DEVELOPMENT OF PATH TRACKING SOFTWARE
FOR AN AUTONOMOUS STEERED-WHEELED
ROBOTIC VEHICLE AND ITS TRAILER

By

ARTURO L. RANKIN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1997

UMI Number: 9801142

UMI Microform 9801142
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

ACKNOWLEDGEMENTS

The author would like to express his gratitude to the members of his supervisory
committee, Dr. Carl Crane, Dr. Joseph Duffy, Dr. Gary Matthew, Dr. Paul Mason, and Dr.
Sencer Yeralan, for their guidance and support. Special thanks go to Dr. Crane who brought
the author on board the autonomous navigation project and has provided invaluable advice
and templates for graphic simulation programs.

This work would have not been possible without the support of Wright Laboratory,
Tyndall Air Force Base, Florida. Thanks go to Mr. Al Nease and the rest of his staff for the
suggestions given on our trips to their robotics facility.

The author's work is not intended to stand alone. It is piece of a puzzle, put together
by the autonomous navigation team at the Center for Intelligent Machines and Robots.
Particular thanks go to the project manager, David Armstrong, for his invaluable input on
every phase of the project, and office mate David Novick, for his insightful advice. Special
thanks go to the rest of the current team, Jeff Wit, Takao Okui, Dean Hutchinson, Allen
Senior, and Eric Jackson, for their collaboration and dedication.

Rob Murphy is to be acknowledged for animating the Kawasaki Mule 500. Because
of his excellent work, the author's simulation demonstrations look good.

Finally, special thanks go to his wife, Donna Marie Samuels Rankin, who has

provided the moral support and fire needed to finish this dissertation.

ii

ACKNOWLEDGEMENTS it i e e e e e e et ii

ABST RACT .. i e e e e e e \'
CHAPTERS

1 INTRODUCTION ...t et ettt i e 1

Problem Statement |

Project Background L. i, 2

ResearchRequirements 4

ASSUMPHONS .« .ottt ittt ettt it en e 5

Motivationc.iiniiiii ittt 5

Benefitsof thisResearch 7

Required Equipmentand Supplies, 7

2 REVIEW OF LITERATUREttt 9

What are Automated Vehicles? 9

Automated Vehicles are Mobile Robots 9

Mechanical Configurations 10

Steered-Wheeled Mobile Robots 11

Kinematics of aMobile Robot 12

Position Estimation for a MobileRobot 14

Types of Automated Vehicles 15

How are Automated Vehicles Controlled? 18

Computer Architectures 18

How Do Humans Control Vehicles? 19

Reflexive vs. Explicit Path Following 20

Explicit Path Following 21

Methodsof Control 23

3 SPECIFYINGAPATHot i i eaee 37

AreaMap Management i i i 37

TABLE OF CONTENTS

iii

PathTypeso e 39

PathPlanning 40

Standardizing and SmoothingaPath 43

4 CONTROL STRATEGYttt 46
Software Control Architecture oL, 47

Calculating a Target PositioninReal-Time 49

Evaluating Path Tracking Perfformance 52

PID Steering Controlttt 54

Pure Pursuit Steering Control, 58

Weighted PID/Pure Pursuit Steering Control 59

Autonomous Steering Calibration 60

Auto-Tuning Control Parameterso, 62

PID Relay Auto-Tuning, 62

Auto-Tuning the Look-Ahead Distance 65

GainScheduling 67

5 COMPUTER SIMULATION 68
Modeling the NTV’s Steering Behavior 68

Simulating Path Tracking 73

Kinematic Constraintscccoiiniiiiienna.. 74

ASSUMPLIONSottt ittt ittt e 75

Positioning Algorithm, 76

Updating the VehiclePose 77

Updating the TrailerPose 80

Simulating Auto-Tuning il 84

6 RESULTS AND CONCLUSIONSo ... 85
SimulationResults 85

Navigation Test VehicleResults 91

ConClusionsoouiiii i e 97

APPENDIX A NONGRAPHICAL AUTO-TUNING SIMULATION 105
APPENDIX B NTV PATH FOLLOWINGRESULTS 110
REFERENCE LIST i i et et ettt et 118
BIOGRAPHICAL SKETCH ...ttt ittt it e iaaennn 124

iv

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
DEVELOPMENT OF PATH TRACKING SOFTWARE
FOR AN AUTONOMOUS STEERED-WHEELED
ROBOTIC VEHICLE AND ITS TRAILER
By
Arturo L. Rankin
May 1997

Chairperson: Dr. Carl D. Crane III
Major Department: Mechanical Engineering

Wright Laboratory, at Tyndall AFB, Florida, has contracted the University of Florida
to develop autonomous navigation systems for a variety of robotic vehicles, capable of
performing tasks associated with the location and removal of bombs and mines. One of the
tasks involves surveying plots of land for buried munitions. The navigation subtasks include
vehicle positioning, path planning, path following, and obstacle avoidance.

