. The targets yi are the task-dependent perfor-
mance or accuracy score for the inputs xi. This may be any metric that is representative of the
failure probability of the system. For example, if the underlying perception system is a binary
classifier, yi can be the 0-1 loss. If the task is semantic segmentation, we can use proportion of
correctly classified pixels as a measure of accuracy. SVM training then involves learning a set of
parameters for regression task.

3.3 Introspection in Navigation

In this section we describe the introspective framework in the context of our autonomous flight
through a dense, cluttered forest. This application is particularly interesting given the wide spec-
trum of challenges involved in fault tolerance control in perception for autonomous aerial systems
navigating outdoor diverse environments based on a single sensor [107].
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3.3.1 Learning the Introspection Model

To emulate the kind of introspective behavior we are looking for in navigation tasks, our pro-
posed approach is to learn a introspection model to reliably predict when an image is going
to give a poor estimate of the trajectory labels, using the generic learning approach described
in Section 3.2.2. Hence, to train the introspection model for this application, the task-based
performance score yi is defined as the fraction of trajectories that are correctly predicted as
collision-free or collision-prone, with respect to ground truth. Figure 3.3b illustrates an example
of receding horizon control on an autonomous drone.

A pre-selected set of dynamically feasible trajectories of fixed length (the horizon), is evalu-
ated on a cost map of the environment around the vehicle and the trajectory and the most optimal
trajectory is selected. The challenge here, however, is to obtain ground-truth cost map, as it
would require manual annotation of each frame over several hours of video. Rather, we use a
self-supervised method to obtain ground truth by obtaining corresponding 3D map using stereo
data as shown in Figure 3.3c. We collected a dataset - BIRD Dataset, as detailed in Section ??
for training and validation of our introspection model. During data collection flights, we run
two pipelines in parallel: one using our described perception system, and one with the registered
stereo depth images. Trajectory data from both pipelines are recorded simultaneously while
flying the MAV, and we treat the one from stereo as the ground truth.

3.3.2 Emergency Maneuvers

During autonomous flight, inference is done on the learned model for each input frame to produce
a failure probability score. If the score is above a given threshold (0.5 for all our experiments),
the system is directed to execute a set of emergency maneuvers. Apart from preventing the drone
from an inevitable crash, these emergency maneuvers need to additionally ensure that they help
make the system more reliable by taking images under different conditions, than the ones under
which the frame generating the failure was taken. Thus, the design of these maneuvers needs
to take into account the failure modes specific to the system. A visual perception system, like
ours, is strongly susceptible to sudden motions like pure rotation and image exposure. Thus,
when alerted, a set of pure translational trajectories constrained in the image plane pointing in
different directions to avoid exposure issues are executed for N seconds till the reliability is
improved, after which normal deliberative planning is resumed.

3.4 Experiments and Results

In this section we analyze the performance of our proposed method for introspective robot per-
ception. All the experiments were conducted in a densely cluttered forest area as shown in Fig
3.4, while restraining the drone through a light-weight tether. It is to be noted that the tether is
only for compliance to federal regulations and does not limit the feasibility of a free flight.
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Figure 3.4: BIRD dataset. Sample images depicting the diversity of data obtained over summer
(Top) and winter (Bottom).

3.4.1 BIRD Dataset

A Bumblebee color stereo camera pair (1024× 768 at 20 fps) is rigidly mounted with respect to
the monocular camera, and registered using an accurate calibration technique [11]. We collected
data at several locations with varying tree density, under varying illumination conditions and
in both summer and winter conditions. Our corpus of imagery with stereo depth information
consists of 60k images. The training set comprises of 50k images, while 10k images have been
used for validation. The training/test split has been done so as preserve contiguous sequences as
opposed to random sampling from the corpus of images. While the latter will lead to training
data which is better represented by test data, we believe that the former is perhaps more realistic
for a robotics application. The dataset will be made publicly available upon the acceptance of
this paper.

