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ABSTRACT 
 

Detecting water hazards is a significant challenge to 
unmanned ground vehicle autonomous off-road 
navigation.  This paper focuses on detecting the presence 
of water during the daytime using color cameras.  A 
multi-cue approach is taken.  Evidence of the presence of 
water is generated from color, texture, and the detection 
of reflections in stereo range data.  A rule base for fusing 
water cues was developed by evaluating detection results 
from an extensive archive of data collection imagery 
containing water.  This software has been implemented 
into a run-time passive perception subsystem and tested 
thus far under Linux on a Pentium based processor. 
 

1. INTRODUCTION 
 

Robust water detection is a critical requirement for 
autonomous off-road navigation.  Traversing through 
water bodies sufficiently deep can cause damage to non-
watertight unmanned ground vehicle (UGV) electronics. 
In addition, a UGV stuck in a water body during an in-
theater autonomous mission may require human 
intervention in the form of towing, or sacrificing.  The 
large number of possible scenarios and appearances of 
water makes water detection particularly challenging for 
visual sensors.  Laser sensors, commonly used for UGV 
autonomous navigation, often get no return value on free-
standing water (Hong, 1998) 

 
In (Matthies, 2003), we cataloged the environmental 

variables affecting the difficulty of this problem and 
discussed the sensors applicable to detecting water 
hazards under each condition.  In this paper, we focus on 
techniques applicable to detecting water hazards during 
the daytime using passive sensors, and a strategy for 
fusing multiple water detection cues into a terrain map, 
from which a UGV can perform autonomous navigation 
(Lacaze, 2002). 
 

2. APPROACH 
 
 The scene in Figure 1 illustrates several appearances 
of standing water in color imagery: brighter intensities 
where the sky is reflected, darker intensities where the 
water is in shadow, and reflections of ground cover that 
are close and far away.  In addition, no leading edge is 
visible for portions of the closer water body.  It is difficult 

to create a single detector that locates all these features.  
Here, we take a multi-cue approach.  Water cues from 
color, texture, and stereo range analysis are fused together 
using a rule base developed by processing 25 archived 
RGB color stereo image pairs from multiple sites (Ft. 
Indiantown Gap, PA, Ft. Knox, KY, Ft. Polk, LA, Ft. A. 
P. Hill, VA, Chatfield State Park, CO, and the Angeles 
National Forest, CA).  This data set has natural scenes 
contains standing water, moving water, a lake, a large 
pond, small bodies of water, clear water, turbid water, 
water under a canopy, and water in the open. 
 

An advantage of a multi-cue approach is that each 
detector can be designed to target a specific water 
attribute.  Perfect detection of an entire water body is 
thus, not expected by any single detector.  The fusion of 
water cues enhances detection of water bodies with 
multiple attributes.  The rules for fusing the water cues 
are designed to maximize water body detection while 
minimizing false detection.  In the following section, we 
discuss water cues from color, texture, and stereo range 
data. 
 

 
Figure 1.  Rectified RGB color image of two large 
puddles on a road at Ft. Indiantown Gap, PA. 

 
2.1 Water Cue from Color 
 
 In previous UGV programs (Bulletta, 2000), we have 
used an RGB color image classifier based on supervised 
classification with a mixture of Gaussians model to detect 
sky reflections in water bodies.  But the training, which 
needs to be repeated at each new site of operation using 
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representative imagery, is cumbersome.  Furthermore, 
there are times when it is not feasible to take a UGV into 
the theater of operation to acquire imagery of sample 
water bodies for training.  Here, we attempt to generate 
thresholding criteria based on an evaluation of a set of 
images containing water having a variety of appearances. 
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The RGB images selected from our archive for 

processing were converted to hue, saturation, and value 
(HSV) color space.  Conceptually, the HSV color space is 
a cone.  On the circle side of the cone,  the circumference 
of the circle is represented by hue values from 0-360 
degrees.   Saturation and value (or brightness) have values 
of 0-1.  Saturation is represented by the distance from the 
center of the circle.  Brightness is represented by the 
distance along the vertical axis of the cone.  At the 
pointed end of the cone, there is no brightness, which is 
represented as black.  At the circle end of the cone, all 
colors are at their maximum brightness (Foley, 1990). 0
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There are several factors that contribute to the surface 

color of water bodies.  Among them include the depth of 
the water, the amount and type of sediment in the water, 
the color of the sky reflecting on the water, the color of 
background material casting a shadow on the water, and 
whether or not the water is moving.  As these factors have 
great variation, it is difficult to predict the hue of water.  
Figure 2 illustrates a grayscale representation of 
saturation and brightness for the puddle in Figure 1.  Note 
that the reflections of the sky in water has low saturation 
values and high brightness values.  Here, we focus on 
detecting only the sky reflections in water. 