The author’s master’s research involved implementing, on a navigation test vehicle
(NTV), a path planner that generates the shortest collision-free path between two vehicle
configurations. Subsequent to this work, a second planner was implemented that generates
an efficient route for surveying a polygon shaped field. These routes ensure 100% of the

surface area is covered, provided that the path is accurately followed.

Accuracy in path following is critical to the task. There are hundreds of acres that
currently require surveying. The sites are typically divided into regions, where each mission
can take up to 4.5 hours. These sites are usually surveyed using parallel rows. By improving
the accuracy of path following, the distance between the rows can be increased to nearly the
detection width of the ground penetrating sensors.

There are two ways to improve the accuracy of path following: improve vehicle
positioning and reduce control errors. The NTV is currently capable of calculating its
position in real-time, accurate to within 6 cm on an average. The author’s doctoral research
involves developing a strategy that takes advantage of an accurate positioning system and
ensures accurate path following for any steered-wheeled vehicle over a range of speeds (04.5
m/s).

This strategy involves a process for standardizing and smoothing a given path,
calculating a target position in real-time, combining the desirable features of a high-level PID
and adaptive pure pursuit steering controller, autonomously calibrating the steering feedback
data, autonomously tuning control parameters, and scheduling the control gains as a function
of the vehicle speed. Auto-tuning is accomplished with a relay tuner and a golden section
search (GSS) optimization. This strategy was demonstrated in simulation and implemented

on the NTV.

vi

CHAPTER 1
INTRODUCTION

The following problem statement was presented at the author’s oral Ph.D. qualifier’s

examination on March 4, 1996, as a proposal for dissertation research.

Given:

Develop:

Problem Statement

A piecewise linear path, either generated by a path planner,
prerecorded during manual or remote operation, or synthesized as a
set of line segments and circular arcs,

A high-level, geometry-based control strategy that can be applied to
any all-terrain steered-wheeled vehicle (that already has the functions
of steering, throttle, braking, and gear-shifting under low-level
control) and accomplishes accurate path following over a wide range
of vehicle speeds (0-4.5 m/s). Autonomous land vehicles (ALVs)
differ from automatic guided (factory) vehicles in that the dynamics
of the system are more difficult to model, since the wheel/surface
interaction changes as the terrain changes. If the center of the rear
axle is chosen as the vehicle control point, then the functions of
steering and propulsion control can be decoupled and performed
independently. Two geometry-based steering control methods, pure
pursuit and proportional-integral-derivative (PID), will be evaluated
in simulation using several indices of performance. A weighted
control solution will be implemented on an autonomously operated
navigation test vehicle (NTV). PID control will be implemented for
velocity control. A program will be written to autonomously tune all
control parameters. Gain scheduling will be used, based on the
current vehicle velocity.

This proposal was approved by the author’s supervisory committee on March 4, 1996, with

one change. The task of implementing and auto-tuning a velocity controller was eliminated.

The remainder of this thesis will outline the author’s work in accomplishing these tasks.

2
Project Background
The author has worked for the Center for Intelligent Machines and Robotics
(CIMAR) from the Spring of 1991 until the present. During this time, CIMAR has been
under contract by Wright Laboratory, Tyndall Air Force Base, Florida, to develop an
autonomous navigation system capable of navigating a variety of robotic vehicles. A system
has been successfully developed and tested on an automated Kawasaki Mule all-terrain

navigation test vehicle (NTV), a six- wheeled John Deere autonomous survey vehicle (ASV),

Figure 1.1. Navigation Test Vehicle (NTV).

Figure 1.2. Autonomous Survey Vehicle (ASV).

Fie 1.3. Autonomous D7G bulldozer.

Figure 1.4. Autonomous John Deere excavator.

a John Deere excavator, and a D7G military bulldozer (see Figures 1.1-1.4). Positioning is
currently accomplished by the integration of an inertial navigation system (INS) with a global
positioning system (GPS). Other subtasks of the navigation system include path planning,
path following, and a sonar-based obstacle avoidance capability for the NTV.

The focus of some of the research Wright Laboratory is funded for is to develop a
capability of locating and removing unexploded buried munitions. The ASV is capable of
surveying a polygon shaped site, achieving near 100% coverage, while towing behind it a
sensor package (containing an array of cesium vapor magnetometers and ground penetrating

radar) to detect magnetic objects. A Caterpillar excavator is remotely navigated to the

4
excavation site from a command station and the buried object is removed via remote control.
Control algorithms are currently being written to autonomously control a high-speed Eagle
Picher excavator.

Accurate and smooth control of the vehicle is essential to accurately characterizing
the area surveyed. The author’s contribution to the project has been in the c-ea of motion
planning and motion execution. His master’s work focused primarily on developing efficier:t
algorithms for calculating the shortest-distance path between two robot configurations. His
doctoral work involved developing a suite of programs that enables a steered-wheeled robot
to achieve accurate path following.

