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Abstract—The development of the Sampling and Caching Sub-
system (SCS) of the Mars 2020 Rover Mission is highly depen-
dent on testing of prototype hardware and software operating
in explicit conditions as part of integrated testbeds. To achieve
relevant integration of hardware and software while maintain-
ing rapid algorithm development capabilities and high testing
throughput, the Controls and Autonomy for Sample Acquisi-
tion and Handling (CASAH) software system was developed.
CASAH is an implementation of the Intelligent Robotics System
Architecture (IRSA), which mimics JPL Flight Software (FSW)
in that it is divided into modules that run separate processes
that communicate via message passing, each module is assigned
an owner that is a single developer, and the operator initiates
requests via a text-based interface that interprets sequences of
commands. IRSA enables a modular breakdown of CASAH
that follows that of 2020 Flight Software, so developers can take
an algorithm from a module in CASAH and re-code it into the
same module in FSW. As deployment of CASAH has grown
to ten testbeds - each with different hardware and objectives
- bottom-up design decisions have been intentionally made to
keep the system lightweight and maintainable by a very small
team. To date, CASAH has been used to run 1393 different tests.
This work describes CASAH, the testbeds and functionality it
supports, the tools used to manage the development and sharing
of code, and the features of the software. Lessons learned
over the past three years of development and deployment are
provided.
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1. INTRODUCTION
The Mars 2020 rover mission, set to launch in July/August
of 2020, is part of NASA’s Mars Exploration Program and is
being managed by the Jet Propulsion Laboratory. The mis-
sion consists of a Mars Science Laboratory (MSL) heritage
rover with a new payload that addresses high-priority science
goals for Mars exploration, including key questions about
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the potential for life on Mars. One of the four objectives of
the mission is to collect Martian sample cores and deposit
them on the surface for potential return to earth by a future
mission [1], [2]. This capability is to be achieved via the
Sampling and Caching Subsystem (SCS), which is currently
under development [3].

The Sampling and Caching Subsystem consists of a rotary-
percussive Coring Drill for collecting samples, Robotic Arm
for tool placement, a system for managing drill bits and
sample tubes known as the Adaptive Caching Assembly,
and a Gas Dust Removal Tool for clearing rock abrasions.
Development of SCS hardware and software requires pro-
totyping and testing, which is achieved through testbeds.
Development testbeds are integrated systems which consist
of mechanical hardware, avionics, and software designed to
operate in explicitly defined conditions in order to gather data
required to refine and characterize the prototypes under test.
An example of such a testbed for SCS is the Environmental
Development Testbed, which consists of a Robotic Arm and
prototype Coring Drill in a 10 foot thermal/vacuum chamber
[4]. The high-level driving requirements for the software
system for these testbeds are as follows:

i) Enable high throughput testing of prototype hardware
across a suite of testbeds.

ii) Provide a framework for rapid algorithm development
that can be tested on real hardware and assist with Flight
Software.

iii) Allow for non-developers to operate the testbeds.

iv) Collect data products that can be easily parsed and
archived.

v) Provide robust fault protection to avoid hardware damage.

Development and operation of Flight Software is complex
and rigorous, as it is designed for flight hardware being
operated on the surface of Mars. Due to the prototype nature
of development testbeds described in this work, FSW itself
is not a suitable choice for meeting the above requirements.
Thus, the Controls and Autonomy for Sample Acquisition
and Handling (CASAH) software system was created in
2014 for SCS development testbeds. CASAH is an imple-
mentation of the Intelligent Robotics System Architecture
(IRSA), which mimics JPL rover Flight Software [5]. The
CASAH implementation is lightweight and shares code and
concepts from other research tasks within JPL Robotics that
implement the IRSA architecture, such as RoboSimian [6].
Behavior modules, written specifically for each application
and responsible for capabilities associated with a subset of
physical components (e.g. DRILL, ARM) use data-driven
state machines to implement high-level, semi-autonomous
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functionality. The owner of a behavior modules in CASAH is
also the owner of the same module in 2020 Flight Software.
This strategy enables developers to rapidly code algorithms
and concepts in CASAH, test them in a variety of conditions
on prototype hardware, and then, once satisfied with their
performance and robustness, re-code them in FSW.

As each testbed demands unique capabilities, the tendency for
a single software system that operates all testbeds to become
bloated, complicated, and unusable is high. Four key steps
have been taken to combat this throughout development of
CASAH:

1) Use of standardized avionics across all testbeds to avoid
having to redesign or overly-abstract the hardware interface
components of CASAH.

2) Re-use of code and libraries where possible without dic-
tating that a developer must do so, through appropriate divi-
sion of the software repositories.

