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To model the way that cameras project the three-dimensional world into a two-dimensional image we need to
know the camera’s image center. First-order models of lens behavior, such as the pinhole-camera model and
the thin-lens model, suggest that the image center is a single, fixed, and intrinsic parameter of the lens. On
closer inspection, however, we find that there are many possible definitions for image center. Most image
centers do not have the same coordinates and, moreover, move as lens parameters are changed. We present
a taxonomy that includes 15 techniques for measuring image center. Several techniques are applied to a
precision automated zoom lens, and experimental results are shown.
Key words: Image center, camera modeling and calibration, automated zoom lens, computer vision.

1. CAMERA CALIBRATION AND
IMAGE CENTER

The circular construction of lenses used in machine vision
gives them imaging properties that are radially symmet-
ric around an image center. To model these properties
we need to know where this image center is. Naturally,
the accuracy of the model depends on the accuracy of
the center.

For a given machine-vision task we may need several
models of the camera’s imaging properties. For example,
we might need a model that describes perspective projec-
tion from three dimensions to two dimensions, one that
describes the image-plane distortion introduced by the
lens, or one that describes the falloff in image intensity
as we move toward the edge of the image. Each model
describes a specific property of the camera’s image forma-
tion process, and each may require an image center. In
the perspective-projection model the image center may be
the normal projection of the center of perspective projec-
tion into the sensor plane. In the lens distortion model it
may be the center of the distortion pattern. In models of
radiometric falloff the image center might be the position
of the peak image intensity. The questions are: How do
we measure these centers? Are they the same?

Traditionally a camera’s imaging properties have been
considered to have one image center. For example, in
Tsai’s camera model®! the center of radial lens distor-
tion and the center of perspective projection share the
same model parameters. Lenz and Tsai? described three
measurement techniques for calibrating image center for
Tsai’s model: autocollimating a laser through the lens,
changing the lens’s focal length, and numerical optimiza-
tion to find the center that provides the best fit between
their camera model and a set of calibration data. An un-
derlying assumption here is that all three techniques will
yield the common image center of the two imaging prop-
erties being modeled.

An ideal lens would have one image center, and this
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center would be used in modeling any of the radially vary-
ing imaging properties. In practice the manufacturing
tolerances for lenses result in different imaging proper-
ties with centers in different places, as shown in Fig. 1 for
one of our camera systems. Thus, image centers are not
necessarily interchangeable. Indeed, to model a camera
fully we may need several different image centers.

The situation becomes even more complex for an ad-
justable lens. When camera parameters such as focus
and zoom are varied, the position of the camera’s field of
view and image centers will also vary. Figure 2 shows
how the position of a fixed point at the center of the cam-
era’s field of view shifts as a function of the focus and
zoom motors of the same camera lens.

Each image-based technique we describe in this paper
measures the center of an imaging property. Some mea-
sure properties that are seemingly closely related. Some
measure the same property with different approaches.
And some (e.g., center of the image spot) measure
properties for which a model might be of little use. For
completeness and comparison we include them all as
examples in our taxonomy.

We begin this paper by examining why different imag-
ing properties do not necessarily have the same image
center in real lens systems. We also discuss why the
image centers move in variable-focus and variable-focal-
length camera lenses. We then present a taxonomy of
measurement techniques of image center based on the
number of lens settings that are required for determin-
ing the image center. Procedures for measuring 15 dif-
ferent image centers are given, and experimental results
are then presented for 10 of these methods. We conclude
by examining how image center and field of view move in
an automated zoom lens.

2. REAL LENSES

Traditionally a camera’s image center is considered to be
the point of intersection of the lens’s optical axis with the
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Fig. 1. Different image centers for the Fujinon/Photometrics
camera system.
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Fig. 2. Shift in image center as a function of the focus and zoom
motors.

camera’s sensing plane. The optical axis is defined as
the line that passes through the centers of the optical
components in the lens. In real lenses the optical axis
is not so easily defined. The type of complication that
arises depend in part on whether the lens has fixed or
variable parameters and on how the variable parameters
are mechanically implemented.