Research Requirements

The goal of this research was to develop a path following strategy for autonomous
steered-wheeled robotic vehicles where accuracy is easily attained. To meet this goal, the
specified path should not only be safe and efficient, it should be achievable. The vehicle
must be able to evaluate how well it is performing the task. And the manual tuning of
control parameters should be replaced by autonomous procedures.

By applying a self-tuning algorithm during autonomous vehicle operation on a sample
plot of land, accurate path following should be achieved in a timely manner (within 4 hours
would be ideal, as beyond this time the system would need to be refueled). It is expected that
this self-tuning algorithm would need to be run only once and repeated only when there was
a large change in the vehicle dynamics or the terrain.

For purposes of this research, accurate path following is defined as a position

deviation of less than 0.1 meters over the sampling period. The position deviation is defined

5

as the perpendicular (or lateral) distance from the current calculated vehicle position to the
path. Here, the focus is bounding the tracking error due to the control methodology. The
sensor-related positioning errors were not considered here. This work was restricted to
reducing the error between where the vehicle thought that it was (real-time Kalman filtered
positioning solution) with respect to the path, not where the vehicle actually was (post-
processed GPS positioning solution) with respect to the path.

As a proof of concept, accurate path following was demonstrated in simulation on a
Silicon Graphics workstation over a range of speeds (0-4.5 m/s) for forward vehicle motion
only. Three types of steering control were autonomously tuned and evaluated: 1)
proportional, integral, and derivative (PID) control applied to the error in the vehicle’s
heading, 2) pure pursuit control, and 3) a weighted PID/pure pursuit solution. Actual tests
on the NTV were performed at a constant velocity of 1.34 m/s.

Assumptions

The control parameters obtained from the self-tuning procedures are expected to vary
based on the terrain characteristics in the vehicle’s environment (sand, grass, pavement, dry,
wet, rocky, etc.) and the speed at which the vehicle is operated. It is assumed that the terrain
at the site of operation is uniform and the elevation is fairly constant. The test site used at
the University of Florida meets this criteria.

Motivation

The motivation for this research is two part: a general lack of information in the

literature that makes it difficult to compare the merits of various geometry based control

methods and the tedium required in tuning the previously developed strategy. A typical

6

reference from the literature will contain only simulation results, where the assumptions used
in updating the vehicle’s position and heading are not specified. The results section will
typically provide a small graph with one arc labeled planned path and another arc labeled
actual path. The reader is left to interpret the accuracy of the path tracking with a magnifying
glass. The author’s view is that each reporting group should provide with their results the
average deviation, maximum deviation, and standard deviation for position and heading
along straight and curved path segments (where the system is initially perturbed) over a range
of vehicle speeds. The control strategy chosen for this research allows for the development
of such tools for both real-time and post-mission evaluation.

The parameters related to the control of the NTV under a previously developed path
tracking strategy by the author, involved the following:

D) A subgoal removal (pop) distance.

2) A constant distance between subgoals on straight path segments.

3) A constant angle between subgoals around curved path segments.

4) A distance to the next corner where the vehicle is directed to slow down.

5) A distance from the last corner where the vehicle returns to normal operating
speed.

6) A gain proportional to the sharpness of the next corner for determining a safe
desired velocity.
1)) Steering position proportional, integral, and derivative gains.
8) Throttle position proportional, integral, and derivative gains.
The list is long enough to make manuai tuning tedious and extremely inefficient. The current
settings do not meet the standard set by the author for accurate path following. Deviation
from the path around corners was a problem in this implementation. The parameters, for the

most part, were tuned for one particular vehicle speed (1.34 m/s). The inadequacies of

manual tuning make self-tuning or autonomous tuning an attractive alternative.

7
Benefits of this Research

This research would be of benefit to autonomous land vehicles used for surveying,
mowing, or plowing large and relatively flat plots of land where 100% coverage is desired.
Also, this research is applicable to autonomous vehicles for which obstacle avoidance
capabilities are limited (such as the ASV) and the pre-planned path is guaranteed to exist in
free-space. The control strategy outlined in this proposal allows for the evaluation of other
geometry-based, subgoal-following control methods in a “plug and play” fashion.

Required Equipment and Supplies

The equipment required to accomplish this research includes the automated NTV as
the vehicle platform, a Modular Azimuth Positioning System (MAPS) integrated with an
global positioning system operating in phase-differential mode (PDGPS) for positioning, the
MAPS for vehicle heading and velocity information, a Silicon Graphics workstation for
developing the control strategy and simulating auto-tuning and accurate path following, and
a large open outdoor area for conducting vehicle tests. All outdoor tests were performed at
Flavet Field, University of Florida.

