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Abstract

Model-based object pose re�nement algorithms have
been applied to rack stacking and pallet load-
ing/unloading in the context of automated forklift oper-
ations in a warehouse environment. These model-based
pose re�nement algorithms enable high-precision align-
ment by utilizing known geometric object models and
their salient straight line edges in matching 3-D graphic
models to actual video images. An analysis of pose er-
ror covariance using an incremental least-squares update
technique has been performed to examine pose estimate
precision, and a comparison of pose estimates to man-
ual measurements has allowed a quanti�cation of abso-
lute accuracy. The algorithms implemented have actually
been incorporated into a CMU/NREC facility with suc-
cessful demonstrations of rack stacking and pallet load-
ing/unloading operations. The pose re�nement algo-
rithms implemented have also been successfully tested for
Orbital Replacement Unit (ORU) module insertion, and
these same algorithms could also be applied to such space
applications as autonomous space assembly and various
stages of sample return.

1 Introduction

Three-dimensional model-based computer vision for ob-
ject recognition and localization has been studied exten-
sively in the past several decades [1], [3], [4], [6], [7], [10],
[11]. In particular, when the object model has several
salient straight line edges, the line-based model matching
techniques can be more e�ective, since line features are
easier and more reliable to detect from video images than
point features. Kumar [10] showed that the least-squares
algorithm for object localization that solves for the ro-
tation and translation simultaneously yields much better

parameter estimates in the presence of noisy data than
another approach that solves for rotation �rst and then
translation. He further showed that the in�nite model-
line algorithm performs better than the in�nite image-
line algorithm when extracted image lines have signif-
icant broken segments. The algorithm derived in this
paper corresponds to the in�nite model-line approach in
concept, but its mathematical derivations are generalized
so that they can encompass both camera calibration and
object localization with one or two camera views. These
uni�ed derivations greatly help a simple, concise formu-
lation of the simultaneous incremental update algorithm.

The simultaneous update computer vision algorithm
updates both camera and object models simultaneously
based on a 20-variable least-squares method, and signif-
icantly increases the accuracy of 3-D model matching
compared to the conventional object localization algo-
rithm that does not compensate for inaccuracies in prior
camera calibration. Further, the incremental simultane-
ous update algorithm is developed to enable pose error
covariance analysis in camera and object frames.

Section 2 describes this incremental simultaneous up-
date algorithm for object pose re�nement. Thereafter,
four application examples of the algorithm are described
that require high-precision alignment. Section 3 and Sec-
tion 4 describe high-precision rack stacking and pallet
loading/unloading for automated forklift material han-
dling, respectively. Section 5 presents high-precision
module insertion of an orbital replacement unit (ORU)
for International Space Station robotic operations, and
Section 6 depicts potential future applications in robotic
autonomy for Mars sample return.

2 Line-Based Model Matching

For a given 3-D object model point (xm; ym; zm) in object
model coordinates, its 2-D projection on the image plane
(u; v) in camera image coordinates can be computed by2
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where M transforms object model coordinates to world
coordinates, V transforms world coordinates to camera
viewing coordinates, and f is the camera focal length
which is the distance from the lens center to the image
plane. The 4�4 object pose transform M describes the
object pose relative to the world reference frame. The
inverse of the 4�4 camera viewing transform V describes
the camera pose relative to the world reference frame.
The relations described above for the perspective pro-

jection of a point can be directly applied to the line-based
model matching. Since a 2-D projection of a 3-D model
line is still a straight line, the projected 2-D model line
can be simply computed by 2-D projections of the two
endpoints of the 3-D model line. Let (u1; v1) and (v1; v2)
denote the computed 2-D image plane projections of the
two endpoints of a 3-D model line, (xm1; ym1; zm1) and
(xm2; ym2; zm2), respectively. Further let (x1; y1) and
(x2; y2) denote the two endpoints of the 2-D image line
determined by an edge detector. The normal distances
from the image line endpoints to the projected 2-D model
line (Fig. 1) are given by

h1 = (Ax1 +By1 + C)=L; (5)

h2 = (Ax2 +By2 + C)=L; (6)

where
A = v2 � v1 (7)

B = u1 � u2; (8)

C = u2v1 � u1v2; (9)

L =
p
A2 +B2: (10)