3) Maintaining a bottom-up, capability-driven approach that
is focused on real requirements as opposed to potential future
use cases.

4) Active resistance to chasing the ’perfect’ software system
that never requires modification.

In this work we attempt to provide a retrospective look on
CASAH’s development, integration and deployment to illus-
trate the challenges, successes, and lessons learned with de-
veloping a software system that supports a variety of complex
testbeds, each with different configurations and objectives.

2. SCS COMPONENTS AND TESTBEDS
As new technology is developed for flight, it must be tested
at increasing stages of fidelity. Test data provides invalu-
able feedback on prototype designs and directly influences
subsequent, higher-fidelity prototypes. This applies to both
hardware and software, as it is the integration of the two
that delivers system capability. Each testbed is designed
to test some subset of SCS components at various stages
of development and is configured as shown in Figure 1.
A description of the different components of SCS is given
below, followed by an overview of the testbeds that CASAH
supports.

Primary Robotic Arm—The primary Robotic Arm (RA) is
roughly two meters in length and consists of five Degrees-of-
Freedom (DoF) in a yaw-pitch-pitch-pitch-yaw configuration.
It is kinematically similar to the Mars Science Laboratory
(MSL) RA. Like MSL, at the end of the arm is a turret with
various science and engineering instruments and tools.

Coring Drill—The Mars 2020 Coring Drill is a rotary per-
cussive tool on the turret designed to collect sample cores
of the Martian surface for potential return to Earth. It also
abrades rocks to create flat areas for science instruments, and
can collect regolith. The drill on MSL was designed to collect
powder for in-situ analysis, thus the Mars 2020 Coring Drill
functionality and design is significantly different.

Adaptive Caching Assembly—The Adaptive Caching Assem-
bly (ACA) handles sample inspection, sealing, and dropoff.
It also handles transfer of bits and sample tubes to the
Coring Drill. The ACA consists of a smaller three degree
of freedom robotic arm (two rotational and one linear DoF),
end-effector, sealing mechanism, bit carousel, and various

Figure 1. Block diagram representation of Mars 2020
SCS development testbeds supported by CASAH

Figure 2. Four of the testbeds that CASAH supports.
Clockwise, from top left: (1) Boundary Conditions
Testbed (2) Environmental Development Testbed

(3) Single Station Testbed (4) Docking Testbed
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inspection stations. The arm and end-effector are known as
the Sample Handling Assembly (SHA). The majority of the
ACA mechanisms, including the SHA, are housed inside the
rover.

Gas Dust Removal Tool—The gas Dust Removal Tool (gDRT)
is also mounted on the turret and is designed to remove dust
from an abrasion by discharging high pressure gas.

To date, there are ten distinct development testbeds that
CASAH supports, each with different hardware, software,
and objectives. An overview of the testbeds is provided in
Table 1.

3. SOFTWARE SYSTEM
CASAH is a robotics software system design to provide high
testing throughput on prototype hardware while providing a
relevant framework for flight algorithm development. Figure
3 illustrates the different components of CASAH, which are
described in detail below.

Architecture

CASAH is an implementation of the Intelligent Robotics
Software Architecture (IRSA) [5]. IRSA is a research version
of the JPL rover Flight Software architecture. IRSA is similar
to flight in that the system is decoupled into modules that
run independent processes which communicate via message
passing. Behaviors are encoded into behavior modules which
interface to the user via commands, and to hardware by cre-
ating motion requests to the motor control interface module.
In mimicking Flight Software architecture by implementing
IRSA, CASAH is directly relevant to SCS Flight Software
development. In addition to this benefit, our experience has
taught us that the JPL rover Flight Software architecture
is also ideal for research and development tasks that are
independent of flight projects, such as RoboSimian [6].

Middleware

At the core of the IRSA architecture is the notion of message
passing; like in flight, there is strict avoidance of shared
memory and thus, processes communicate through messages
[7]. The CASAH implementation of IRSA uses an in-house
library for message passing called RSAP. RSAP provides
the application Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) interfaces. UDP is used for

Figure 3. Controls and Autonomy for Sample Acquistion
and Handling (CASAH) software system overview

high rate (e.g., 1kHz) broadcast of state information to other
modules, and TCP is used in all other cases because of its high
reliability. RSAP also provides mechanisms for data logging
and message printing.

Also as in flight, each module in CASAH has its own
command dictionary, which serves as the primary interface
definition to each module. An auto-coding tool written in-
house, CMDGEN, eases this development. For each module,
CMDGEN users write an XML file that specifies command
line messages and replies between modules, as well as their
arguments including data types and ranges. Using the user-
specified XML input files, the CMDGEN python script auto-
generates C header files and C codes that declare command
and reply message data structures, functions that parse the
command line messages and check valid arguments. It also
auto-generates a comprehensive HTML command dictionary
for operator convenience. CMDGEN provides several advan-
tages over manual message coding:

1) CMDGEN reduces the development time of the software
that support command line messages and replies between
modules.