The NTV consist of a Kawasaki Mule 500 all-terrain vehicle, outfitted with actuators
on the four functions of steering, throttle, brake, and transmission, two on-board computer
systems, a generator, and two battery back-up units. The NTV is a platform upon which to
develop and test sensors, software, and sensor/software modules used to accomplish remote
operation and autonomous navigation.

The primary computer system consists of a VME backplane chassis, a floppy and

hard disk, two Force 30 CPU boards, two Force 33 CPU boards, and a VIPC610 Quad

8
IndustryPack (IP) carrier board (manufactured by GreenSpring Computers). The IP board
provides an interface with the VME bus for two [P-Servo modules and two IP Analog to
Digital Input/Output (ADIO) modules. A secondary VME computer is used to acquire data
from a stereo vision system. This information is serially communicated to the primary
computer. Both computers operate under the VxWorks operating system.

The advantage of using multiple CPU boards is that a large number of programs can
be run in parallel at a high rate (10 Hz), each communicating information needed by other
programs across the backplane of the computer. At boot up, a block of shared memory is set
up in random access memory (RAM) on a Force 30 board. Programs running on other
boards have access to this block of memory across the bus. Similarly, a block of memory is
used where each program checks to see if it has any messages.

Chapter 2 contains a broad overview of the control methods applied to mobile robot
control, from factory operated automatic guided vehicles (AGVs), to autonomous land
vehicles (ALVSs), or also called unmanned ground vehicles (UGVs), to autonomous highway
vehicles (AHVs). Chapter 3 discusses the author’s strategy for specifying a path to be
tracked. Paths can be specified in a variety of forms by either the user or the path planning
programs. This flexibility predicates the need for path smoothing. The path following
algorithm does not assume that the user will always specify a completely achievable path.

Chapter 4 introduces the control strategy proposed for this research. Chapter 5
outlines the strategy for developing a computer simulation to demonstrate path tracking and
auto-tuning. And finally, Chapter 6 contains some results regarding the implementation of

this strategy and conclusions that can be drawn from it.

CHAPTER 2
REVIEW OF THE LITERATURE
What are Automated Vehicles?
Automated Vehicles are Mobile Robots

The simple answer to the question “What are automated vehicles?” is, “They are
mobile robots.” The question then arises, “What is a mobile robot?”. A mobile robot is a
robot that has mobility in the sense that it is not bolted down to the floor or to another
surface. Mobile robots have been described as fourth generation robots. The first three
generations of robots were industrial robots used for 1) pick and place maneuvers, 2)
welding, and 3) painting and assembly. Mobile robots are used to accomplish repetitive
tasks normal executed by humans, such as, the transportation of materials or people from one
place to another. It is anticipated that mobile robots will become commonplace at home, in
office environments, and on roadways.

Mobile robots can be classified on the basis of the space in which they operate. One-
dimensional robots run on railways or in pipes. Two-dimensional robots operate on flat
surfaces such as a floor or wall. Three-dimensional mobile robots operate underwater, on
terrain of varying elevation, and in space. The functions responsible for mobility for a

mobile robot or automated vehicle are placed under computer control. Note that a mobile

10

robot does not necessarily need to have wheels to accomplish mobility. The mode of
mobility can be suction cups, legs, or whatever a designer decides to use.
Mechanical Configurations

Cox and Wilfong [Cox90] provide a good review of the various types of mechanical
configurations that mobile robots can have. The two major mechanical configurations for
wheeled land vehicles are steered-wheeled vehicles and differential-drive vehicles. Steered-
wheeled vehicles usually have a fixed rear axle and one or two steerable front wheels.
Steered-wheeled mobile robots with two steerable front wheels have steering configurations
identical to automobiles. The dynamics and kinematics of a steered-wheeled mobile robot
are usually modeled using the tricycle configuration. Four-wheeled vehicles are considered
in this category by approximating the two steered wheels with a single steered wheel at the
center of the front axle.

Differential-drive vehicles commonly have tracks, such as military tanks and
construction excavators, or two side wheels with any number of free rotating castor wheels
for stability. Steering is accomplished with different command velocities at each wheel. The
mobility advantage that differential drive vehicles have over steered-wheeled vehicles is the
ability to tumn about a point. In effect, they possess a zero minimum radius of curvature.
Steered-wheeled vehicles and differential-drive vehicles both lack the ability of moving in
the direction of the axis through the fixed axle.

A typical omnidirectional vehicle contains four Ilonator wheels, giving it the

capability of arbitrary motion in any direction. An Ilonator wheel consists of twelve rollers

11

mounted on a hub. Each roller is rotated 45° from the wheel orientation. With such an
arrangement, the wheel can move in any direction without slipping.
Steered-Wheeled Mobile Robots

A vehicle’s minimum radius of curvature is directly related to the range of motion
allowed by the steering mechanism. Car-like vehicles have Ackerman steering linkages.
Stable steering at slow speeds requires all the wheels on a vehicle to completely roll, without
any lateral slip. For all the wheels on a vehicle to purely roll, they must all move along their
rolling axes. When steering around a turn, pure rolling will take place when the pure slip
axis of each wheel intersects at a point called an instant center. The rolling axes of the front
wheels have different orientations with respect to the vehicle's current heading. The
Ackerman linkage is designated to give the correct steering angle on each steerable wheel
in a turn.