In an ideal camera lens the components of the lens
are aligned along a single axis, making the lens and
all its imaging properties radially symmetric. In real
lenses things are not so easy. For a simple lens element
(see Fig. 3) there are actually two axes of symmetry, one
optical and one mechanical. The optical axis is defined
as the straight line that joins the centers of curvature of
the two lens surfaces. The mechanical axis of the lens is
determined during manufacture by the centerline of the
machine used to grind the len’s edge. Ideally the optical
and mechanical axes coincide; in practice, though, they do
not. The tolerance between them is called decentration.?
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In a compound lens two or more lens elements are
aligned and mounted together to form a complete lens.
Ideally all the elements are aligned along a common opti-
cal axis, but this is not always feasible given the decentra-
tion in the individual elements. The cumulative effect of
the mechanical tolerances for the lens elements is that
there is no ideal optical axis for the lens. Decentration
and misalignment in the lens produce tangential lens dis-
tortion and asymmetric, radial lens distortion.* Thus the
different imaging properties of the lens do not necessarily
have a common axis of symmetry.

With adjustable lenses one can change the focus and
magnification by varying the positions of the lens ele-
ments along the axis of the lens. Moving the lens ele-
ments is typically accomplished in one of two ways. In
the first method the lens elements are mounted in a
threaded section of the lens barrel, which can be rotated
to move the elements along the axis of the lens. In the
second method the lens elements are mounted on slides
or rails, which can be translated along the axis of the
lens. For both approaches the misalignments between
the lenses’ mechanical and optical axes change each time
the positions of the lens elements are changed. The ro-
tation of a lens group will cause a rotational drift in the
position of the lens’s optical axis,” whereas the sliding
of a lens group will cause a translational motion of the
len’s optical axis in the image plane. These rotational
and translational shifts in the position of the optical axis
cause a corresponding rotational and translational shift-

‘ing of the camera’s field of view.

In lenses with variable focus and fixed focal length as
illustrated in Fig. 4, typically all the lens elements are
mounted in a single assembly. To vary the lens’s focus
one changes the separation between the lens assembly
and the camera sensor by moving the lens assembly with
either a rotational or translational mechanism. A less
common focusing method found in newer 35-mm, autofo-
cus lens designs involves the movement of a small, light-
weight element within the lens’s optics to vary the focus
of the image.5

In lenses with variable focus and variable focal length
(i.e., zoom lenses) (see Fig. 5), one changes the focal length

material removed
during edge grinding

o
.........

---------

Fig. 3. Decentration for a simple lens.

Fig. 4. Fixed focal length lens (from Ref. 10).
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Fig. 6. Nonlinear motion of lens groups during mechanical com-
pensation (from Ref. 3).
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Fig. 7. Mechanical compensation cam (from Ref. 3).
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by moving groups of lens elements relative to one another
along the axis of the lens. To keep the focused distance
of the lens constant as the focal length is varied, one of
the lens groups must be shifted in a nonlinear motion, as
illustrated in Fig. 6. Typically this type of mechanical
compensation is accomplished with a pin that slides in
a rotating cam, such as the one shown in Fig. 7. While
the cam moves with a rotating motion during zooming, the
lens groups themselves move with a translational motion.
One can typically vary the focus in zoom lenses by using
a rotational mechanism on the front lens group. For ex-
amples of the mechanisms used in several commercial
zoom systems, see Horne.”

3. TAXONOMY OF IMAGE CENTERS

In machine vision the image center is most commonly de-
fined as the focus of expansion or the center-of-perspective
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projection. Whereas the numerical center of the image
(i.e., digitizer) coordinates is another commonly used defi-
nition, this one, unlike the other two, does not involve
measurements of a system’s actual imaging properties.
Finding the center-of-image coordinates belongs to the
class of techniques that we call nonimaging since they re-
quire no image measurements. Determining the center-
of-perspective projection belongs to a second class that
we call single-image techniques that measure properties
of images taken at a single lens setting. The focus-of-
expansion approach belongs to a third class called multi-
image techniques, which measure properties that occur
between two or more images taken at different lens set-
tings. This approach should not be confused with simply
tracking one of the single-image techniques over different
lens settings.

We base our taxonomy on the number of different lens
settings required for establishing the image center. For
techniques that make use of image measurements we fur-
ther divide our taxonomy into two subcategories: feature
based and nonfeature based. Feature-based techniques
involve the detection of feature points in the image fol-
lowed by the application of a geometric interpretation of
the three-dimensional to two-dimensional projection to
yvield an image center. The center-of-vanishing points
(Subsection 3.B.2) is an example of this type of technique.
Nonfeature-based techniques involve using the image
sensor or some other sensing device to take direct mea-
surements of the image formed by the lens. Taking the
image of an autocollimated laser (Subsection 3.B.5)is an
example of this type of technique.