In the line-based model matching, the least-squares so-
lution is obtained by minimizing the normal distances
between the projected 2-D model lines and their cor-
responding actual 2-D image lines in the least-squares
sense.
The line-based model matching can be used for both

camera calibration and object localization. In the cam-
era calibration, V and f are determined for a given M.
If M = I (identity matrix), the camera calibration is
performed relative to the object model reference frame.
Since the 4�4 camera viewing transform V can be equiv-
alently represented by three translational displacements
and three rotational angles, the unknown vector to be
solved for the camera calibration is de�ned by 7 variables
including the camera focal length:

xC = (xC ; yC ; zC ; �C ; �C ; C ; f)
T : (11)

In the object localization, M is determined for a given
V and f . The unknown vector, equivalently representing
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Figure 1: Line match

the 4�4 object pose transform M, to be solved for the
object localization is de�ned by 6 variables:

xM = (xM ; yM ; zM ; �M ; �M ; M )T : (12)

When n pairs of corresponding model and image lines are
given, we have 2n equations

H(x) =
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where a 2�1 vector hi(x) consists of two normal distance
equations of (5) and (6) for the i-th corresponding model
and image lines. Note that x = xC for camera calibration
and x = xM for object localization. When n > N=2
where N is the number of variables of x, the system is
overdetermined and a weighted least-squares method can
be applied to �nd the solution.

2.1 Simultaneous Update of Camera

and Object Models

In the conventional approach, camera calibration and ob-
ject localization are performed sequentially. This sequen-
tial update assumes that the camera calibration provides
suÆciently accurate camera calibration parameters for
the subsequent object localization. In some applications,
however, accurate camera calibration using a calibration
�xture is diÆcult. For example, placing a calibration �x-
ture whenever the camera parameters are changed due
to camera pan, tilt, zoom, or focus control, is impracti-
cal. In the simultaneous update approach, an object with
a known geometric model that is naturally seen by the
cameras during the actual operation is used to update
camera calibration as well as object localization. Let us
consider a typical operational environment to perform
parts mating of objects M1 and M2 using two cameras,
C1 and C2. The pose of M1 is �xed in this derivation,
since one frame must be �xed to get a unique solution.
For the object modelM1 in the camera views C1 and C2,

HC1M1
(xC1) = 0: (14)

HC2M1
(xC2) = 0: (15)



For the object modelM2 in the camera views C1 and C2,

HC1M2
(xC1 ;xM2

) = 0; (16)

HC2M2
(xC2 ;xM2

) = 0: (17)

Combining the above four equations with 20 unknown
variables (18 if the camera focal lengths are known) re-
sults in the simultaneous update algorithm for two ob-
jects with two views.

H(x) = 0; (18)

x =

"
xC1
xC2
xM2

#
; (19)

where x consists of 7 variables of xC1 for camera C1, 7
variables of xC2 for camera C2, and 6 variables of xM2

for object M2. With more than 10 corresponding model
and image lines, the nonlinear least squares solution of
(18) can be obtained by the Newton-Gauss method. Its
k-th iteration can be described as

xk+1 = xk � (JT (xk)WJ(xk))
�1
J
T (xk)WH(xk); (20)

where the weight matrix W and the Jacobian J are de-
�ned in [9].

2.2 Incremental Update

An elegant way of �nding the pose esitimation error is to
examine the covariance matrix (JTWJ)�1 resulting from
the least squares solution. The covariance matrix forms a
multi-dimensional error ellipsoid, and its diagonal com-
ponents can be used as error variances as a rough ap-
proximation without considering o�-diagonal covariance
components (2-dimensional 1� � standard error ellipses
should provide better error estimates). When the nor-
mal distance equations of (5), (6), (13), and (18) are ex-
pressed in pixel units, the non-weighted covariance ma-
trix (JTJ)�1 withW = I can be used for the covariance
error analysis, by assuming uniform one-pixel standard
deviation for all image edge measurements.
If one wants to use the resulting covariance matrix to

represent camera pose variances in camera frames and
object pose variances in object frame, each iterative up-
date of the least-squares method described above must
be performed in incremental form. Without the incre-
mental update procedure, the variance values of the co-
variance matrix are associated with a coordinate frame
rotated by either one, two, or three rotational angles of
the solution. This mix-up makes it impractical to inter-
pret the variance data. In the incremental simultaneous
update, unknown variables xC1, xC2 and xM2 are associ-
ated with incremental adjustments of camera and object
poses �V1, �V2, �M2. In each iteration, they are
updated by

V1 = �V1 V1; (21)

V2 = �V2 V2; (22)

M2 = M2 �M2; (23)

and the initial conditions for the next iteration are set to
�V1 = �V2 = �M2 = I or xC1 = xC2 = xM2 = 0.
Note that�V1 and�V2 are pre-multiplied, while�M2

is post-multiplied. If �V1 and �V2 are post-multipied
and �M2 is pre-multiplied, they are all expressed rela-
tive to the world reference frame (see (1) and (2)).