We use the Caffe [47] toolbox and a NVIDIA Titan Z graphics card with 5760 parallel GPU
cores and 12 gb of gpu ram for training our introspection model. The camera images are re-
sized to 227 × 227 pixels for input to the spatial ConvNet. A multi-frame dense optical flow is
computed for each frame using a total variational based approach [102], and fed to the temporal
ConvNet. The convolutional layers (1-5) of the spatial network are pretrained on the ImageNet
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Figure 3.5: Error vs. Failure Rate curves for depth estimation using (a) Direct VO (b) Depth
CNN and (c) Non-linear Regression

classification task [16] - while developing the model, we found pretraining on ImageNet worked
better than initializing randomly. Unlike the spatial stream ConvNet, which can be pre-trained on
a large still image classification dataset like ImageNet, the temporal ConvNet needs to be trained
on video data - and the BIRD dataset is still rather small. To decrease over-fitting, we use ideas
from multi-task learning to learn a (flow) representation by combining several datasets in a prin-
cipled way [9]. We use two datasets from action recognition: UCF-101 [87] with 13K videos and
HMDB-51 [55] with 6.8K videos to pre-train the temporal ConvNet using the multi-task learning
formulation.

3.4.2 Quantitative Evaluation
Risk-Averse Metric: Quantitatively, we investigate the introspective capacity of the proposed
model with its ability to trade-off the risk of making an incorrect decision with either taking
remedial action or for the sake of this experiment, not making a decision at all. We believe such
a metric is crucial when dealing with real applications and thus, present the Risk-Averse Metric
(RAM). This metric was first proposed by Zhang et al. [105] and we adopt it to describes an Error
vs Failure Rate (EFR) curve. Failure Rate is defined as the proportion of test images on which
the perception system does not output a decision, in fear of providing an incorrect decision. This
curve is computed by sorting the test images in descending order of their reliability as estimated
by inference on our trained model. We then retain only a FR proportion of the test images (FR
[0, 1]), and discard the rest. Since, the output of our perception system is a local 3D map,
we compute the accuracy measure as mean reconstruction error with respect to stereo ground
truth on these retained images and plot error vs. FR. For other applications like classification or
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segmentation, it would be more natural to use accuracy instead of error. If introspection were
perfect, it would discard the worst performing images. Error would be very low at low FR and
then increase gracefully as FR approached 1. If introspection performed at chance level, on
average, the accuracy would remain constant with varying FR.

Performance Benchmarking

We compare the performance of our method to these upper and lower bounds (Figure 3.5a). We
see that even an approach as straightforward as introspection can perform significantly better than
chance. As a baseline, we compare our approach to architectures with only Spatial ConvNet [53]
and hand-crafted features [105]. The benefit of a deep hierarchical representation and temporal
component is evident, as compared to only spatial approaches. Moreover, most vision systems
often produce indicators of the confidence of their output e.g. energy of a conditional random
field (CRF) for the task of semantic segmentation or the introspective capacity of a classifier [38].
Previous methods have used this confidence score as an estimate for failure probability. For our
task, this is equivalent to classifying an image as failure if the mean per-pixel variance for depth
estimates is higher than a given threshold. As baseline, we compare and empirically show an
advantage over using such system-specific failure detection approach. We plot the results for
RAM in Fig 3.5 along side that from our introspection model. While model-based confidence
estimation can thought to be more reliable since it knows the inner workings of the underlying
algorithm, it is interesting to note that a black-box approach, like ours, still performs better.
This can be explained by the fact that analyzing specific error modes is not able to capture the
entire spectrum of possible failures. For systems that can afford to evaluate output confidence,
combining it with our approach would yield a better introspection model.