Using this taxonomy, we can describe at least 15 dif-
ferent ways of measuring image center and divide them
into the following classes:

Nonimaging
¢ Numerical center of image/
digitizer coordinates
e Center of sensor coordinates
Single image
Feature based
e Center of radial lens
distortion (and
perspective projection)
¢ Center of vanishing points
e (Center of lines of
interpretation
¢ Center of field of view
Nonfeature based
¢ Center of an
autocollimated laser
¢ Center of radiometric falloff
e Center of vignetting/
image spot
¢ Center of focus/defocus
Multi-image
Feature based
¢ Center of expansion
¢ From focus
From zoom
From aperture
From color band
e Focus of expansion

(Subsection 3.A.1)
(Subsection 3.A.2)

(Subsection 3.B.1)
(Subsection 3.B.2)

(Subsection 3.B.3)
(Subsection 3.B.4)
(Subsection 3.B.5)
(Subsection 3.B.6)
(Subsection 3.B.7)
(Subsection 3.B.8)

(Subsection 3.C.1)

(Subsection 3.C.2)
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A. Nonimaging Techniques

By definition nonimaging techniques do not make use of
imaging properties to determine image center. Instead,
the image center is defined in terms of the camera’s sensor
or digitizer properties. These properties in turn depend
on the type of camera being used. Two techniques are
used in modern solid-state cameras to obtain digital im-
ages from a camera’s sensor: video output cameras (also
called closed-circuit television or CCTV cameras) and non-
video digital output cameras (also called scientific, slow-
scan, or pixel-clocked cameras).

In video output cameras each row of the CCD is scanned
off the sensor and converted to a continuous analog signal.
This signal is resampled by a digitizer board to obtain a
digital representation for the row. In this type of cam-
era there is a direct relationship between the row num-
bers on the sensor and the row numbers on the digitizer.
However, the relationship between the column numbers
on the sensor and the column numbers in the digitizer is
not direct: instead, it depends on the synchronization of
the digitizer to the start of each row’s analog signal and
on the relative rates of the sensor’s output clock and the
digitizer’s sampling clock.

In nonvideo digital output cameras the sensor’s pixels
are digitized directly as they are clocked off of the sensor,
resulting in a one-to-one correspondence between the sen-
sor’s row and column pixel coordinates and the digitizer’s
coordinates.

1. Numerical Center of Image/Digitizer Coordinates

If the numerical center of the image coordinates is used
as image center, then the coordinates of the image center
are trivially given by

Xmax + Xmin , C. = Ymax + Ymin ,
2 y 2

where Xmax, Xmin, Ymax, and Ymin are the maximum and
minimum column and row numbers, respectively.
(Throughout this paper we specify the image center in
pixels along xy image coordinates, where x corresponds
to column number in the image and y corresponds to
row number.)

C.=

2. Center of Sensor Coordinates

If the numerical center of the sensor’s pixel array is to
be used as the image center, then the coordinates of the
image center are given by

[ aigitizer dlock
C.= (Cx sensor — hy) X ———>

f sensor clock
Cy = Cy sensor hy )

where

C, sensor is the center of the sensor in pixels in
the x direction,

Cy sensor is the center of the sensor in pixels in
the y direction,

h, is the number of sensor columns skipped
over before digitizing starts,

h, is the number of sensor rows skipped

over before digitizing starts,

is the frequency that sensor elements
are clocked off of the CCD, and

is the frequency at which the digitizer
samples the video signal.

f sensor clock

f digitizer clock
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For nonvideo digital output cameras A, and &, are in-
tegers and f sensor clock = f digitizer clock- Since neither of the
nonimaging techniques makes use of actual imaging prop-
erties they are useful only as default values or initial
guesses for image center.

B. Single-Image Techniques

Single-image techniques rely on the analysis of images
taken at one fixed lens setting to estimate the image cen-
ter. These techniques are important because in many
machine-vision systems the lens parameters are not au-
tomatically adjustable; they may even be fixed.