Figure 3.  Saturation vs. Hue and Brightness vs. 
Saturation plots for sample manually segmented water 
regions containing sky reflections. 

The top ten rows of the image are examined for high 
brightness and low saturation content to determine if the 
sky is in the image.  The thresholding criteria derived for 
labeling a pixel a water cue from color are as follows: 
If  [S=0] or 

[S ≤ 0.27 and B ≥ 0.73] or  
[sky and S ≤ 0.1 and B > Bmin(S)] or 

 

[sky and S ≤ 0.3 and B > Bmin(S) and 240<H<285], 
 
where, S is saturation, B is brightness, H is hue, and sky 
refers to whether the sky was detected or not.  The color-
based water cue regions smaller than 16 pixels are 
eliminated.  Some lower brightness thresholds are applied 
only if the sky is detected in the imagery.  The last set of 
thresholds is the only one that uses hue.  It targets deep 
bodies of water, which tend to have a blue hue. 

Figure 2.  Saturation (left) and brightness (right) 
representations of the image in Figure 1. 

 A representative subset of 7 images containing sky 
reflections in water was selected to establish hue, 
saturation, and brightness thresholds.  A portion of the 
water regions containing sky reflections was manually 
segmented.  The hue, saturation, and brightness levels for 
these sky reflection regions are plotted in Figure 3.  Note 
that while sky reflection regions can cover the full hue 
spectrum, they cluster in the high brightness, low 
saturation region. 

Figure 4 shows the resulting water cue from color 
thresholding of the image in Figure 1.  The color-based 
water cue is susceptible to false detection where the 
intensity image is saturated.  That would include on snow, 
on white rocks, in the sky, and where the imagery is 
overexposed.  The multi-cue fusion algorithm, discussed 
in section 3, attempts to eliminate false water cues, such 
as on the sky in Figure 4. 
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Figure 4.  Water cue from color overlaid on the image 
in Figure 1. 

 
2.2 Water Cue from Texture 
 
 In images, texture quantifies grayscale intensity 
differences (contrast), a defined area over which 
differences occur, and directionality, or lack of it 
(Haralick, 1973).  For this water cue, we target water 
regions having low texture.  Here, a 9x9 intensity 
variance filter is passed over an input grayscale intensity 
image.  At each pixel, the window variance is calculated 
and thresholded. For the input image, we have 
experimented with using the green channel of the original 
RGB images and the saturation image (also derived from 
the original RGB images). 
 

The top two images in Figure 5 show low texture 
detection results (overlaid on the image in Figure 1) using 
a variance threshold of 13 on the green channel image 
(left) and the saturation image (right).  Note that there are 
water regions detected in each image that were not 
detected in the other.  The bottom two images show an 
example from Ft. Polk.  Here, the larger puddles were 
detected using the saturation image, but not the green 
channel image. 
 

 

 
Figure 5.  Low texture detection using the green 
channel image (left) and saturation image (right) for 
two scenes. 

 
Since low-texture detection occurs by at least 4 pixels 

from high contrast boundaries, low-texture detection is 

expanded by a radius of 3 pixels.  A 5x5 spacial filter is 
used to smooth the detection.  To reduce false detections, 
there are minimum and maximum brightness thresholds 
of 75 and 255 for the green channel image and 10 and 175 
for the saturation image.  In addition, for the green 
channel image, detections where [(S>0.6) or (B<0.25) or 
(S-B > 0.3)] are eliminated.  For the saturation image, 
detections where [(S-B > 0.1) or (B<0.25) or (S>0.6 and 
B<0.85) or (B=1)] are eliminated. 
 

The water cue from texture is susceptible to false 
detections on dirt roads having low texture, in the sky, in 
vegetation, and where the image is overexposed.  The 
multi-cue fusion algorithm, discussed in section 3, 
attempts to eliminate false water cues from texture. 
 
2.3 Water Cue from Range Reflections 
 

Stereo ranging, performed on images from a pair of 
color cameras, outputs a range image used to detect 
reflections.  Reflections of ground cover (such as trees 
and vegetation) extend from the trailing edge of a water 
body and can span a portion or all of the water body, 
depending upon the reflected body’s height and distance 
from the water.  The range to a reflection roughly matches 
the range to the reflected object, however, the reflection 
plots lower than the true ground elevation. 