2) CMDGEN makes the software less error-prone with less
debug time.

3) CMDGEN is much simpler to add or modify the command
and reply messages. For this reason, JPL rover Flight Soft-
ware also employs a very similar methodology.

CASAH uses the GNU Build System, also known as Auto-
tools [8]. This system allows for streamlined building without
requiring developers to directly edit Makefiles. Like Flight
Software, CASAH is primarily written in the C Programming
Language.

Modules

MOT—The MOT (short for ’motor’) module is responsible
for hardware interfacing, actuator and sensor processing,
high-rate data logging, and low-level fault protection. MOT
supports EtherCAT communication via the in-house driver
stack that interfaces to EtherLab’s open-source master [13].
The MOT process runs at 1kHz and is assigned real-time
priority and a dedicated CPU core to minimize jitter and
timer slip. MOT performs trapezoidal motion profiling and
operates the Elmo motor controllers in Cyclic Synchronous
Position mode which bypasses their internal motion profiler.
MOT can receive motion requests directly from the user as
well as behavior modules.

MOT records and broadcasts its public state information at
1kHz. MOT monitors actuator position tracking, forces and
torques, position and velocity limits, temperatures, and a va-
riety of other telemetry to ensure safe operation of hardware.
If MOT detects a deviation beyond a parameterized limit, it
initiates its fault response which is to stop all motion and
engage an internally latched fault flag which prevents further
motion until cleared by the user.

MOT is also responsible for managing actuator positions. On
shutdown MOT writes all positions to a text file; when it is
started again, it reads from this file. A set of backup files are
written at 10Hz to ensure if for some reason the MOT process
is not shutdown cleanly, positions are recoverable. When
positions are not known (e.g., a new testbed comes online,
mechanism is dissembled and reassembled, etc.), the MOT
calibration functionality is used to stall the actuator against a
known hardstop and set its position.
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Table 1. CASAH-Supported Testbeds for the Sampling and Caching Subsystem

Testbed Hardware
Components

Period Overview

1) Boundary Conditions Testbed Robotic Arm,
Coring Drill

08/2014-
03/2015

Robotic Arm with flight-like stiffness and a Cor-
ing Drill developed in a research task leading up to
the Mars 2020 Rover Mission [12]. Testing at am-
bient conditions to examine factors on collected
sample core quality, such as robotic arm pose.

2) Percussion Efficacy and Comminution Coring Drill 02/2015-
Active

Brassboard-level Coring Drill fixed to a commer-
cial feed stage operating in ambient conditions.
Due to lack of Robotic Arm, this testbed allows
for high-testing throughput of coring, abrasion,
and regolith collection.

3) Environmental Development Testbed Robotic Arm,
Coring Drill

04/2015-
Active

Robotic Arm with a Coring Drill in a ther-
mal/vacuum chamber, which allows for testing
sampling in Mars atmospheric conditions. Started
with a Brassboard-level drill, recently upgraded to
Engineer Development Unit [4].

4) Ambient Robotic Coring Robotic Arm,
Coring Drill

07/2015-
05/2016

Re-purposing of Boundary Conditions Testbed
- removed research tool and replaced it with
Brassboard-level Coring Drill.

5) Tube Manipulation Testbed ACA (Linear
actuator only)

08/2015-
08/2016

Prototype linear actuator and tube gripper for the
Sample Handling Assembly. Testing interface
interactions.

6) Docking Testbed Robotic Arm 06/2016-
Active

Robotic Arm and prototype docking hardware,
for developing and testing self-docking capability
required for bit exchange.

7) Surface Prep Operations Testbed Coring drill,
gas Dust
Removal Tool

11/2016-
Active

Coring Drill fixed to commercial feed stage,
housed inside a small low-pressure chamber, with
prototype gDRT. Testing rock abrasion and sub-
sequent dust removal at Mars atmospheric condi-
tions.

8) Single Station Testbed ACA (Linear
actuator and
end-effector
only)

03/2017-
Active

Prototype linear actuator and full end-effector.
Testbed has swappable ACA stations for testing
various interactions.

9) Multi Station Testbed ACA (no bit
carousel or
holder)

04/2017-
Active

For testing SHA interactions with the different
ACA stations.

10) Percussion Mechanism Testbed Coring drill
(percussion
only)

08/2017-
Active

Percussion mechanism from Engineering De-
velopment Unit Coring Drill attached to a
dynomometer. For characterization and life test-
ing of the mechanism.