A vehicle’s position or pose in the plane is represented by three parameters (x,y,0),
two for translation and one for orientation. However, for a steered-wheeled vehicle
(containing an Ackerman linkage), there are only two-degrees of freedom for control, the
steering angle and vehicle velocity. Such systems are referred to as nonholonomic. The

motion of a nonholonomic vehicle is constrained by the relation,
-sinBdx + cosOdy = 0, (2.1)
where O is the curment orientation of the robot vehicle and (dx,dy) are incremental

displacements in position. A nonholonomic equality constraint is a nonintegratable equation

involving the configuration parameters and their derivatives. A nonholonomic mobile robot

12
can achieve any pose (x,y,0) in two-dimensional space but the combinations of incremental
translations (dx,dy) are limited.

Car-like mobile robots are nonholonomic since their constraint equation is not
integratable. As a result, the analysis of their kinematics, dynamics, and control is complex.
In general, car-like robots have three degrees-of-freedom (DOF) in position and orientation
but only two DOF for motion control. The command variables for a steered-wheel vehicle
are usually the steering angle and vehicle velocity. The command variables for a differential-
drive vehicle are usually right wheel velocity and left wheel velocity.

Kinematics of a Mobile Robot

The kinematics of a mobile robot are expressed in a similar manner to that of
manipulators. The kinematics of a manipulator are referred to as forward and reverse
kinematics or analysis. In forward analysis, the joint angles (displacements) are used to
determine the unique position and orientation of the end effector. In reverse analysis, the
position and orientation of the end effector is used to determine all possible combinations
of joint angles that would place the end effector in such a pose.

With an ALV, or any mobile robot, differential displacements of the driving wheels
and/or the steering angle are used to determine the current pose of the vehicle. This is
referred to as positioning or position estimation. The calculated position is an estimate when
the slip between the wheels and the surface cannot be exactly quantified. The kinematics of
a mobile robot is thus instrumental in determining its position and heading. They are also
used when estimating a robot’s current position and heading in computer simulations. The

inverse kinematics of a mobile robot involves obtaining a set of control variables that will

13

effect specific wheel displacements and place the robot at a specific position and orientation.
The specific positions and orientation can be generated using a path planning program.

Muir and Neuman [Mui87] offer a comprehensive overview of the kinematics of
steered-wheeled, differential-drive, omnidirectional, and ball-wheeled vehicles. Alexander
and Maddocks's [Ale89] analysis of the kinematics of wheeled mobile robots is aimed at
determining what planar rigid motions are possible, given a certain wheel configuration, and
what steering and wheel velocities are required to perform these motions. The conditions
required to guarantee pure rolling are derived. In an earlier work, Alexander and Maddocks
[Ale88] derived equations that govern the motion of steered-wheeled vehicles when pure
rolling occurs. Optimal steering around tight corners is considered.

The influence of friction between an automated vehicle and the driven surface on
turning performance has been examined by Takano [Tak90]. For the case of steered-wheeled
mobile robots, only the comering force (frictional force acting in the direction perpendicular
to the robot’s motion when the wheel rotating direction differs from that of the vehicle
motion) has a significant effect on turning performance.

Zhao and BeMent [Zha92] used differential geometric theory to prove controllability
for three 2-DOF wheeled mobile robots and three 3-DOF wheeled mobile robots, where the
DOF is defined as the number of variables used to specify the systems configuration minus
the number of independent equations of constraint.

They also modeled the kinematics and dynamics of the so-called synchro-drive
mobile robot vehicle. These systems contain three wheels locked together by a set of belts,

chains, or concentric shafts with bevel gears. Two motors are used, one to apply velocity to

14

the wheels and another to steer the wheels. The widely used Cybermation and Denning
mobile robots are synchro-drive vehicles. They further summarized the requirements for a
mobile robot to use nonlinear feedback control for path tracking.

Position Estimation for Mobile Robots

Dead reckoning is the process of estimating the vehicle’s position and heading by
measuring wheel rotations. The cost of dead reckoning sensors is relatively low. Positioning
error, however, usually compounds over time. Dead reckoning is not usually precise enough
for outdoor navigation at high speeds.

Other common methods of positioning for mobile robots include the use of gyros to
determine the orientation of the robot with respect to magnetic north and accelerometers to
determine the acceleration of the robot along several normal axes. (These accelerations can
be integrated once to obtain an instantaneous velocity and a second time to determine the
total displacement with respect to the starting position). Global positioning systems (GPS)
use receivers that communicate with several orbiting satellites. The time required for a
receiver to obtain data from each satellite in view is used to obtain the straight-line distance
to each satellite. A method similar to triangulation is used to obtain the position and
elevation of the ALV. The orientation of the ALV cannot be directly determined from GPS.