System-Agnostic Performance:

In order to show that our introspection model is generic and agnostic to the underlying percep-
tion system, we performed similar experiments with two other diverse approaches for depth map
estimation - Non-linear Depth Regression [19] and Depth CNN [23] as can be see in Figure 3.5
(b-c). The results show that indeed the introspection model captures information orthogonal to
the underlying perception system’s beliefs. Moreover, our approach has an implicit computa-
tional advantage. It needs to run the underlying vision system to obtain the targets yi only during
training. During inference, we estimate the reliability of the system using the raw input image
stream only. This makes the introspection model computationally better as any confidence based
method would first need to run the base system to obtain its output. This also makes our system
preemptive - allowing early rejection of possible failures. This is particularly desirable in real-
world safety-critical applications where it is acceptable to have relatively lower accuracy and
therefore deal with ”ghost failures”, but more expensive to miss a real failure.

3.4.3 Introspection Benefits to Autonomous Navigation
In this section, we study the benefits of our proposed introspection model to a downstream
mission-critical application like autonomous navigation. Quantitatively, we evaluate the perfor-
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Figure 3.6: Average flight distance per intervention for (a) Low and (b) High density regions.
For both, the corresponding introspection variant performs significantly better. We also plot the
performance of the pure reactive approach from [77] as a baseline.

mance of the obstacle avoidance system by observing the average distance flown autonomously
by the MAV over several runs (at 1.5 m/s), before an intervention. An intervention, in this con-
text, is defined as the point at which the pilot needs to overwrite the commands generated by our
control system so as to prevent the drone from an inevitable crash. Experiments were performed
with and without using our proposed introspective perception approach. Results comparing to
previous work on monocular reactive control by Ross et al. [77] as baseline has been shown in
Figure 3.6. Tests were performed in regions of low and high clutter density (approx. 1 tree per
6× 6 m2 and 12× 12 m2, respectively). It can be observed that introspective navigation results
in significantly better performance. In particular, the drone was able to fly autonomously without
crashing over a 1000 m distance at average. The difference is higher in case of high-density
regions where committing to an overconfident decision can be even more fatal.

3.4.4 Qualitative Evaluation
Further, we extend our evaluation to qualitatively assess our introspection model during flight
tests. In Figure 3.7a, we show the flight path taken by the MAV during a test run. The points at
which the introspection model alerted the system of a possible failure has been marked with an
asterisk in blue. Now, neural networks are known to largely remain ‘black-boxes’ whose function
is hard to understand. Additionally, since we do not have any ground-truth during system flight
tests, it is very hard to semantically characterize predicted failures into failure modes. However,
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Figure 3.7: Qualitative results of our proposed introspective perception approach for autonomous
navigation. (Top Left) Testing area near Carnegie Mellon University, Pittsburgh, USA. The flight
path for one of the test runs has been overlayed on an aerial image of the test site. The instances
where the system was alerted have been marked in blue asterisk. (b) A region of the path has
been zoomed to show the quality of 3D map reconstructed and the corresponding flight path
within the dense forest environment. (c) Row 1-3 illustrates the stream of images when system
was alerted, along with the intuitive reasoning.

we try to analyze the predicted failures, with the aim to obtain some intuition towards the kind of
failures our model is learning. Figure 3.7c shows the stream of images predicted to be unreliable.
Each row shows a different scenario of failure that occurred during the run. The model correctly
flagged images that are corrupted with strong shadows and over/under-exposure while retaining
the images with good contrast (Row-1); the effectiveness of the temporal model is evident as
the strong inter-frame rotations are flagged (Row-2); and finally, previously unseen scenarios
like open grounds are again flagged as uncertain (Row-3). We only present the most interesting
results here; See attached video for more qualitative results and observe introspective perception
in action.