When MOT compiles, two separate server binaries are cre-
ated. The main binary is for interfacing to real hardware.
The second, dubbed ’offline’ MOT, compiles against Ether-
CAT driver stubs that enable it to be run on a development
computer with no hardware. This provides developers a
simulation mechanism to test some aspects of software before
running on real hardware.

Due to the criticality of MOT’s functionality, extra care is
taken when modifying it. A peer review is performed for all
MOT-level changes as well as significant regression testing
to ensure proper functionality. The solid foundation that
MOT provides enables rapid development of algorithms at
the behavior module level.

CMD—The primary interface to CASAH is the CMD module.
CMD ingests text files which consists of a list of commands to
run in succession. As in flight, this text file is referred to as a

sequence. Operators create sequences to perform the desired
test (or some subset of it). When CMD receives the sequence,
it parses it and sends the first command to the appropriate
module. When the request is complete, the serving module
responds with a message back to CMD, which steps to the
next command and the process repeats. This continues until
completion of all commands in the file, or until a failure re-
sponse is received. When failure occurs, CMD stops sending
out commands for execution and responds with a failure back
to the operator.

While this linear execution of commands could in theory
be expanded to provide more complex functionality (e.g.
support of branching logic within the sequence) in practice
this has not been needed as the behaviors the commands
initiate handle such complexity internally. To prevent failure
due to operator error, CMD performs a validity check against
the command dictionary prior to execution by using auto-
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generated code from CMDGEN.

Behavior Modules— CASAH contains multiple behavior
modules as show in Figure 3. It should be noted that
each behavior module may have separate instantiations. For
example, there are three distinct DRILL modules in CASAH,
as there have thus far been three different versions of the
prototype Coring Drill under test. Testbed configurations
only build and install the specific behavior module(s) required
for the given testbed.

Each behavior module has its own command dictionary
which is exposed at the CMD level to the user. Upon receipt
of a command, the module initiates the associated behavior
using arguments supplied with the command. Behaviors
are coded as asynchronous, data-driven hierarchical state
machines (HSM) [9]. The HSM initializes controllers within
the behavior module, which in turn create motion requests
to MOT. The HSM is responsible for determining if the
behavior completes successfully or not, and a success or
failure message is sent back to CMD based on execution.

An example of a behavior HSM from DRILL, Seek Surface,
is shown in Figure 4. When a command is received to
run the behavior, the HSM transitions from Idle to Contact
which is a child state of Seek Surface. The state Contact
sends a motion request to MOT to move the Coring Drill
feed forward. This moves the bit into contact with the
rock, and when the force measured by DRILL is above a
threshold, the HSM transitions to Apply WOB. This state
initiates a closed-loop force controller to cyclically update a
feed motion request to achieve the desired force, at which
point the HSM transitions to Backoff. This state moves
the feed to retract the drill bit from the rock, then Rotate
Spindle moves the spindle a small amount and the process
repeats. When this has been repeated a parameterized number

Figure 4. Example behavior from DRILL module. Seek
Surface is used to estimate the highest point of the rock

surface as well as its variability

of times, the HSM transitions to Finish, which records the
highest surface location as well as surface variability (the
maximum difference between feed positions at which the
desired force was achieved for each spindle position), then
to Stop. Once motion has settled, a success message is sent
back to CMD, and the HSM transitions back to Idle. If a fault
occurs at any point during execution, the HSM transitions to
Stop, sends a failure message to CMD, then transitions back
to Idle.

The behaviors, associated controllers, and algorithms they en-
code are the components of CASAH that we are transferring
to Flight Software for the Mars 2020 Rover Mission. The
Seek Surface behavior described above is an example of this,
as it is currently being written into the real Flight Software
DRILL module. This process is made possible by 1) running
CASAH with relevant hardware and testing 2) the similarity
of CASAH’s architecture - IRSA - to JPL rover flight soft-
ware and 3) personnel developing CASAH behaviors are also
implementing the same behaviors in flight. By intentional
design, this process of transference is not a direct port and
thus, requires re-writing code. The prototyping, run-time,
and intuition is what is gained by writing and running these
behaviors in CASAH.

Graphical Interfaces— There are three graphical interfaces
to CASAH. The first is LAUNCH, which is used to start
and stop the various processes in CASAH. The second is
REMOTE, which is a robotic visualization tool built on top
of OpenGL. REMOTE is primarily used for monitoring robot
state, but can also be used to send a limited set of commands,
including joint space and Cartesian motion requests to ARM.
The third is TLM, which is a server that broadcasts state
information from all processes to TLMVIZ, a live telemetry
display tool developed in-house to interface with CASAH.