For an overview of position systems commonly used for ALV’s and other mobile
robots see Feng et al. [Feng94]. Here, the author is concerned only with developing a control
method that reduces the control error. To this end, the accuracy in positioning is a separate
issue, left to be addressed elsewhere. For the scope of this work, the author is only

concerned about positioning to the extent that it is continuous and smooth. The primary

15
method used for positioning for ALV’s developed at CIMAR is outlined by Crane et al.
[Cra95].
Types of Automated Vehicles

There are three general classes of autonomous vehicles: automatic guided vehicles
(AGVs), autonomous land vehicles (ALVs), and automated highway vehicles (AHVs).
Automated vehicle control has been effectively applied to factory automation (with the
advent of AGVs), and autopilots by the airlines industry. Velocity control has been applied
to automobiles by the use of cruise control. Autonomous vehicle navigation is now being
applied to ALVs and AHVs.

Automatic guided vehicles, commonly referred to as mobile robots, have been
successfully used in factories for over a decade, mainly for material delivery. The primary
purpose of AGVs is to relieve humans of repetitious tasks, such as delivering material,
patrolling a building, or scrubbing a floor. AGVs move at slow speeds and can be free-
ranging or constrained to follow semi-permanent paths. Factory AGVs usually follow
painted lines, buried wires, or permanent tracks.

Free-ranging AGV require sensors to keep track of its location and relationship to
its surroundings. The bulk of AGV research has used encoders, sonar, infrared and laser
light, radar, and vision sensors for free-ranging navigation. The current thrust in AGV
research is to develop free-ranging robots that make factories more flexible environments.

Dead reckoning is commonly used to estimate an AGV's current position and heading.
The cumulative errors in dead reckoning can come from wheel slippage, an imprecise

measure of a wheel’s rolling radius, and separation of the two contact surfaces. The majority

16

of AGVs have two driven wheels and one or more free-rotating castor wheels. Some are
steered-wheeled and kinematically modeled as tricycles. Others can translate in every
direction and are thus termed omnidirectional. AGVs operate in controlled environments,
at slow speeds, and in general pose a low risk to humans.

Optimizing the control of AGVs is beyond the scope of this research. However, to
the extent that some AGV control strategies may be partially applicable to ALV, a set of the
most interesting ones will be evaluated in the section How are Autonomous Vehicles
Controlled?. This work is limited to the operation of steered-wheeled ALVs.

Autonomous land vehicles are designed to navigate on well defined roads, on poorly
defined roads, and on off-road terrain. Often, very little is known about the environment in
which an ALV will be expected to operate in. The thrust of research in the area of ALVs
centers around image processing, object recognition, path planning, and obstacle avoidance.
Artificial intelligence techniques are often applied to improve image quality and
computational speed. Because scenes tend to be complex, ALVs typically operate at speeds
below 24 km/h. With ALVs, exact path following is not always critical. The need to quickly
react and avoid obstacles in the environment is often a higher concer.

Vehicle dynamics do not generally play an important role in vehicle control for ALVs
since they do not move very fast. Centrifugal and coriolis forces are rarely considered in
developing control laws. Vehicle statics, on the other hand, presents a larger challenge for
vehicles that rely on dead reckoning for position estimation. An ALV moves by frictional
reaction forces acting on the driven surface. Any slippage between the wheels and the

surface contributes to the uncertainty of the vehicle’s location.

17

The control of wheeled ALV:s is currently a popular research activity and there are
several reasons for this. Wheeled ALVs tend to be energy efficient and are structurally
simple. Furthermore, there exists a wealth of technical information available from the
automobile industry on automotive engineering.

Highway automation is currently under study as a remedy to recurring traffic
congestions and frequent accidents that account for thousands of deaths and injuries in the
U.S. each year. It is anticipated that the increase in the number of vehicles operated in the
U.S. in the next two decades will place a considerable strain on the capacity and safety of the
present highway system. Highway automation may be a partial solution to improving
highway safety and capacity.

Highway automation involves two interrelated areas of research: automatic vehicle
control and traffic control strategy. Central to both of these areas is the need to gather
information from sensors, intelligence or decision making, and control.

The deployment of autonomous vehicles on highways is considered a viable highway
automation option and is a part of the Advanced Vehicle Control Systems (AVCS) and the
Intelligent Vehicle Highway Systems (IVHS). It is believed that the number of auto
accidents can be drastically reduced by eliminating human error and by taking advantage of
faster response times available to the automated vehicle. It is further estimated that a high
speed lane could increase highway capacity by up to 800 percent if automated traffic control
systems became a reality.

Automated highway vehicles (AHVs) are typically controlled using two independent

control laws: one for lateral (steering) control and one for longitudinal (velocity) control.