3.5 Summary
In this chapter, we introduced the concept of introspective perception - a generic framework for
learning how to predict failures in vision systems. We have demonstrated our approach on a
classical autonomous navigation task. However, our treatment and findings apply to any aspect
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of robotics where action is required based on inference from sensor data. We present quantitative
and qualitative results to support our claims that this can predict failure reliably, and can help
improve the performance of a downstream application like autonomous navigation. Finally, with
this work we hope to bridge the gap between vision and robotics communities by taking a step
in the direction of building self-evaluating vision systems that fail gracefully, making them more
usable in real-world robotics applications even with their existing imperfections.
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Chapter 4

Adaptive Learning for MAV Control
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The ability to transfer knowledge gained in previous tasks into new contexts is one of the
most important mechanisms of human learning. Despite this, adapting autonomous behavior to
be reused in partially similar settings is still an open problem in current robotics research. In
this chapter, we take a small step in this direction and propose a generic framework for learning
transferable motion policies. Our goal is to solve a learning problem in a target domain by
utilizing the training data in a different but related source domain. We present this in the context
of an autonomous MAV flight using monocular reactive control, and demonstrate the efficacy
of our proposed approach through extensive real-world flight experiments in outdoor cluttered
environments.

4.1 Domain Adaptation in Robot Learning
As autonomous robots aspire for long-term autonomous operation in unstructured environments,
learning based methods [59, 67, 74, 77] have become a very powerful alternative to designing
hand-engineered perception and control software, even for basic tasks like collision avoidance.
However, a major drawback with such data-driven approaches is that knowledge is usually built
from scratch, and often involve complex data acquisition and training procedures. Seeking to
reduce learning time in RL, many works have focused on transfer of knowledge between tasks.
The determination of the knowledge to be transferred from one task to another has often been
treated with techniques of transfer learning. Transfer learning allows knowledge to be achieved
not only within tasks, but also across tasks. The goal is that the knowledge gained in source tasks
helps in learning a new target task.
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Furthermore, for autonomous navigation with mobile robots to be successful, it needs the
ability to operate with partial information and in dynamic environments. These combine to
produce what can be heavily stochastic observations and action outcomes. One solution is to
try to produce as much domain knowledge as possible, typically at the cost of high resolution
sensing and other resources. Producing such a high level of domain knowledge is useful to
producing a large amount of detailed past experience, ideal in such model-based approaches. A
more general approach, that requires much simpler modeling, is to provide or develop a direct
mapping between sensory inputs to actions, avoiding the need for detailed domain knowledge.

In this work, we argue that for many robot tasks it is not even possible to obtain real training
data for building reliable models. Even for tasks where training data can be obtained, the learned
policies only apply to the physical system and environment the model was originally trained
on, due to the limited variability of datasets. Moreover, in real-world applications we often
encounter changes in dynamic conditions, such as weather and illumination, which change the
characteristics of the domain. In all of the above scenarios, a good policy cannot be guaranteed if
it is trained by using traditional learning techniques. Therefore, there is incentive in establishing
techniques to reduce the labeling cost, typically by leveraging labeled data from relevant source
domains such as off-the-shelf datasets or synthetic simulations.

Representation or feature learning provides a framework to reduce the dependency on manual
feature engineering. Examples that can be considered as representation learning are Principal
Component Analysis (PCA), Independent Component Analysis (ICA), Sparse Coding, Neural
Net-works, and Deep Learning. In deep learning, the greedy layer-wise unsupervised training,
which is known as the pretraining, has played an important role for the success of deep neural
networks. Although representation learning-based techniques have brought some successes over
many applications, methods to address the distribution mismatch have not yet been well studied.

Domain adaptation, a method to formally reduce the domain bias, has addressed this problem
[3, 32, 73]. The domain discrepancy poses a major obstacle in adapting predictive models across
domains. For example, an object recognition model trained on manually annotated images may
not generalize well on testing images under substantial variations in the pose, occlusion, or il-
lumination. Domainadaptation establishes knowledge transfer from the labeled source domain
to the unlabeled target domain by exploring domain-invariant structures that bridge different
domains of substantial distribution discrepancy. One of the main approaches to establishing
knowledge transfer is to learn domain-invariant models from data, which can bridge the source
and target domains in anisomorphic latent feature space.