1. Center of Radial Lens Distortion

(and Perspective Projection)

Lens distortion is the displacement of an image point
from the position that is predicted by a camera’s perfect
perspective projection. Displacements along radial lines
from the center of an image are called radial lens distor-
tions. In radial lens distortion the relationship between
the distorted position of a point (X4, Yy) on the image
plane and the undistorted position of the point (X,, Y,)
can be modeled as

X, =Xg—-C)A+ syr? + kor* +-.2) + C,

Y.=Ua-C))A+ skir? + skor* + ..+ Cy,
1/2

d 2
r= { [ S_x (Xq - Cx)] + [dy(Yd - Cy)]2 ?

where d,, d,, and s, are camera constants and k; are the
distortion coefficients.

To determine the center of radial lens distortion and
perspective projection we use the model fitting approach
described by Lenz and Tsai.? We begin by using a rough
estimate of image center to calibrate our lens using Tsai’s
camera model and calibration algorithm.! In Tsai’s algo-
rithm the image center is a precalibrated constant. We
then use nonlinear optimization on the complete camera
model (including the image center) to find the model pa-
rameters that produce the minimum image-plane error
for the calibration data. The details of this procedure
can be found in Ref. 8.

Since the fitted camera model’s image center parameter
is used for both radial lens distortion and perspective
projection, the resulting best-fit image center represents a
combination of the image centers for these two properties.
To obtain accurate centers for the individual properties we
would have to fit a model that used separate centers for
the two properties.

2. Center of Vanishing Points

Under perspective projection, lines that are parallel in
the object space but not parallel to the camera’s sensing
plane will appear to intersect at a location (u, v), called a
vanishing point. With three sets of lines, where the lines
within each set are parallel in object space and where
each of the sets is not parallel with the others or the
image plane, there will be three vanishing points (4, v,),
(wb, vy), and (u., v;). Further, if the three sets of parallel
lines are mutually perpendicular in object space, then one
can calculate the center-of-perspective projection for the
camera from the three vanishing points, using the formula
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Fig. 8. Vanishing points of a right-angled cube.

presented in Ref. 9:

Cx — U — Ug U — U -
Cy Ue — Up Ve — Up
o [ up(Ue — Ua) + v5(ve — va)} .

uo(u, — up) + va(ve — vp)

An image of three sets of parallel lines that are mutu-
ally orthogonal can easily be obtained by imaging the
corner of a right-angled cube and using the cube’s nine
visible edges, as shown in Fig. 8. Since the center-of-
vanishing points relies on the lens’s perspective-projection
properties, the resulting image center is best suited for
perspective-projection models.

3. Center of Lines of Interpretation

In a camera each pixel lies on a line of sight (line of inter-
pretation) through the object space. Theoretically all the
lines of interpretation should intersect behind the image
plane at one location, the camera’s viewing point. The
normal projection of the viewing point onto the imag-
ing plane defines a center for the lines of interpreta-
tion. For this approach we require the equations of at
least three noncoplanar lines of interpretation, L;, Lo,
and L;, and the two-dimensional image coordinates of
their intersection with imaging planes, P;, Ps, and Ps.
The intersection of the lines of interpretation determines
the three-dimensional coordinates of the viewing point.
The relative two-dimensional distances between the im-
ages of the lines of interpretation at P;, P2, and Ps to-
gether with the equations of the lines of interpretation
determine the parameters of the image plane. Finally,
the normal projection of the viewpoint onto the image
plane provides us with the image center, as illustrated
Fig. 9.

To determine the equations of lines of interpretation we
use a target that consists of two raised pins, T; and Ty,
mounted on the ends of a rod. The rod is manipulated
manually until the two pins coincide in the camera’s im-
age plane. A pair of surveyor’s transits is then used to
determine the equation in three-dimensional world coor-
dinates of the line of interpretation connecting T; and Ts.
The location of the image of the two superimposed pins
defines the interception point of the line of interpretation
with the image plane.
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As with the vanishing-points technique, the lines-of-
interpretation technique relies on the lens’s perspective-
projection properties, and thus the resulting image
center is best suited for perspective-projection models.
Both techniques use a limited number of image measure-
ments to determine the image center, generally without
regard to underlying phenomena such as radial lens dis-
tortion. As a result, their image centers tend not to be
robust.

4. Center of Field of View

A camera’s four sensor corners can be used to define
the extent of the camera’s field of view. The field-of-
view center is simply the coordinates of the image of the
physical center of the field of view in object space.