The above incremental update procedure can be used
for 1-view object localization (either C1 or C2 used and
�xed), 2-view object localization (C1 and C2 �xed), as
well as 2-view simultaneous update (C1 and C2 updated).
The covariance error analysis using the above incremental
update procedure can provide a powerful tool in compar-
ing object pose estimate errors at di�erent object poses
under various viewing conditions, without relying on ex-
tensive actual error measurement experiments.

3 Automated Rack Stacking

The incremental simultaneous update algorithm derived
above was applied to high-precision rack stacking using
an automated forklift in a warehouse environment. In
conventional computer vision, object localization is per-
formed by assuming accurate camera calibration param-
eters are given and �xed. By contrast, the simultaneous
update algorithm updates both the camera and object

Figure 2: Automated rack stacking with reective
surface markings. (top) left camera view and (bot-
tom) right camera view.
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Figure 3: Automated rack stacking top view.

pose front front rear rear
error left leg right leg left leg right leg

��x (cm) 0.48 0.48 0.01 0.01

��y (cm) 0.06 0.06 1.14 1.15

��z (cm) 0.45 0.47 0.05 0.05

���x (Æ) 0.56 0.56 0.56 0.56

���y (Æ) 0.19 0.19 0.19 0.19

���z (Æ) 0.02 0.02 0.02 0.02

Table 1. Rack stacking relative pose estimation error of
the two-view simultaneous update method for the setup
shown in Fig. 2 and 3 with a 16-mm zoom lens and
640�480 image resolution for each camera.

pose parameters simultaneously, compensating for the
inaccuracy in initial camera calibrations and thus en-
abling high-precision object localization. Typical racks
in warehouse applications (e.g., automobile manufactur-
ing factory) are very large, and thus two cameras are
needed for automated stacking of a upper rack on top of
a lower rack. One camera sees the front left-side legs of
the lower and upper racks, while the other camera sees
only the front right-side legs of the two racks (Fig. 2 and
3). In the initial rack stacking test setup installed at
the NREC/CMU warehouse facility, two cameras were
mounted on the forklift with the inter-camera angle of
about 90Æ in diverging directions. A minute camera ori-
entation change of only 0.036Æ results in one pixel error
for a 16-mm zoom lens with a 640�480 pixel image res-
olution. Further the two cameras are relatively far apart
by (about 100 cm), and thus it would be very challeng-
ing in terms of a sturdy mechanical design. This is why
the simultaneous update algorithm that compensates for
inaccuracies in camera calibration helps to achieve high-
precision rack stacking. Further the algorithm computes
the relative positioning between the two racks not relying
on absolute positioning for rack stacking.

In our initial testing, two rectangular �ducial marks
were attached on the front and side surfaces of each leg

(Fig. 2) to enable automated, reliable identi�cation of
surface marking edges by an image line detector. The
covariance error analysis of the rack pose estimate of the
upper rack relative to the lower rack indicates that the
relative pose error standard deviations are within 0.5 cm
and 0.6Æ for the front two legs (table 1). The relative pose
error for the two rear legs was as large as 1.2 cm along the
vertical axis. This is because only the front legs' �ducial
marks are used in determining the relative rack pose,
and all four �ducial marks are small at the same height.
This vertical position error is, however, not that critical
in terms of alignment since it is along the leg insertion
direction. When a 8-mm zoom lens was used instead
of 16-mm or when the image resolution was halved to
320�240, the pose estimation errors were doubled.