However, to date there have been very few attempts to enhance the transferability of learned
policies in the context of autonomous robotics. Even fewer have validated them experimen-
tally through real-world experiments. In this chapter, we explore these ideas in the context of
vision-based autonomous MAV flight in cluttered natural environments, and evaluate how a sin-
gle policy learned from labeled data from source domain using domain adaptation methods could
effectively enable and accelerate learning onto a new target domain.
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Figure 4.1: DAgger: A framework for Learnijng from Human Demonstrations.

4.2 Learning Transferable Policies
In this section, we describe our proposed approach for learning transferable policies for au-
tonomous MAV flight. In previous work, we have proposed an imitation learning based technique
[77] to directly learn a linear controller of drone’s left-right velocity based on visual input.

4.2.1 Monocular Reactive Control using Imitation Learning
Imitation learning is concerned with the problem of learning to perform a control task(e.g. nav-
igate safely and efficiently across a terrain from point A to point B) from demonstrations by an
expert. These techniques allow programming autonomous behavior in robotic systems easily via
demonstrations of the desired behavior, e.g. by human experts. This avoids time-consuming
engineering required by traditional control methods that rely on accurate dynamic models of
the system and well-engineered cost functions to synthesize controllers that produce the desired
behavior. As the tasks performed by robotic systems continuously increase in complexity, it is
becoming increasingly harder to provide good models and cost functions. As a result, learning by
demonstration techniques are becoming more and more popular and have led to state-of-the-art
performance in a number of recent applications, including, e.g. outdoor mobile robot navigation,
legged locomotion, advanced manipulation, and electronic games. In Figure 4.1, we show the
DAgger procedure proposed by [77] for imitation learning in a driving scenario.

In the same spirit, given a set of human pilot demonstrations in cluttered forest environments,
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Figure 4.2: The interface for learning MAV control through human demonstrations. The pilot
can provide virtual control commands using a joystick controller.

we train such a reactive policy that can avoid trees by adapting the MAV’s heading as the drone
moves forward. In this application, DAGGER is applied as follows. Initially, the pilot flies the
quadrotor, via a joystick, through forest environments for several trajectories, to collect an initial
dataset and train a first policy π1. At following iterations, the drone is placed in various forest
environments and flies autonomously using its current policy πn−1. The pilot provides the correct
controls he would perform in the situations encountered along the autonomous trajectories own
by the drone, via the joystick. This allows the drone to collect data in new situations visited by
the current policy, and learn the proper recovery behavior when these are encountered. The next
policy πn+1 is obtained by training a policy on all the training data collected over all iterations
(from iteration 1 to n). Figure 4.2 shows the DAGGER control interface used to provide correct
actions to the drone. As mentioned, at iteration n > 1, the drone’s current policy πn−1 is in
control and the pilot just provides the correct controls for the scenes that the MAV visits.

Despite the great success with a relatively simple model, a major challenge is that DAGGER
needs to collect data for all situations encountered by the current policy in later iterations. This
would include situations where the drone crashes into obstacles if the current policy is not good
enough. For safety reasons, we allow the pilot to take over or force an emergency landing to
avoid crashes as much as possible. This implies that the training data used is not exactly what
DAGGER would need, but instead a subset of training examples encountered by the current
policy when it is within a ”safe” region. This condition gets aggravated in cases where it is
not possible to crash, for example in the case of a large scale autonomous helicopters. Thus it
becomes a fundamental need for these policies be able to be transferred to new domains and
across physical systems.

46



MK#MMD% MK#MMD%MK#MMD%

π%source%

π%target%

conv1% conv2% conv3% conv4% conv5% fc6% fc7% fc8%

Figure 4.3: The framework for learning transferable policies from demonstrations in simulated
source domain to real target domain using Deep Adaptation Network [63].