To measure the field-of-view center we position the
straight edge of a target such that it extends precisely
from the upper right-hand corner of the camera’s image
to the lower left-hand corner. A second image is taken
with the target’s edge extending across to the alternate
corners of the image. One can then determine the field-
of-view center by finding the location of the intersection
of the edges in the two superimposed images, as shown
in Fig. 10.

Since the field-of-view technique does not directly mea-
sure any of the conventionally modeled imaging properties
(i.e., perspective projection, radial lens distortion, or ra-
diometric falloff), the image center that it produces is not

image plane

center of lines ]
of interpretation

/

Fig. 9. Center of lines of interpretation.

viewing
g point

+ <—— numerical image center

center of field of view

Fig. 10. Center of field of view.
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Fig. 11. Center of an autocollimated laser.

strictly applicable in models of these properties. How-
ever, the center of the field of view can be useful in simple
pointing models for the camera system.

5. Center of an Autocollimated Laser

In an ideal lens the centers of the lens elements’ radii
of curvature would all fall on a line defined as the optical
axis. In this situation a ray of light that travels down the
optical axis of the lens would remain unbent and would
strike each lens element normal to its surface. Any light
reflected back from a lens surface would travel directly
back along the path of the incident ray. In areal lens the
centers of the lens elements’ radii of curvature do not fall
on a line. Instead, because of manufacturing tolerances
the lens elements are decentered and tilted relative to one
another. As a result the reflected light is not returned
directly along the same path; instead, it returns at various
angles relative to the incident light.

In the autocollimated laser approach described by Lenz
and Tsai? a low-power laser beam is passed through a hole
in a white screen and into the objective of the lens under
test, as illustrated in Fig. 11. The laser beam serves
as an intense, highly collimated light ray. As the beam
travels down the lens, the lens elements reflect part of the
ray back out through the lens and onto the white screen.
By manipulating the position and orientation of the lens,
one can roughly line up the reflections coming back from
the lens with the hole through which the laser is passed.
When the reflected light is in its tightest grouping, the
laser is said to be autocollimated, meaning that the laser
beam travels along the best optical axis for the lens. An
image taken with the laser in this configuration yields the
image center for the autocollimated laser.

Since an autocollimated laser does not directly measure
any of the conventionally modeled imaging properties, the
image center that it produces is not strictly applicable
in models of these properties. However, the technique’s
ability to provide image center measurements across wide
ranges of focus and zoom makes it useful for tracking the
effects of optical alignment changes in variable-parameter
lenses.

6. Center of Radiometric Falloff

In a lens system the illumination of the image plane is
found to decrease away from the optical axis at least with
the fourth power of the cosine of the angle of obliquity
with the optical axis.!® This falloff can be clearly seen in
Fig. 12, which shows the profile of a scan line taken from
the image of a more-or-less uniform white field (Fig. 13).
The abrupt drop in intensity values near the edges is due
to vignetting, which is discussed in Subsection 3.B.7.
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The most direct way to determine the center of radio-
metric falloff would be to take an image of a uniform white
field, smooth it to remove per-pixel noise, and then find
the location of the intensity peak. In practice it is nearly
impossible to create a target with uniform reflectance and
illumination across the full field of view. Rather than try
to measure the intensity across the full field of view at
once, instead we measure the intensity of a small diffuse
calibrated light source. By stepping the calibrated light
source across the camera’s field of view we build up a set
of intensity measurements for the entire image plane.

In real lenses many factors contribute to radiometric
falloff, and thus a cos*® model is not necessarily the best
(or the easiest) model to fit to the data. The determine
the center of the radiometric falloff we fit the simple,
bivariate—quadratic polynomial,

I(x, y) = ago + ao1y + awox + anxy + agy? + asx?,

to the measurements. The position of the polynomial’s
peak—the center of radiometric falloff—is then given by

_ 20181 — 2a1009
dazape — an?

_ @001 ~ 2001002

C.
4azoaoz — @112

y

The polynomial can be fitted to the data in closed form by
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Fig. 12. Pixel intensity profile for row 200 from Fig. 13.

Fig. 18. Image of a uniform white field showing sharply defined
vignetting.
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marginal ray

aperture stop
Fig. 14. Vignetting in a lens (Ref. 10).

straightforward linear algebra.!! The image center from

this technique is directly applicable in radiometric falloff
models.