 
Figures 6 shows false color range and height images 

generated for the scene in Figure 1 by performing stereo 
ranging at a resolution of 320x240 pixels with a 
correlation window of 11x11.  In the range image, red 
pixels are closer and blue pixels are far away.  Magenta 
pixels are beyond 100 meters.  Black pixels indicate 
where no range data was generated.  In the height image, 
red pixels have a lower elevation and blue pixels have 
higher elevation.  Magenta pixels have an elevation 
outside of the region –15 to +15 meters. 

 
Note that the large range data region on the closer 

puddle (which corresponds to reflections of trees in the 
distance) has a range beyond and a height below the 
leading and trailing edge of the puddle.  This can be 
clearly seen in the 3D plot of the range data in the middle 
picture of Figure 6.  The bottom picture of Figure 6 shows 
the elevation profile of one column of range data through 
the two large puddles.  Where reflections border the 
trailing edge of a water body, there is a drastic change in 
the range profile.  The reflection range data and the 
trailing edge border meet at a point we refer to as a 
reflection point.  (Strictly speaking an inflection point is 
the point on a curve at which the sign of the curvature 
changes.  Here, we use the looser definition of  “the 
moment of dramatic change’). 
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Figure 6.  False color 320x240 stereo range image 
(upper left) and height image (upper right) for the 
scene in Figure 1.  The middle picture is a 3D view of 
the range image with grayscale intensity values 
overlaid.  Here, the data has been rotated clockwise a 
small amount around the green pixel near the center 
of the image.  The bottom picture shows the elevation 
profile of column 120 from the range data, which 
passes through the two large puddles. 

 
The range reflection detector searches for profiles 

along each range column that are consistent with range 
reflections.  Reflections begin at inflection points at the 
trailing edge water/ground interface.    The algorithm 
starts at the top of a range column and searches 
downward.  When stepping down a range image column, 
an inflection point occurs when range data moves away 
from the sensors underneath the ground surface by an 
angle and magnitude that exceed thresholds.  A detectable 
trailing edge water bank is also required.  A least squares 
line fit of the range data above the candidate inflection 
point pixel (and within a range of 0.15 times the inflection 
point range) is performed.  The estimated trailing edge 
line must have a incline less than 40° and an average error 
of less than 30cm for the candidate inflection point to be 
accepted. 

 
A range reflection end pixel is located when either 

the data moves back past the candidate inflection point 
(towards the sensors) to a point close to the ground 
surface, or the bottom of the column is reached.  If it 
moves back to a point close to the ground, a significant 
gap between the reflection data and end point is required. 
The algorithm also assumes a “looking down into water” 

posture.  Candidate inflection points having an elevation 
high than the vehicle by more than 1m are rejected.  All 
pixels between a detected inflection point and end pixel 
are labeled as a range reflection pixel.  No candidate 
inflection points beyond 50m are considered. 
 

Zero disparity pixels can also provide evidence of a 
reflection.  Zero disparity occurs when the stereo 
correlator matches the same column in rectified left and 
right images.  When zero disparity pixels occur in the 
lower half of the disparity image, it is likely caused by 
reflections of ground cover that is far away.  Thus, zero 
disparity pixels can be a reflection-based water cue. Our 
stereo range images do not specifically encode where zero 
disparity pixels occurred.  They encode a “no data” flag, 
which can occur for several reasons.  A disparity failure 
diagnostic image must be used to extract the locations of 
zero disparity pixels.  The zero disparity and range 
reflection water cues are complementary.  That is, zero 
disparity pixels and the range reflection detector do not 
explicitly locate the same range reflection pixels. 

 
Reflection detection regions less than 3 pixels wide 

are eliminated by the range reflection software.  In 
addition, single column spikes are removed.  Figure 7 
shows range reflection detection results for the scene in 
Figure 1.  A significant portion of each of the large 
puddles is detected.  Where the leading edge of the puddle 
is not visible, the detection extends to the bottom of the 
column.  Even pixels with no range data (between the 
inflection point and end point) are labeled range reflection 
pixels.  Some of the weak reflections of vegetation on the 
far left side of the closer puddle is detected.  The zero 
disparity pixels for the scene in Figure 1 is shown in the 
right image of Figure 7.  Zero disparity pixels in the top 
1/3rd of the image are eliminated, since they most likely 
corresponds to tree lines (and other ground cover) at far 
range rather than water reflections. 
 

 
Figure 7.  Range reflection detection (left) and zero-
disparity pixels (right) overlaid on the image in Figure 
1. 

 
The water cue from range reflections is susceptible to 

false detections on short branches close to the ground 
surface and in vegetation, where some range data pierces 
the vegetation.  The column profile can contain an 
inflection point on low hanging branches.  The trailing 
edge water bank requirement helps to eliminate this type 
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of false detection.  The multi-cue fusion algorithm, 
discussed in section 3, attempts to eliminate false water 
cues from range reflections. 