4.2.2 Domain Adaptive Neural Networks
In this work, we extend the above approach to learn domain-adaptive policies using labeled in-
formation from source domain and unlabeled information from target domain. Let the source
domainDs = {(xi, yi)}ns

i=1 have ns labeled examples drawn from a probability distribution p and
target domain Dt = {(xj)}nt

j=1 have nt unlabeled examples drawn from a probability distribution
q. Then, the problem can be formulated as follows: Train a model to learn a set of features x
that reduce the cross-domain discrepancy, and a policy y = πθ(x), where y is the left-right ve-
locity. Recently, deep convolutional neural network (CNN) based models and features [53] have
been proven to be more competitive than the traditional methods on solving complex learning
problems. While they have been shown to adapt to novel tasks [21], the main challenge here is
that the target domain has no labeled information. Hence, directly adapting CNN to the target
domain via fine-tuning is not possible. Thus, we build upon a recently proposed Deep Adap-
tation Network (DAN) architecture [63], which generalizes deep convolutional neural network
to the domain adaptation scenario. The main idea is to enhance domain transferability in the
task-specific layers of the deep neural network by explicitly minimizing the domain discrepancy.

We use a multiple kernel variant of the maximum mean discrepancies (MK-MMD) metric
[36] as the measure of domain discrepancy. The MK-MMD of two distributions p and q is
defined as the Reproducing Kernel Hilbert Space (RKHS) distance between mean embeddings
of p and q:

d2
k(p, q) = ‖Ep[φ(xs)]− Eq[φ(xt)]‖2

Hk
(4.1)

where φ is the characteristic kernel associated with the feature map. In order to minimize the
domain discrepancy in the context of CNNs, we embed a MK-MMD based multi-layer adaptation
regularizer (Eq. 4.1) to the CNN risk function:

min
Θ

1

ns

ns∑

i=1

J(θ(xsi ), y
s
i ) + λ

l2∑

l=l1

d2
k(Dls,Dlt) (4.2)

where Θ = {W l, bl}ll=1 denotes the set of all CNN parameters, λ > 0 is the penalty parameter,
J is the cross-entropy loss function and θ(xsi ) is the conditional probability that CNN assigns xsi
to label ysi . l1(= 6) and l2(= 8) are the layer indices between which the regularizer is effective.
The CNN architecture is based on AlexNet [53]. As the domain discrepancy increases in the
higher layers [104], we fine-tune the convolutional layers of the CNN (conv4-conv5) using
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source labeled examples and minimize the domain discrepamcy in the fully connected layers
(fc6-fc8). The deep CNN is trained using a mini-batch supervised gradient descent (SGD)
with the above optimization framework (Eq. 4.2).

4.3 Experiments and Results
In this section, we present experiments to analyze the performance of our proposed method of
transferring policies for monocular reactive control of MAVs. All the experiments were con-
ducted in a densely cluttered forest area using the commercially available ARDrone as our MAV
platform. We use a distributed processing framework, where the image stream from the front
facing camera is streamed to a base station over Wi-Fi at 15 Hz. The base station processes these
images, and then sends back the desired control commands to the drone.

Methadology

Quantitatively, we evaluate the performance of our system by observing the average distance
flown autonomously by the MAV over several runs (at 1.5 m/s), before a crash. Tests were
performed in both regions of low and high tree density (approx. 1 tree per 6 × 6 m2 and 3 × 3
m2, respectively). For each scenario described below, training data with 1 km of human-piloted
flight was collected in the source domain. Tests were then conducted on approximately 1 km of
autonomous flights using policies learnt both with and without domain adaptation. As baseline,
we compare our results to lower and upper bound: MAV flight using random policy and complete
training data, respectively.

4.3.1 Performance Evaluation
Transfer across systems

In this experiment we try to answer the question: Can we transfer policies over different physical
systems - from one configurations of sensors and dynamics to another? We collect training data
using the ARDrone as the source domain, and test on a modified 3DR ArduCopter equipped
with a high-dynamic range PointGrey Chameleon camera as the target domain (See Fig. 4.4a).
The sensor system - global shutter vs rolling shutter, image resolution and camera intrinsics are
different from that of the ARDrone. Hence, a policy learnt on one system cannot be expected to
trivially generalize to the other.