7. Center of Vignetting/Image Spot

For angles nearly parallel to the optical axis the edges
of the bundle of rays that pass completely through the
lens are usually bounded by the diameter of the aper-
ture stop. However, at more oblique angles of incidence
the extreme rays of the bundle may be limited by the
front—and rear—lens openings rather than by the aper-
ture stop, as shown in Fig. 14. This phenomenon is
known as vignetting and leads to a reduction of the image
illumination at increasing distances away from the axis.°
To determine the center of vignetting we locate the edge
of the image spot along the rows and columns of the im-
age, using a standard Laplacian-of-Gaussian edge-finding
technique. We then fit a circle to the spot’s edge to esti-
mate the center of the vignetting.

In virtually all commercial camera systems the size of
the lens’s image spot (the image format) is larger than the
dimensions of the sensor, specifically to avoid significant
vignetting effects. Thus this technique can be used only
when the lens is removed from the camera system or in
camera systems for which the image format is smaller
than the sensor size.

Since this technique does not directly measure any of
the conventionally modeled imaging properties, the image
center that it produces is not strictly applicable in models
of these properties. Although the properties that this
technique directly measures (vignetting and image spot)
are not particularly useful to model on their own, for
completeness we have included it in our taxonomy.

8. Center of Focus/Defocus

A planar target in front of an ideal lens would produce an
image of the target behind the lens that is also planar.
However, with real lenses the image of a plane will not
itself lie in a plane. The difference between a plane’s
real image, illustrated in Fig. 15, and its ideal planar
image is known as the field curvature of the lens. In
practical terms, field curvature means that the focused
distance of the lens varies across the lens’s field of view,
as demonstrated by Nair and Stewart.!?
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To measure the center of focus (or defocus) we first
image a target plane that is nearly perpendicular to
the axis of the lens and parallel to the sensor plane in
the camera. The field curvature of the lens introduces
local defocusing in the image of the target plane. If
the target plane is nearly perpendicular to the optical
axis, the focus/defocus pattern will be radially symmetric.
To measure the amount of defocus more accurately we
use a target plane that contains a uniform, high-spatial-
frequency texture (e.g., a fine checkerboard pattern). A
difference operator is run across the image to enhance the
focus/defocus information contained in the image’s high-
frequency content and to attenuate the effect of the low-
frequency variations in the image intensity that are due to
factors such as illumination and radiometric falloff. We
then determine the image center by fitting a radially sym-
metric two-dimensional surface to the resulting pattern
of focus and defocus.

Since image defocus is not directly related to any of
the conventionally modeled imaging properties, this im-
age center is not strictly applicable in models of these
properties. This image center would, however, be appli-
cable in the field curvature models that would be nec-
essary for systems with which we try to compute dense
depth from focus accurately.

C. Multi-Image Techniques
The last class in our image center taxonomy is based on
multi-image techniques. These techniques rely on the
analysis of two or more images taken at different lens
settings to determine an image center. Since the image
center is defined in terms of the differences between im-
ages and not in terms of the properties of the individual
images, multi-image techniques say more about how lens
alignment and centration tolerances interact when the
lens parameters are varied than they do about the imag-
ing properties covered by single-image techniques. Thus
the image centers produced by these techniques are not
strictly applicable in any of the conventionally modeled
imaging properties. The centers can, however, be useful
in registering images taken at different lens settings.
Changing any lens parameter will cause changes in the
image parameters, including, for example, the magnifica-
tion, focused distance, and intensity of the image. Al-
though any of these imaging properties might be used as
the basis of a multiimage definition of image center, im-
age magnification is the easiest to measure.

in-focus image
of target plane

sensor
target lens plane
plane

Fig. 15. Field curvature in the image produced by a thin lens.
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1. Center of Expansion for Focus, Zoom, Aperture,

and Color Band

Given two images taken at different magnifications, ex-
actly one position in the scene in both images will remain
in the same place on the image plane. This position is
called the center of expansion between the two images.
More precisely, given two images I; and I, taken at
two magnifications m; and ms and given n reference
points P; ... P, in image I; and the corresponding points
Q;...Q, in image I, the center of expansion C satisfies
the constraint

(C-P)=Fk(C - @), Vi=1...n,
where
k= ml/mz.