4 Pallet Loading and Unloading

With the goal of estimating the pose of the pallet used
in a warehouse for transporting materials, a visual fork
hole detector was integrated and tested with a model
based object localization algorithm. The fork hole detec-
tor identi�es edges of a pair of fork holes from a given
camera image of a pallet. The detector goes through the
following �ve steps to achieve its goal: 1) Canny edge de-
tector, 2) Lowe's straight line detector, 3) merge straight
image lines, 4) �nd rectangles using parallelism condi-
tions, 5) detect the best-match rectangle pair with the
highest match score. After detecting fork hole edges, the
pallet pose is then determined by either a one-view ob-
ject localization algorithm or a two-view simultaneous
update algorithm. A typical camera image showing both
a fork and a pallet with fork holes in an automated pallet
loading/unloading environment is shown in Fig. 4.

In order to investigate the pose estimation error at dif-
ferent pallet poses, a fork hole mockup was built as a lab-
oratory setup. Using this setup, pallet images with fork
holes were obtained from two di�erent cameras for �ve
pallet orientations ranging from -40 to +40 yaw at four
di�erent distances ranging from 2 to 5 meters. The two
cameras were located approximately 90 cm apart along
a vertical axis. Figures 5 and 6 show typical images of

Figure 4: A fork and a pallet with fork holes.



Figure 5: (top) camera image of fork holes, and (bot-
tom) Canny/Lowe line detector output

various stages of the fork-hole detector. Every set of im-
ages that we took produced good image lines except one.
In this one exceptional case, the Canny/Lowe line de-
tector produced two oblique, half-size vertical lines in-
stead of one straight vertical line for a fork hole. The
current algorithm implemented was still able to handle
this condition. In other words, in this laboratory setup
with good lighting/imaging conditions, the implemented
fork hole detector detected the fork holes with a 100%
success rate. However, as the images get less pristine,
due to less than ideal lighting circumstances encountered
in the warehouse environment, we will de�nitely need a
more robust scheme of detecting fork holes.
The results of the pose error covariance analysis for the

1-view object localization are tabulated in Table 2 for 0Æ

pallet orientation, in Table 3 for 20Æ orientation, and in
Table 4 for 40Æ orientation. In general, the position align-
ment error decreased as the fork approached the pallet
with the pallet distance getting smaller. For 1-view ob-
ject localization, the position alignment error increased
as the pallet orientation increased away from the parallel
0Æ angle. At the 0Æ and 20Æ pallet orientations, the posi-
tion alignment errors along the x and y axes (orthogonal
to the fork insertion axis) were about 0.2 cm at a pal-
let distance of 1.8 m. However, at 40Æ pallet orientation,
the position alignment error increased markedly to about

Figure 6: (top) rectangle �lter output, and (bottom)
rectangle-pair �lter output

0.9 cm. This large error should not be a problem, since
the pallet orientation would be very close to the paral-
lel 0Æ angle during the actual automated fork insertion
operations. In terms of the pose orientation estimation
error, the orientation error about the x-axis (pallet pitch
angle relative to the fork) was signi�cantly larger than
the orientation error about the other two axes. This is
because the two fork holes of the pallet have the same
narrow vertical gap, while they are wide apart horizon-
tally with a larger horizontal gap for each hole. This
pitch orientation error is less critical compared to the
yaw orientation error, since the forklift and the pallet
are normally operated on the at horizontal oor. The
above experimental results indicate that a single camera
view provides suÆcient accuracy in object localization
for pallet loading/unloading, as long as the camera can
be mounted �rmly.

Even though a single-view object localization is suf-
�cient, the covariance error analysis of the two-view si-
multaneous update algorithm was also performed. In this
method, the fork models and their mating fork hole mod-
els are needed to update both camera calibration and
object localization. The results showed that the position
alignment error was reduced signi�cantly at the 20Æ and
40Æ pallet orientations. Note also that each camera gets
good depth information data due to the large orientation



pose dist A dist B dist C dist D
error 1.829 m 2.438 m 3.658 m 4.877 m

��x (cm) 0.20 0.25 0.37 0.47

��y (cm) 0.01 0.12 0.20 0.50

��z (cm) 0.33 0.55 1.17 2.01

���x (Æ) 5.66 8.53 17.04 14.69

���y (Æ) 0.72 1.20 2.52 4.14

���z (Æ) 0.13 0.16 0.31 0.94

Table 2. Pallet pose estimation error with the pallet ori-
entation at 0 Æ.