18

Lateral control involves keeping the vehicle within a specific lane. The lane is usually
identified by boundary stripes or a marker placed in the middle of the lane. Lateral control
is typically accomplished using steering commands only. Longitudinal control refers to
controlling the velocity of an AHV during platooning or vehicle-tracking.

The disadvantage of the AHV control methods is that they are limited to path tracking
where the path curvature is small, a weakness that eliminates their use for path tracking on
nonhighway roads and off-road for ALVs [Smi91].

How are Automated Vehicles Controlled?
Control Architectures

There are two general types of control architectures used for real-time systems such
as autonomous vehicles: centralized and decentralized. In centralized control, the decision
making responsibility is partitioned as a carefully ordered decomposition of specialized tasks.
A hierarchy exists where, for example, the high level modules concentrate on sensor data
acquisition and motion planning and the subservient low level (motion controller) modules
are responsible for carrying out the will of the motion planner.

In decentralized control, the decision-making responsibility is partitioned as a loosely
ordered cooperation between shared tasks. Decision making capabilities are placed in the
motion controller, where steering and speed commands are computed directly from sensor
data. Here, the system is not a true control hierarchy. The lower level modules are not
subordinate to the higher level modules.

In practice, most control architectures fall somewhere along the spectrum between

being completely centralized and being completely decentralized. The author’s work utilizes

19

a centralized control architecture, as it is applied to the execution of an explicit path by an
autonomous land vehicle (ALV). For an overview of decentralized control, see Payton and
Bihari’s discussion of the vehicle called ALV [Pay91]. ALV originally referred to a 20,000
Ib, 8-wheeled mobile robot built by Martin Marietta thru funding by DARPA. The ALV
project ran from 1984-1988. Today, the acronym ALYV is used more often to refer to a class
of mobile robots, not the DARPA funded ALV.

How do Humans Control Vehicles?

Many investigators attempt to model the control of autonomous vehicles in such a
way that the perceived “way” in which humans drive is emulated. There is a variation of
explanations, however, on the dominant behaviors in human driving, and consequently on
the actual mechanics of human driving. Here is a sample of explanations the author has

compiled.

In contrast to path planning, a human driver bypasses the computation of a path
trajectory and turns the steering wheel in direct reaction to an observed heading
angle and range [Keh91].

When a human drives an automobile, he perceives the local environment through
eye-brain cooperation. He selects a way point ahead of the vehicle as an
intermediate subgoal toward his global goal, and steers the vehicle to attain the
subgoal [Che87].

When a human drives a car along a road, he or she cares most about keeping a car
within the road boundaries. Vehicle speed is not changed to follow a time history of
vehicle positions. Speed is changed in response to some higher level of
characteristics such as road curvature, proximity of obstacles, or conditions of the
road, vehicle states and the human driver [Shi92].

When a skilled car-driver makes a turn, the steering wheel angle is smoothly
increased to some maximum angle, then smoothly reduced back to neutral position
as the car comes out of the turn. It seems reasonable that paths generated for an

20

autonomously guided vehicle should likewise have turn segments which permit such
smooth steering commands for guiding the vehicle around turns in the path [Nel89].

When humans drive their vehicles within the confines of a passageway, they do not
necessary change the planned route when another vehicle crosses their path.
Typically any traverse of the road map is continually adjusted in terms of stopping,
slowing down, or accelerating in attempt to avoid obstacles [Gri90].

Reflexive vs. Explicit Path Following

A path tracking or following algorithm’s job is simply to keep an autonomous vehicle
on a path until a goal point is reached. Although the job description of a path tracker is
simple, the way in which the task is accomplished has been difficult to solve at high speeds
and over a range of velocities. There are two general types of path tracking: explicit path
following or reflexive vehicle control.

In reflexive path following, the path of the vehicle is perceived in real-time via stereo
vision sensors or other sensors. In road following, a subgoal is generated from the image at
some fixed lead distance ahead of the vehicle that represents a midpoint of the perceived
lane. In vehicle-tracking, a subgoal is generated that represents a vision cue on the back of
the lead vehicle. Reflexive control is often applied in AHV research in the form of lateral
and longitudinal control.

Lateral control entails autonomous lane following on highways, accomplished by
generating steering commands that minimize the lateral error in a vehicle's position. These
methods usually assume constant velocity and address only steering control. Longitudinal
control is used to autonomously control each vehicle in a platoon in a way such that the

distance between vehicles remains constant. Longitudinal control methods address only

speed control.

21

A relatively new area of reflexive path following uses artificial potential fields. This
method places artificial repelling forces on all obstacles and an attracting force on the goal
point. The robot vehicle is guided through the resulting field to the goal, avoiding all
obstacles along the way. Artificial potential fields can be used to plan paths if the
environment is known a priori, or to navigate reflexively as objects are detected. Artificial
potential field methods, in their basic form, are applicable to only differential-drive and
omnidirectional mobile robots.