Transfer across weather conditions

In this experiment we try to answer the question: Can we transfer policies over different weather
conditions - from summer to winter? We collect training data during the summer season as our
source domain and test during winter season as our target domain (See Fig. 3.4b). In this case the
domain shift is induced by the difference in visual appearance. While the summer environment
is cluttered with dense foliage, the winter conditions are often characterized with the presence of
snow and absence of foliage.
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Figure 4.4: Experiments and Results for Transfer across physical systems from ARDrone to
ArduCopter.

Transfer across environments

In this experiment we try to answer the question: Can we transfer policies over different envi-
ronments - from one physical location to another? This is equivalent to using an off-the-shelf
dataset as the source domain and testing in a seperate target domain. In particular, we use the
ETH Zurich forest-trail dataset [34] as the source. The dataset provides a large-scale collection
of images from a forest environment along with annotations for trail heading (left, center or
right). Using these source labels, we train a policy for MAV reactive control and test at the forest
environment near CMU as the target domain (See Fig. 3.4c). Here, the domain shift is induced
by the implicit difference in physical location and nature of the task. Note: It is not possible to
compare results to the source domain.

4.3.2 Experimental Insights

The main results obtained in this paper is that learning a transferable policy using the proposed
approach can boost performance significantly in the target domain, as compared to simply re-
using the learnt policy in new domains. Quantitatively, we show this through extensive outdoor
flight experiments over a total distance of 6 km in environments of varying clutter density. Even
without any training data, in the target domain, the MAV was able to successfully avoid more than
1900 trees, with an accuracy greater than 90%. We extend our evaluations to qualitatively assess
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Figure 4.5: Experiments and Results for Transfer across weather conditions from summer to
winter.

the learned policies during one of the runs from our flight test, as shown in Fig. 3.7. We show
the nature of training data from summer, snapshots of predicted left-right velocity commands
in the chronological order of the flight path taken by the MAV. Moreover, we also analyze the
the policy learnt without domain adaptation by predicting control commands (offline) using the
snapshot images as input. It can be observed that the domain adaptive policy performs better and
is able to generalize to the new domain.

Furthermore, we observe that for the first two experiments the performance in the target
domain is better than that in the source domain. For transfer across physical systems, this can
be attributed to the underlying dynamics of the MAV. The ArduCopter has accurate and stable
positioning system that allows it to be more resistive to strong winds, which is a major cause of
crash for the less stable ARDrones. Moreover, the target domain has a better sensor suite. The
increased resolution probably helped in detecting the thinner trees. For transfers across weather
condition, we again observe a boost in performance in the target domain. Empirical analysis
of the failure cases reveal that percentage of failures due to branches and leaves diminishes
greatly in winter conditions resulting in better overall performance. In comparison to the above
two experiments, the performance improves only slightly for transfer across environments. The
reason for this is that the source labels are very coarse and were collected for a classification
task (left, right or center). Hence, we learn that to improve the transferability of motion policies
over physical systems, it is also important to explicitly address (1) The domain shift induced
by discrepancy in dynamics, (2) The expected failure cases in the target domain, and (3) The
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Figure 4.6: Experiments and Results for Transfer across environments from ETH Zurich to
CMU.

discrepancy induced by not only the domain, but also the task.

4.3.3 Scheduled Experiments

The successful experimental results obtained so far motivate us to pursue more challenging goals.
In scheduled experiments, we want to ask the question: Can we transfer policies from simulated
to real environments? The idea is to use synthetic rendered environments such as drone sim-
ulators to train models that are effective for flying MAVs in the real world. Through such ex-
perimental analysis, we hope to gain better insights on design principles for domain adaptation
techniques.