pose dist A dist B dist C dist D
error 1.829 m 2.438 m 3.658 m 4.877 m

��x (cm) 0.14 0.39 1.71 3.66

��y (cm) 0.21 0.45 0.43 3.06

��z (cm) 0.78 1.66 5.37 10.91

���x (Æ) 3.58 4.61 8.16 8.09

���y (Æ) 0.68 1.11 2.34 3.75

���z (Æ) 0.19 0.31 0.25 1.07

Table 2. Pallet pose estimation error with the pallet ori-
entation at 20 Æ.

pose dist A dist B dist C dist D
error 1.829 m 2.438 m 3.658 m 4.877 m

��x (cm) 0.86 2.04 6.60 13.16

��y (cm) 0.38 0.72 1.81 3.11

��z (cm) 1.31 2.79 8.09 17.47

���x (Æ) 2.43 3.01 4.71 6.35

���y (Æ) 0.63 1.01 1.96 3.25

���z (Æ) 0.21 0.29 0.47 0.63

Table 2. Pallet pose estimation error with the pallet ori-
entation at 40 Æ.

angle. However, the position alignment error increased
at the 0Æ pallet orientation. The reason is that the forks
have only three line segments each and the fork holes
are planar with a very narrow vertical gap, not provid-
ing suÆcient matching line data to update both camera
calibration and object localization. Also note that at
the 0Æ pallet orientation, both cameras do not get good
depth information since all the fork hole line segments
are in the plane parallel to the camera image plane. In
the previous rack stacking, two orthogonal �ducial marks
were 3-dimensional. One way to remedy the simultane-
ous update algorithm to cope with insuÆcient line seg-
ments data is to put some constraints on the 6-dof cam-
era pose parameters. For example, the z-axis positions
of both cameras could be �xed. These additional con-
straints could be decided empirically based on the camera
mount mechanical design.

To gain insight into the performance of the 1-view ob-
ject localization algorithm for various object pose con-
ditions, further tests were performed. Since the number
of detected image lines are so small that seemingly in-
signi�cant variations could result in drastic changes in

the ability of the pose estimation algorithm to accurately
estimate the pose. Since the four edges of each fork hole
yield a planar, rectangular shape, the pose estimation
error from the 1-view object localization could be quite
large depending upon the orientation angle. A covari-
ance error analysis was performed for the following three
cases: Case 1) 2 vertical lines with 2 inner vertical lines
missing, Case 2) 3 vertical lines with 1 left inner vertical
line missing, and Case 3) 4 vertical lines with no ver-
tical lines missing. Case 1 yielded very poor estimates
in pos x (along the horizontal line) and rot y (rotation
about the axis parallel to the vertical lines), which agree
with earlier experienced results with very long rectangles.

Figure 7: Thee di�erent cases of the fork hole im-
age lines detected. (top) 2 vertical lines, (middle) 3
vertical lines, and (bottom) 4 vertical lines detected.
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Figure 8: Position and orientation errors for 3 cases
of vertical lines.



This is because a long rectangle can rotate signi�cantly
about the y-axis and still produce a very similar image
on an angled camera image. The x-position of the center
between the two vertical lines changes due to the fore-
shortening e�ect of perspective projection. However, as
soon as the number of vertical lines increases to three or
above, the uncertainty of the x-position reduces dramat-
ically. The third vertical line e�ectively limits a large
rotation and thus the x-position. The plots in Fig. 8
clearly show this e�ect.

Integration of the above mentioned covariance analysis
with a maneuverability constraint algorithm was done in
order to create an algorithm for predicting the probability
of success for the given conditions. The uncertainty val-
ues calculated by the pose estimation algorithm are used
to do a grid calculation of maneuverability constraint vi-
olations, and then the maneuverability constraint algo-
rithm calculates the probability of success from the ratio
of successes to attempts. This algorithm could be used as
part of a higher level risk assessment for vehicle behavior
decisions.

5 ORUModule Insertion for Space Sta-

tion Applications

An immediate potential application of the two-view si-
multaneous update object pose re�nement algorithm is
for International Space Station (ISS) robotics, since the
camera viewing problem is a concern in ISS telerobotic
operations and vision system assistance is needed for
high-precision alignment. For instance, during the orbital
replacement unit (ORU) insertion task, the end e�ector
close-up camera view is occluded by the ORU, while the
overhead and other cameras provide limited views. Due
to this visual occlusion and limited viewing problem, it
is often diÆcult to ensure baseline manual teleoperation
will reliably maintain the alignment within the precision
requirement. For example, the alignment requirement
for ISS remote power controller module (RPCM) ORU
insertion is �0:6 cm for each translation axis and �3Æ

for each rotational axis [2], [12].