Libraries

CASAH relies on several third party libraries. To ease
deployment and assist with debugging, we explicitly chose
to stay with open source software. A few examples of such
libraries are: Bullet, used for real-time collision detection to
prevent self-collision of robotic manipulators [10]; OpenGL,
the Open Graphics Library used by REMOTE for graphical
robot state display [11]; and EtherLab, IgH’s open source
EtherCAT master [13].

There are two libraries internal to CASAH. While the con-
cept of each is shared across other projects within the JPL
Robotics Section, the code itself is not. The first is Model
Manager (MM). This library provides interfaces for perform-
ing kinematic and loads-related calculations. We create a
robot model for each testbed that can either come from
parsing a URDF or similar format that defines the testbeds
kinematic chain of articulated bodies used by MM. This
allows the core of MM to work for multiple testbeds. The
second is Robot, which contains enumerations of all actuators
and sensors for the testbed, as well as position, velocity, and
acceleration limits. Behavior modules and MOT rely on the
Robot library.

CASAH also shares libraries across other projects within
the JPL Robotics Section that use IRSA. These include the
aforementioned middleware as well as drivers, toolkits, con-
trollers, and several other components of robotics software
that is convenient to reuse across applications. A description
of how these libraries, known as ’externals’, are shared is
given in the Code Management section below.
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Code Management

CASAH development started with three developers in Febru-
ary 2014. The team has grown and re-shaped since then, with
on average four to five people making frequent contributions
at any given time. CASAH also grew from supporting a
single testbed to ten, and the level of system fidelity has
increased significantly. Management of the CASAH code
has thus changed in multiple manners since its inception. A
description is provided below.

Version Control—Version control of CASAH has morphed as
the system has developed and expanded. Initially CASAH
was managed using Subversion (SVN) on an internal server
operated by the JPL Robotics Section [14]. Very early in
development, we switched to git for version control due to
git’s numerous advantages over SVN, including streamlined
branching, merging, and committing [15]. The repository
still lived on the internal server until 2015, when we migrated
to JPL’s Github enterprise. Github provides a web interface
convenient for collaboration and does not preclude command-
line interfacing to the repository.

Externals and Internals— CASAH shares code with other
projects within the Robotics Section, including RoboSimian,
SmalBoSSE, Surrogate, and several planetary sampling re-
search tasks. The in-house libraries shared between these
tasks are referred to as externals. Each external has its
own git repository and owner. Some examples of externals
include our EtherCAT driver stack that interfaces to Ether-
lab’s master, message passing library (RSAP), and command
auto-coder (CMDGEN). Externals are designed to be light-
weight and parameterizable by the application. No external
is dependent on another, so they can be individually pulled
into a project as needed by the application.

The second mechanism of code sharing between CASAH and
other tasks is through ’internals’. Like externals, internals
are their own repository which can be pulled into the main
project. The distinction is that they are used to run a process
and therefore are not considered libraries. Internals consist of
all the core code needed to compile a certain process and are
how we share modules in a semi-generic fashion. They have
heavy dependencies, including certain externals and project
structure, as well as project-specific code for parameterizing
the internal. An example is the MOT module. The core of
MOT is the message handling, actuator and sensor process-
ing, data logging, fault protection, and hardware interfacing.
All of this functionality is part of the MOT internal; CASAH
then supplies a small set of files which the internal compiles
against to define the bus topology, sensors, actuators and
their parameters, etc. Internals allow for code sharing at the
module level without overly constraining each project.

Testbed Configuration, Branching, and Tagging— Because
CASAH originally only worked for a single testbed there
were several possibilities regarding how to best support new
testbeds with different hardware and functionality. Our expe-
rience has taught us that the price paid for arbitrary generality
and abstraction is an unmaintainable software system, so we
sought to avoid blindly supporting all testbeds. Our first
attempt at a targeted approach was for every testbed to be a
separate branch; ARM, MOT, etc. could all be parameterized
in this manner for the specific testbed. Each branch only
contained the behavior modules required for that testbed.
Since the bulk of the code across each branch was in fact
the same, this required developers to cherry pick bug fixes
and updates that affected the common code into their specific
testbed branch. We found that this solution was error-prone

and not scalable.

This led to the concept of testbed ’configuration’, specified
during the build process. The CASAH code contains all
behavior modules and configuration files for every testbed,
including things like kinematic definitions of all the different
manipulators for each testbed. But during the configure step
of the AutoMake build procedure, the developer specifies
which testbed to compile for. This tells the build system to
compile only the modules needed for the testbed as well as
select testbed-specific files for configuration. This concept
allowed us to parse out testbed-specific code from each
module, while retaining commonality across configurations.