One can estimate the relative image-plane magnification
k from the change in relative separation of the points in
each image by evaluating

kyy = Ld —9a), > J» 1@xi — qxj| > threshold,
Dxi = Dxj
B = dyi — Qyj . . _
yij = == i>j, |gy — qy;| > threshold,
Pyi — Dyj
b= > ki + Zkyij ’
ng +n,

where n, and n, are the number of points in the x and
y directions that pass the threshold test. The threshold
test is necessary to minimize the effects of the measure-
ment noise in coordinates of the reference points. Typi-
cally we use a value that is 2—-3 orders of magnitude
greater than the uncertainty in the measurement of the
reference point coordinates. If % is close to unity, then
the relative positions of the reference points do not move
significantly between the two images and the effects of
radial lens distortion can be ignored.

To find the center of expansion we first define the
squared error for the center as

€y = (Cx - pxi) - k(Cx - Qx,-),
ey, = (Cy = py) — k(Cy — qy),
e= 3 (e +ey?).
i=1
To find the C; and C, that minimize the squared error

we differentiate e with respect to C, and C, and set the
results equal to zero, which yields

Z'il=1 (kgx; — px;) ,
n(k — 1)

21 (kgy, — py) .

C. = nk — 1)

C, =

Normally one can change image magnification by vary-
ing a len’s zoom; however, one can also change magnifi-
cation by varying the focus, aperture, and color band of
the lens.!®* Thus centers of expansion can be defined for
all four lens parameters.

For any two images taken at different lens settings the
center of expansion and the relative image magnification
can be used to scale and register one image with the other.
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2. Focus of Expansion

In the focus-of-expansion approach described by Lenz and
Tsai? and others, the trajectories of a number of feature
points are tracked across several images taken over a
range of zoom settings. The intersection of these trajec-
tories yields an image center called the focus of expan-
sion. Since the intersection of the trajectories for any
pair of images will yield a center of expansion, the focus
of expansion is effectively just the average center of ex-
pansion for zoom over a particular range of zoom settings.
The equations for the focus of expansion are straight-
forward generalizations of the equations for the center
of expansion.

Given the degree to which a camera’s alignment can
vary with lens parameters (see Fig. 2) and the averaging
nature of the focus-of-expansion approach, it is not clear
what the image center from this approach would really
be useful for.

D. Experimental Results

To illustrate the importance of an accurate image center
we calibrated our Fujinon lens and Photometrics cam-
era, using Tsai’s camera calibration technique.! The
noncoplanar data used in the calibration were obtained
by use of a planar target that contains a total of 225 uni-
formly spaced reference points (a 15 X 15 grid) mounted
on a precision platform.

In Tsai’s technique the image center is considered to
be a fixed camera parameter generally determined sepa-
rately from the calibration of the camera model. Fig-
ure 16 shows the mean image-plane error for a range of
different image centers used in a Tsai calibration on one
data set. For an image center equal to the numerical
center of the image at [288, 192] (point 1 in Fig. 1) the
mean and standard deviation of the image-plane error are
0.553 and 0.413 pixels, respectively. However, for our
camera and lens the image center that yields the mini-
mum average image-plane error occurs at [258.1, 203.9]
(point 9 in Fig. 1), where the mean and the standard
deviation of the error drop to 0.084 and 0.046 pixels,
respectively.

To illustrate the variation in the position of image cen-

Mean image plane error [pixels]

w 263

G bivel) Cy [pixels]

Fig. 16. Mean image-plane error as a function of image center
used during calibration.
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Table 1. Different Image Centers for the Same
Camera System

Definition Cx (pixels) C, (pixels)

Numerical center of image/digitizer

coordinates 288 192
Center of sensor coordinates 290.0 195.5
Center of expansion (zoom) 310.7 182.3
Center of expansion (focus) 324.2 164.8
Center of expansion (aperture) 324.7 191.9
Center of radiometric falloff 283.1 156.7
Center of vignetting/image spot 273.2 200.1
Center of an autocollimated laser 267.0 204.0
Center of radial lens distortion

(and perspective projection) 258.1 203.9
Center of vanishing points 229-261 165-171

ter between different techniques we measured ten differ-
ent image centers for our automated Fujinon lens. The
first nine measurements were made with a focused dis-
tance of 2.16 m, an effective focal length of 98 mm, and
an aperture of f/8.1. The perspective-projection mea-
surements were made with the focused distance varying
from 1.2 to 2.0 m, an effective focal length of 20 mm, and
an aperture of f/12.5. The results, drawn to scale in
Fig. 1 and listed in Table 1, show variations of more than
90 pixels in the x direction and more than 40 pixels in the
y direction (image size is 576 X 384 pixels). The range
of values for the center-of-vanishing-points technique rep-
resents the results of several trails with slightly different
orientations of the right-angled cube that we used to ob-
tain the vanishing points.