Both sequential and simultaneous update algorithms
were applied to an RPCM-like ORU insertion task us-
ing two views (side and overhead views C1 and C2) for
comparison. Both cameras were set by manual pan, tilt,
zoom, and focus control. The camera focal lengths were
approximately 50 mm (vertical �eld of view angle 5:5Æ)
for the side camera and 25 mm (11Æ) for the overhead
camera. The inter-camera angle between the two camera
optical axes was approximately 50Æ. The side camera was
about 7.5 m away from the receptacle, and the overhead
one was about 3.5 m away. As expected, the sequen-
tial update, consisting of the camera calibrations using
the ORU model edges followed by the object localization
using the receptacle model edges, did not yield a very ac-
curate model matching. Fig. 5 shows the model matching
result obtained with the simultaneous update. Note that
the receptacle model is very well aligned in both camera

views. Unlike the sequential update, the simultaneous
update algorithm updated both the camera and object
models simultaneously, achieving accurate matching even
with rough, approximate initial camera calibrations.

In the current operational procedure for the RPCM
ORU insertion task, the operator �rst enters model
points and their corresponding image points interactively
by using a mouse to provide an initial coarse matching.
A point-based simultaneous update algorithm is used for
the initial coarse model matching. Thereafter, a local line
detector [5] and the line-based simultaneous update al-
gorithm are used for automated �ne matching and pose
re�nement. As the ORU gets closer to the receptacle,
new update is performed to increase the alignment pre-
cision. No operator-interactive data entry is needed any
more, since fairly accurate model matching is available

Figure 9: Simultaneous update of camera and object
models using both camera views.



from the previous update. This intermittent pose up-
date/re�nement procedure is repeated at the next via
points, until the ORU reaches the alignment ready posi-
tion for insertion. The above operational procedure was
successfully used to demonstrate high-precision ORU in-
sertion within the �0:6 cm and �3Æ alignment precision
requirement for various viewing and object pose condi-
tions both at Jet Propulsion Laboratory and at NASA
Johnson Space Center [8].

In this ISS RPCM ORU insertion application, the
RPCM ORU and its receptacle have a suÆcient number
of straight line edges, and the line-based model match-
ing technique does not speci�cally require arti�cial vision
targets or �ducial markings on the ORU surfaces. Use of
natural geometric features of man-made objects such as
object straight-line edges makes the model-based object
pose re�nement not only versatile but more robust un-
der poor viewing and harsh lighting conditions. Vision
targets attached on object surfaces are in general much
more sensitive to camera viewing and lighting conditions
compared to object-outline natural edges. Accurate po-
sitioning of vision targets is also cumbersome and expen-
sive for space applications.

Another important advantage of the above model-
based object pose re�nement approach for ISS robotic
applications is that its software does not have to be in-
stalled onboard. It can be installed on the ground as a
cost-e�ective solution. With ground-based object pose
re�nement, two control modes can be considered for ISS
telerobotic operations: 1) ground-assisted onboard con-
trol and 2) ground remote control. In the ground-assisted
mode, an on-board crew member performing such a task
as ORU insertion is assisted by model-based object pose
re�nement on the ground. Video images received on the
ground are used to determine the relative position be-
tween the ORU and the receptacle, which is then sent to
the on-board crew as a precision alignment aid. In the
ground remote control mode, a ground operator controls
the space manipulator system directly by issuing robot
auto move commands, while an onboard crew member
may monitor the robot motion. Supervisory control sup-
ported by model-based object pose re�nement is essential
for ground remote operation, since simple manual teleop-
eration has undesirable safety problems due to a typical
2-8 s round-trip communication time delay between a
ground control station and the low Earth orbit.

6 Potential future applications in Mars

Sample Return

Object pose estimation is essential in many of the stages
involved in a Mars Sample Return mission. In a few
of these, a priori information (i.e., physical dimensions)
about the object whose pose needs to be determined
clearly makes a model-based technique very attractive.
A rover returning to the lander to deposit the collected
samples is one such situation. Another is the the au-
tonomous rendezvous between the sample orbiting Mars

and the retrieval probe. These scenarios could greatly
bene�t from the model-based pose estimator used in the
algorithms above.
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