The concept of testbed configuration allowed us to work from
a single, unified CASAH master; all development of CASAH
occurs on a side branch, and when the work is complete, it is
merged back into the single master. The master should always
be stable and up-to-date. Thus changes which could affect
system performance may have to be tested by the developer
on relevant hardware prior to the merge. Once the merge is
complete the updated version can be tagged, if desired. Only
tagged releases are installed on the operator account of the
testbed computers. The release tag name is stored in the data
logs created by operators when running all tests.

Development of internals and externals also occurs on
branches, which are merged to their master and tagged when
the update is complete. Part of the CASAH repository is two
scripts: one for pulling in tagged version of internals, and one
for externals.

4. HARDWARE-SOFTWARE INTEGRATION
AND TESTBED BRING-UP

As a robotics software system, CASAH is tightly coupled
with electrical and mechanical hardware. From its concep-
tion, CASAH was designed to integrate only with the set of
hardware required for Mars 2020 SCS testbeds. No attempt
was made to architect CASAH such that it could interface
to any arbitrary set of hardware; in fact, such top-down
philosophy was explicitly avoided in favor of a bottom-up,
capability-driven approach. In this way, the complexities
and challenges associated with an overly abstract and generic
system were avoided. A description of the hardware CASAH
integrates with is given below.

Avionics

CASAH was developed in conjunction with the avionics for
the Mars 2020 SCS testbeds. EtherCAT was selected as the
communication bus due to its low jitter and high bandwidth
[13]. Elmo DC Gold Whistle motor controllers (100Volts, 1-
20Amps) were chosen for running actuators. The Whistle
supports a wide range of motor and feedback types, and
our robotics staff has experience with them across several
projects. Beckhoff EtherCAT modules are used for all non-
actuator I/O, including reading force-torque sensor strain
gauges, toggling digital outputs, etc. The Whistle’s high
level of flexibility and Beckhoff’s diverse catalog allows for
adaptability at the low-level without increasing overall sys-
tem complexity, as the bus type and drivers are standardized
and common across all testbeds.

A proof-of-concept avionics box consisting of Gold Whistles,
Beckhoff modules, and power converters was created for
operating a five degree of freedom robotic arm and coring
tool in 2013 [16]. This informed the design of the avionics
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system, dubbed the ’Blue Box’, which has been used by the
Mars 2020 SCS development testbeds since 2014.

Computer

CASAH is developed and deployed on 14.04 Ubuntu Linux
Operating System. The testbed computer is either a Dell
T7600 or T7810 with an Nvidia Quadro K2000 graphics card,
2.4Ghz Intel Xeon E5-2630 processor, 32 GB of RAM, and
2TB 7200RPM hard drive. The low-latency Linux kernel,
version 3.16, is used for reduced jitter and to allow for setting
process priorities. Each computer has two Ethernet ports: one
for EtherCAT communication and the other for JPL intranet.
A single computer is used for both real-time control and
operator interfacing, thus, all of CASAH’s processes are run
locally.

Mechanical Hardware

While every testbed has a different hardware configuration,
there is inherent commonality which CASAH’s implemen-
tation exploits to reduce complexity. The first is that all
actuators are either rotational or translational, and consist of
brushless DC motors with incremental encoders or hall effect
sensors for commutation and position feedback. The second
is that no testbeds have mobile bases, and thus, there is no
need to track or estimate a moving robot frame of reference.
Third, no testbed uses exteroception for state estimation or
feedback.

Development and Integration Process

There are several steps performed by the software team to
bring a new testbed online. Prior to hardware arrival, the
testbed is assigned a software owner who follows the general
process outlined in Figure 5. A description of each phase is
given below:

Phase I. Initial Development When a testbed is conceived, it
is created for a specific set of objectives. The software team
translates these objectives (e.g., test end-to-end coring with a
brassboard drill on a robotic arm) into the software function-
ality required. A developer creates a testbed configuration
to support the given hardware and objectives, and behavior
modules are created / modified as needed. Functionality is
tested in offline simulation mode to shake out as many bugs
as possible prior to integration.

Phase II. Partial Integration As avionics, actuators, and sen-
sors become avaliable, partial integration can begin. A
significant component of this process is hardware bring-up.

Motor Tuning—Each unique motor has to go through a ’tun-
ing’ process, during which the non-volatile Elmo parameters
used to operate the motor are determined and programmed
into the motor controller. This process is performed using
the Elmo Application Studio (EAS), a closed-source Win-
dows program. Some of these parameters are dictated by
the motor specification (commutation feedback type, current
limits, speed limits, etc) and thus are set directly by the
engineer. Other parameters, such as gains used by Elmo’s
internal control loops, are determined by EAS automatically
via various system identification routines. Once the motor
tuning process is complete, the motor can be jogged in free
space. Data sets of current, speed, voltage, etc. are collected
and stored for future comparison.