 

 
3. FUSING WATER CUES 

 
The water fusion run-time software module currently 

merges water cues from a range-reflection detector, an 
HSV color image sky-reflection detector based on simple 
thresholding criteria, a low-texture detector that 
thresholds intensity variance and brightness, and zero 
disparity pixels obtained from a disparity failure 
diagnostic image.  In addition, any detection above the 
horizon line or 0.75m above the bottom of the vehicle 
control point (center of the rear axle at ground height) is 
eliminated.  This eliminates false detections in the sky and 
tall ground cover. 

Figure 8.  Fused color, texture, range reflection, and 
zero disparity water cues (blue=single cue, 
magenta=two cues, red=3 cues).  Small water regions 
and regions above the horizon and the vehicle wheels 
(by >0.75m) are rejected. 

 

Table 1.  Combinations of cues that can be combined. 
 R 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

Z 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
C 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
T 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
F n n y n n n y y y y y y y y y 

 

 
A connected components algorithm is run on an 

image containing all the water cues.  Components are 
labeled as to which combination of cues it contains.  The 
rules for fusing water detection cues are represented in 
Table 1, where, R refers to reflection-based water cue, Z 
refers to zero disparity-based water cue, C refers to color-
based water cue, T refers to texture-based water cue, and 
F refers to fusion.  A “y” means “yes”, these 
combinations of water cues can be combined.  An “n” 
means “no”, these combinations of water cues cannot be 
combined.  Once invalid combinations are removed, a 
region size filter is run.  In the fused water detection 
image, detection regions having a width of less than 9 
pixels are removed.  In addition, detection regions smaller 
than 150 pixels are removed.  This helps to eliminate 
small false detection regions. 

Figure 9.  Viewed from the right and above the vehicle 
is a 50m load-bearing surface and lowest canopy 
(yellow) elevation map prior to multi-cue water 
detection, with RGB color classification results 
overlaid (brown=soil, green=vegetation, red= 
unknown).   Each cell is 20cm x 20cm.   

The water fusion algorithm also modifies the 
reflection range data to correspond to the surface of the 
detected water body.  In addition, it generates range data 
for fused water detection pixels that previously contained 
none.  This will be discussed in section 4.  Figure 8 shows 
combined water detection from fusing color, texture, 
range reflection, and zero disparity water cues for the 
scene in Figure 1.  Pixels that contained one, two, and 
three water cues are colored blue, magenta, and red, 
respectively.  Note that the multi-cue detector has 
detected virtually the entire close water hazard. 

 
4. TERRAIN MAP 

 
Range data is used to construct the elevation layer of 

a terrain map.  Unless reflection range data is filtered or 
modified, it is placed in terrain map cells beyond a water 
body, creating a hole at the water body and adversely 
affecting estimates of some terrain elevation types (such 
as the load-bearing surface and the lowest canopy 
elevation).  Figure 9 shows 50m load-bearing surface and 
lowest canopy elevation maps, rendered in the same 
figure.  Yellow represents the lowest canopy elevation 
and the other colors show RGB classification results for 
the load bearing surface elevation (green=vegetation, 
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brown=soil, red=unknown).  At range, a portion of the 
road is corrupted by reflection range data (which has a 
lower elevation).  The minimum canopy elevation is 
corrupted as well by range data that really belongs to the 
ground cover. 
 

 

Inflection 
points 

Puddles 

75m 
30m 

Figure 10.  Two stereo range diagnostic plots 
(upper=before correcting the reflection range data, 
lower=after correcting the reflection range data) 
contain false color range images (upper left), reflection 
detection overlaid on a rectified intensity image (upper 
middle), false color height images (upper right), 
overhead views of range data with reflection detection 
pixels shown in white (middle), and the profile of the 
elevation for the range column 120 (bottom).  Here, 
the reflection detection is overlaid on the upper middle 
intensity images only where there is range data. 

 
The water fusion algorithm modifies the reflection 

range data to correspond to the surface of the detected 
water body.  A connected components algorithm is run on 

the input range reflection image.  Range reflection 
inflection points that are associated with each connected 
component are located and their elevations are averaged.  
The pixels bounding the top of each connected component 
in the range reflection image are the inflection points that 
were used to detect the range reflection. The average 
inflection point elevation for each water body is used to 
modify the range data for the range reflections so that 
they correspond to the surface of the water bodies.  This 
amounts to scaling the vectors from the left camera to the 
range reflections for each range reflection pixel. 