4. IMAGE CENTER IN
VARIABLE-PARAMETER LENSES

Varying the focus and zoom of a lens changes the align-
ment of the lens components causing the camera’s im-
age centers (and its field of view) to shift. As we have
shown, modeling radially symmetric imaging properties
accurately requires knowing the position of the image
center. Thus, for our camera models to be calibrated at
different lens settings, we need to model how the image
centers vary with lens parameters.

To see how image centers move in a variable-parameter
lens we use the autocollimated laser approach because of
its accuracy, repeatability, and robustness over the full
range of lens settings. For the first experiment we start
by autocollimating the lens at one lens setting. We then
step through the full range of focus and zoom settings
while we record the centroid of the image of the laser.
The results, plotted in Fig. 2, show the laser’s image mov-
ing across 3.2 pixels in the x direction and 6.6 pixels in
the y direction over the full range of focus and zoom po-
gitions. For this example the focus was varied from 1 m
to o (100-5100 motor units) and the zoom varied from
115 to 15 mm (1420-10,660 motor units). Two observa-
tions are worth making here. First, the motion of this
image center is clearly rotational as a function of focus,
as we would expect from the focus mechanism for our lens.
Second, the motion as a function of zoom is clearly trans-
lational, again as we would expect for our lens.

The shape of the plot in Fig. 2 is the product of the
cumulative manufacturing tolerances for our particular
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lens. The plot for another copy of the same lens model
would be different.

To determine the mechanical repeatability of the lens
we measure the position of the laser as the focus and zoom
parameters are stepped through twice. The automation
for our lens is provided by highly repeatable digital micro-
stepping motors; thus any error is due primarily to
the mechanical and optical properties of the lens itself.
Figures 17 and 18 show that the lens has good mechani-
cal repeatability. Figures 19 and 20 show the motion
of the laser’s image as either the focus or the zoom pa-
rameter is held constant and the lens is stepped back
and forth through the full range of the other parameter.
The double curves indicate that there is an appreciable
amount of mechanical hysteresis in the lens system, but
this can be easily overcome by consistently approaching
a given lens setting from one direction.

The discontinuity positions of the laser’s image in
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Fig. 17. Mechanical repeatability of shift in laser image that is
due to focus motor.
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Fig. 18. Mechanical repeatability of shift in laser image that is
due to zoom motor.
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Fig. 19. Mechanical hysteresis in shift in laser image that is
due to focus motor.
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Fig. 20. Mechanical hysteresis in shift in laser image that is
due to zoom motor.

Figs. 18 and 20 are due to play in mechanical compen-
sation that is used in the zoom lens. The zoom settings
that correspond to the discontinuity mark the point at
which the direction of the focus compensation group is
reversed.

5. SUMMARY

To model the radially symmetric imaging properties of a
camera we need to know their image center. If lenses
could be manufactured perfectly they would have per-
fect symmetry around one well-defined optical axis, which
could easily be determined by any one of the 15 methods
that we have described in this paper. In practice, how-
ever, manufacturing tolerances produce wide variations
in the locations of image centers for different imaging
properties. Thus different measurements of image cen-
ters are not interchangeable.

The image-center calibration problem becomes even
more complex in variable-parameter lenses in which
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manufacturing tolerances can cause image centers to
move significantly as the parameters are changed. How-
ever, this motion is usually regular and repeatable and
can be modeled and compensated (see Willson®).

Camera calibration in machine vision has traditionally
paid little attention to the issue of image center. Typi-
cally the image center used to model one imaging property
is obtained by measuring a completely different property,
if a measurement is made at all. Such approaches can
reduce the overall accuracy of the camera calibration. By
using the proper measurement technique for each imaging
property that we are trying to model and by calibrating
the image centers over the appropriate ranges of lens
parameters, we can significantly improve the accuracy of
our camera models.
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