It should be noted that the tuning process is performed with
the motor de-coupled from the mechanism it drives. This is
in part because 1) in certain situations, the motion induced by

Figure 5. Phases of CASAH development for a given
testbed at various stages of hardware-software

integration

EAS system ID is not feasible once the motor is integrated
and 2) the large majority of our applications use high gear
ratios and thus the inertial load has little impact on the motor
dynamics. The other advantage is that it eases the debugging
process to bring things online in an incremental manner. Once
the motor is tuned, it can be integrated into the mechanism.
The Elmo parameters are burned to the motor controller. A
text-file version is stored in the CASAH repository as backup.
On average, this process takes approximately four hours per
unique actuator.

Setting up CASAH—To ease the setup of the testbed computer,
a master hard drive with the specific OS, kernel version,
packages, and various other configurations is used to rapidly
create a hard drive clone. As each testbed has a different
set of Beckhoff modules and Elmo motor controllers, some
configuration of CASAH at the avionics interface level is re-
quired for each application. Once the computer is functional,
the version of CASAH specific for the new testbed can be
compiled and tested. Initial tests are done to confirm CASAH
can communicate with all the avionics and that valid data is
being received. On average, this process takes roughly one
day.

Low-level Testing— Once CASAH is communicating with
the avionics and motors have been tuned, basic free-space
motion of each mechanism can be performed. This verifies
the tuning process as well as the gear ratios, encoder/hall
counts per revolution, speed limits, etc. that are hard-coded
into the configuration of CASAH for the specific testbed.
Mechanisms with restricted ranges are calibrated by moving
the actuator to stall against the hardstop at a known location.
Sensor values are also verified at this stage, typically by
checking data as produced by CASAH against a ground-
truth measurement (e.g. place a known weight on a force
sensor and verify the change measures correctly). Low-
level fault protection, such as position restrictions, maximum
temperatures, and force/torque limits are also tested. The
timeline for this process depends on the testbed complexity,
but on average takes approximately two days.
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Phase III. Full Integration Once partial integration is com-
plete, and the testbed has been fully assembled, full func-
tionality can be tested. High-level capabilities are tested in
nominal conditions first. As these behaviors are testbed-
specific, there is no universal procedure to follow for bringing
them online with hardware. This process may include tuning
force controllers, verifying coordinated multi-axis motions,
and testing end-to-end autonomous behaviors. The time it
takes to complete this step can be two weeks or more. Base-
line data sets are recorded for future reference. Operators are
trained in order to handoff operations from the software team
to the operations team.

Phase IV. Maintenance After testbed operations have been
handed off, the software team remains on call for any issues
that arise during testing. This can include both software,
hardware, and system-level issues, as often untangling the
root cause can require detailed parsing of data logs and source
code. If the cause is software, a bug fix is performed and
a new software tag is installed on the operations computer.
New features are also sometimes added, either to modify an
approach or to streamline operations, as well as advanced
capabilities.

Lessons Learned from Hardware-Software Integration

(1) It is ideal to have a spare of every sensor and actuator.
This allows for parallel bring-up / mechanical assembly. It
also helps with debugging.

(2) To save on schedule, test components incrementally as
they are ready, as opposed to waiting for the whole testbed
being constructed to test for the first time.

(3) If they exist, system-level and interface issues are most
commonly caught at the hardware-software integration stage.
Time should be budgeted accordingly.

(4) It is worth being diligent and taking baseline measure-
ments of the system, from low-level hardware and sensor
characterization to high level algorithmic-based behaviors.
This information becomes invaluable when issues arise down
the line.

(5) The software team should have continuous access to a
dedicated set of relevant avionics and development hardware
in order to test bug fixes and upgrades. An example of such a

Figure 6. Software development station consisting of a
’Blue Box’ avionics system, computer, and representative

actuator for low-level checkout

setup is shown in Figure 6.

(6) The more tightly coupled the hardware and software
teams are, the better.

5. DEPLOYMENT ON TESTBEDS
To date, CASAH has supported a total of ten different devel-
opment testbeds for the Sample Caching Subsystem. CASAH
was first deployed in August 2014, and has since been used
to perform nearly 1400 tests. The number of tests performed
on each testbed is given in Table 2.

The data from all these tests is collected and stored in MAT-
LAB file format on a shared drive. The data is analyzed and
parsed to generate results that answer questions stemming
from the various testbed objectives.