 
The average inflection point elevation for each water 

body is also used to generate range data on the water 
surface where there is detected water but no range data.  
The camera model parameters are used to define the ray 
extending through each pixel.  The scaler that applies to 
each unit ray is derived knowing the average elevation of 
the inflection points for each water body.  Figure 10 
shows two stereo range diagnostic plots for the scene in 
Figure 1; one plot prior to correcting the range reflection 
data and one after.  The elevation profile at the bottom of 
the Figure shows the remarkable improvement in 
correcting the reflection range data. 
 

 
Figure 11.  Viewed from the right and above the 
vehicle is a 50m load-bearing surface and lowest 
canopy (yellow) elevation map after multi-cue water 
detection, with water detection results (blue) and RGB 
color classification results overlaid (brown=soil, 
green=vegetation, red= unknown). 

  
Figure 11 illustrates the final output of multi-cue 

water detection in the form of an instantaneous terrain 
map.  Instantaneous terrain maps are merged over time 
into a world map where a UGV can make route-planning 
decisions.  Contrast this terrain map with the pre multi-
cue water detection terrain map in Figure 9.  The load-
bearing surface and lowest canopy elevation maps have 
clearly improved, significantly extending the road surface.   
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5. OTHER RESULTS 
 

In Figure 12, we illustrate multi-cue water detection 
results from other imagery in our selected data set.  Water 
detection by one, two, three, or four cues is designated by 
the colors blue, magenta, red, and yellow, respectively.  
The scene in the row 1 is of Lake Chatfield in Colorado.  
In this image, the water surface is disturbed by wind.  
However, a good portion of it is still detected by both the 
color and texture based detectors.  The example in row 2 
is a pond at Ft. Indiantown Gap, PA.  Note that portions 
of the pond are detected by all four water cues.  The 
example in row 3 is a muddy area at Ft. Polk, LA.  Here, 
the larger puddles are detected by the color and texture 
based detectors.  The example in row 4 is another pond at 
Ft. Indiantown Gap that is partially occluded by 
vegetation lining the leading edge.   In this example, the 
UGV is on a side slope. 
 

 

 

 
Figure 12.  Further sample multi-cue based water 
detection results (blue=single cue, magenta=two cues, 
red=3 cues, yellow=4 cues).  Row 1: Chatfield State 
Park, CO. Row 2: Ft. Indiantown Gap, PA. Row 3: Ft. 
Polk, LA.  Row 4: Ft. Indiantown Gap, PA. 

The example in Figure 13 is from Ft. A.P. Hill, VA, 
in a forested region during the winter.  Note that there was 

only a limited amount of range data on the reflections of 
trees in the water.  While there are false detections from 
the color and texture cues on the snow, those were 
eliminated by the rule base and the filter that ignores 
range pixels higher than the vehicle wheels by greater that 
0.7m. 
 

 

 
Figure 13.  Sample multi-cue based water detection 
results from Ft. A.P. Hill.  Upper left: cue from color.  
Upper right: cue from texture.  Lower left: 320x240 
range image.  Lower right: fused water detection. 

CONCLUSION 
 

In this paper, we have outlined several passive 
perception techniques for generating water cues based on 
color, texture, and stereo range data.  Each is targeted to 
detect a different attribute of water.  The HSV color 
algorithm detects water regions that reflect the sky.  The 
low-texture algorithm detects water regions with uniform 
intensity.  The range reflection detector locates portions 
of water bodies reflecting ground cover.  The water-cue 
fusion software uses a rule base to combine detection 
regions.  In addition, it rejects small regions, regions 
above the horizon, and regions significantly higher than 
the UGV. 
 

Assigning range that corresponds to the surface of 
detected water bodies is a necessary step to be able to 
place the detected water into an elevation map that can be 
used to plan safe paths for autonomous navigation.  We 
have demonstrated a method for correcting range 
reflection data and generating range data for water 
detection pixels where stereo ranging failed.  This not 
only correctly locates water detection pixels in a terrain 
map, it improved the accuracy of the load-bearing surface 
and lowest canopy elevation maps.  As a result, the 
elevation data on the road in Figure 1 was significantly 
extended. 

 
The multi-cue approach allows each detector to target 

different water characteristics.  A certain amount of false 
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detections from each detector is tolerated by applying 
fusion rules that are, in part, designed to eliminate false 
detections.  Thus, each detector can be tuned to be fairly 
aggressive. 
 

FUTURE WORK 
 
 JPL has proposed to extend the daytime passive 
multi-cue water detection approach to daytime and 
nighttime, passive and active sensors in FY05, and to 
address the problem of determining water depth in FY06. 
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