4.4 Summary
In this chapter, we have presented a generic framework for learning transferable motion policies.
Our system learns to predict how a human pilot would control a MAV in a source domain, and is
able to successfully transfer that behaviour to a new target domain. Quantitatively, we show sig-
nificant boost in performance over simply re-using policies without any explicit transfer, through
extensive real-world experiments. We have demonstrated our approach on an autonomous MAV
navigation task using monocular reactive control. However, our treatment and findings apply
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to any aspect of experimental robotics where a system needs to be trained for end-to-end au-
tonomous behaviour based on sensor data.
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Chapter 5

Conclusion
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In this thesis, we have presented a scalable framework for visual navigation of micro aerial
vehicles in the wild. The presented algorithms facilitate robust, long-range autonomous flight in
cluttered urban outdoor environments based on a monocular camera as the main exteroceptive
sensor of the MAV. To conclude, we summarize our main contributions and give directions for
possible future research.

5.1 Summary

Accurate, Robust and Computationally feasible Visual Navigation

Our first contribution is a toolbox of approaches for perception, planning and control of ag-
ile, low-cost MAVs navigation in cluttered urban and natural outdoor environments, based on a
monocular camera as the main exteroceptive sensor. First, we present an end-to-end system con-
sisting of a semi-dense direct visual odometry based depth estimation approach that is capable of
producing accurate depth maps at 15 Hz, even while the MAV is flying forward; is able to track
frames even with strong inter-frame rotations using a novel method for visual-inertial fusion on
Lie-manifolds, and can robustly deal with uncertainty by making multiple, relevant yet diverse
predictions. Secondly, we introduce a novel wind-resistant LQR control based on a learned sys-
tem model for stable flights in varying wind conditions. Finally, we evaluate our system through
extensive experiments and flight tests of more than 2 km in dense forest environments, and show
the efficacy of our proposed perception and control modules as compared to the state-of-the-art
methods.
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Safe, Reliable and Verifiable Autonomy

Our second contribution is a generic framework for introspection in autonomous MAVs to enable
them with the ability to assess how qualified they are at any given moment to make a decision.
Using a novel spatio-temporal Convolutional Neural Network, trained using multi-task learning,
we present a failure prediction and recovery strategy for perception systems. We demonstrate
through extensive experiments that we are reliably able to predict failures reliably with high
recall, and better than confidence based systems. This helps us build safe, reliable robot behaviors
that can carry out emergency verifiable behaviors when uncertain.

Scalable, Adaptive Learning of Policies

Our third contribution is a model for knowledge transfer in autonomous robots. In order for
robots to have long-term autonomy and scale to dynamic environments, it is necessary to be able
to transfer knowledge across tasks and domains. In this work, we present a technique to learn
domain-adaptive policies using deep neural networks and imitation learning. We demonstrate
the effective learning of policies for a target domain by using only labeled data from the source
domain. We study the transfer of policies in the context of MAV control policies across phys-
ical systems, dynamic environments and also weather conditions and show through real world
experiments that we are able to successfully transfer policies from one domain to another in an
unsupervised fashion.

5.2 Future Work

In this thesis, we have presented a variety of approaches to overcome problems of the current
state-of-the-art in visual navigation, learning, and control. However, the challenging task of
vision-based MAV navigation is by far not solved yet. In the following, we thus conclude our
work with suggestions for future research directions.

Dealing with Illumination Changes

Outdoor environments are subject to severe changes in illumination and appearance, spanning
from the regular variation in solar illumination during a day to weather-dependent changes, and
further to seasonal variations. While navigation approaches should ideally be invariant to those
changes in appearance, the underlying algorithms are only to a certain degree. The major prob-
lem is the correspondence computation between images, which is already a challenge when
images of the exactly same scene are taken at a sunny day and at a cloudy day. In Section 4.3 we
have proposed to domain-adaptive models to deal with such dynamic changes in the context of
MAV control. While this approach works well, incorporating this feature in the context of vision
based localization and mapping needs to be researched.
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Active Perception

For successful visual navigation in dynamic, real-world outdoor environments, the contributions
discussed before have been useful. However, navigation also involves a control component, and
thus it is possible to define where a robot should ideally go to optimize its perception quality. We
propose to that to enable fully autonomous behavior in robots, active perception is key and needs
to be explored better in the future.
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