Significant Issues and Resolutions

As run-time on CASAH has grown, issues have inevitably
been discovered. When trouble occurs, testbed operators
document the issue and contact the software team to assist
with root-cause analysis and resolution. In certain cases,
an operational work-around (such as resetting from an un-
expected fault condition) is feasible; in other cases, software
system updates may be required. Table 3 lists a subset of
development and run-time issues we have run into to provide
insight into the types of problems that have been discovered
and how they were resolved.

6. SUMMARY
The Controls and Autonomy for Sample Acquisition and
Handling software system was created in 2014 for Mars 2020
SCS development testbeds. CASAH is an implementation
of IRSA, and thus mimics JPL Rover Flight Software. By
doing so, the algorithms developed in CASAH and integrated
with the Robotic Arm, Coring Drill, Adaptive Caching As-
sembly, and Gas Dust Removal Tool prototypes can be re-
implemented in Flight Software with little risk or iteration
required. The CASAH development process has followed a
bottom-up approach to ensure the system remains lightweight
and manageable by a small team. We experimented with
various mechanisms for code management, such as version
control, in order to strike the right balance of proper code
sharing without over-burdening developers.

Table 2. Number of tests run on each testbed using
CASAH, as of 10/2017

Testbed Number of Tests
1) Boundary Conditions Testbed 93
2) Percussion Efficacy and Comminution 426
3) Environmental Development Testbed 282
4) Ambient Robotic Coring 136
5) Tube Manipulation Testbed 105
6) Docking Testbed 41
7) Surface Preparation Operations Testbed 85
8) Single Station Testbed 159
9) Multi Station Testbed 21
10) Percussion Mechanism Testbed 45
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Table 3. Select CASAH issues and resolutions from past three years of deployment

Date Issue Resolution

08/2014 MOT timer slip during force control Found that when DRILL was running force-control, MOT would often
overrun its loop timer. Found that MOT was printing continuously at each
request it received from DRILL at 100Hz. Modified MOT’s logic to only
print on first motion request.

03/2015 Some uncontrolled motion would
occur when E-stop pressed

This affected a robotic arm for a testbed. If moving when the E-stop was
pressed, the arm would fall under gravity a small amount before brakes
closed. Determined to be a hardware limitation, but required adding a ’soft’
E-stop feature, whereby a physical E-stop would toggle a digital input that
CASAH would read and use to initiate a smooth motion ramp-down.

06/2015 Separate branches for each testbed
infeasible for developers

Created testbed configuration files and integrated with build process.
Changed CASAH to consist of single, unified master branch.

07/2015 MOT timer slip during graphics
processing

Found that Nvidia graphics driver was clashing with MOT process at the
OS level. Selected alternate graphics card with specific open-source driver
that eliminated the clash. Retrofitted all computers with this card, and to
ensure correct driver version started the master hard drive cloning system.

07/2015 Externals versions not being man-
aged or tracked

Moved all externals from SVN to git on JPL’s GitHub. Changed CASAH to
pull in specific tag numbers of all externals via a version-controlled script.

08/2015 Hard drives getting full on opera-
tion computers

Added notification to alert operator that hard disk is getting full. Dropped
MOT’s data logging rate for MOT and behavior modules to 1Hz when no
motors have been active for more than 60 seconds.

10/2015 Could not use Beckhoff module that
had digital inputs and outputs

A Beckhoff module that had both inputs and outputs did not work with our
EtherCAT drivers. Found bug in driver design, requiring major overhaul.
Updated driver stack, performed significant testing, then switched CASAH
to support new design.

11/2015 Still getting timer slips in MOT pro-
cess

By tracing where timer slip was occurring, found fflush in several parts of
low-level message printing. Added option to disable fflush, setting default
to disable it for all CASAH modules.

05/2016 MOT would not shut down Determined cause was persistent fault on the motor controller inhibiting
MOT’s state machine from allowing it to terminate. Added persistence
counter and modified MOT’s shutdown logic accordingly.

08/2016 Testbed operations computer kept
locking up

Found that multiple instantiations of telemetry display were running. Found
that CASAH script used to start the display was not checking if instance
was already running in the background, which could happen if not closed
properly. Updated script to alert operator if display is already running when
they try to start it.

CASAH has been used to perform nearly 1400 tests across
10 ten different testbeds, providing invaluable data to inform
both hardware and software design. Hardware has been
characterized and test data has informed refined prototypes
and flight designs. Algorithms and behaviors developed and
tested in CASAH are currently being written into Flight
Software for the 2020 Rover Mission. And aspects of system
performance - including any potential issues that can only be
revealed through testing - has been characterized because of
the relevant manner in which hardware and software has been
integrated and tested.
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