In explicit path following, an explicit path, either generated off-line by a path planner
or previously recorded by driving the course, is provided to a path tracking algorithm. Here
also, a subgoal is normally generated at a lead distance ahead of the vehicle and on the path.
Common methods used for steering control include PID and other classical control methods,
pure pursuit, and curve fitting, usually with a quintic polynomial.

The path tracking task for both of these cases is the same: develop a control law that
will direct the vehicle to pass through the current subgoal. The emphasis of the author’s
work is placed on accurately path tracking an explicit path. This literature review, however,
will include methodologies used in path tracking a perceived path since many of those
methodologies can be directly applied to path tracking an explicit path.

Explicit Path Following

There are two general ways in which an explicit path is tracked: reference posture
methods and real-time subgoal following methods. Reference posture methods [Nel88,
Wil90, Kan88] of path tracking use a reference path generator (RPG) to obtain a set of

reference postures (x,y,0)' from a given path off-line. A sequence of reference postures is

22

given to a vehicle at a constant rate, and a path tracking algorithm operates to move the
vehicle through these postures. The error (e,, €,, €o) between the current posture and a given
reference posture are continuously multiplied by gains to determine the command vehicle
steering angle and throttle position. These methods boast of inch level accuracy at slow
velocities (2-6 m/s); however, tracking accuracy degrades as speed increases.

These methods are generally applied to only indoor mobile robots where high
precision in positional control and safety are high priorities and the speed of operation has
a lower priority. These robots are generally used to follow predetermined routes in factories
or offices and are called automatic guided vehicles (AGVs).

Many of these routes are made up solely by line and circular arc segments. The
curvature of a path at a line arc transition point is discontinuous, however. Such
discontinuities can contribute to tracking error. Nelson [Nel89] has proposed using polar
polynomials in place of circular arc segments so that the defined path to be followed is a
continuous curvature path. Reference postures are obtained from a RPG that lie on the line
segments and polar polynomials.

Shin and Singh [Shi90] divide the navigation problem into four subproblems: world
perception, path planning, path generation, and path tracking. In the path generation stage,
clothoid curves are used to convert objective points (supplied by a course planner) into the
actual path to be tracked.

Clothoid curves are a family of curves that are continuous with respect to posture,
tangent direction, and curvature. They are distinct in that their curvature varies linearly with

the length of the curve. Shin and Ollero [Shi95] convert objective points into path segments

23

of finer detail using clothoid as well as B-spline curves. The limitation of these methods is
that the smoothed path can differ significantly from the planned path to the extent that
obstacle space may be invaded.

Boukas [Bou92] has compared three methods of control for a differential-drive robot
containing two drive wheels: a PID controller, a state feedback controller, and a sliding mode
controller. The dynamics of this AGV are nonlinear. The state feedback controller is based
on a linearized model, while the PID controller and sliding mode controller are based on
reducing the movements of the vehicle to linear and angular displacements.

Methods of Control

This section of the literature review will be limited to control methods for
autonomous steered-wheeled vehicles (with Ackerman linkages) with emphasis on the
methods used for explicit path following. Although the author’s work is only applicable to
ALVs, control methods used for AGVs and AHVs will be reviewed since many of these
methods can be easily implemented on an ALV.

An impressive work in the area of explicit path tracking for ALVs was completed by
Shin et al. [Shi91, Shi92]. Under the FastNav project, position based navigation was
accomplished over featureless terrain at 11 m/s using a full-size modified van at Carnegie
Mellon University (CMU) called NavLab. The four major subsytems were explicit path
tracking, obstacle detection, obstacle avoidance, and the development of a real-time
computing architecture [Sin91].

The problem of path tracking is simplified by kinematically decoupling the control

of propulsion and steering. By choosing the midpoint of the rear axle as the vehicle control

24

point, vehicle speed is independently controlled from the problem of planning steering
motions. Vehicle speed is decided based on the current path curvature and the vehicle’s
proximity to perceived obstacles. An inertial navigation system (INS) was used to determine
the vehicle’s position and heading at a frequency of 20 Hz.

Since dead reckoning was not necessary, a kinematic model was not used. Nor was
an explicit dynamical model used. Relatively simple experiments were performed that
identified first order effects and a dynamical model was approximated. This model of
vehicle dynamics is used by a feedforward module (preview controller) which is combined
with feedback control. The feedback control module fits the current pose and a desired pose
(placed at a constant lead distance ahead of the vehicle) with a quintic polynomial. The
quintic polynomial is used to generate the current desired steering angle.

The most dominant characteristic behavior of the system's dynamics is latency. There
is an inherent delay in when a command steering angle is issued and when it is achieved,
particularly significant at high speeds. Feedforward control is used to anticipate an imminent
line arc transition. The immediate goal of the feedforward controller is to have the steering
angle reach 63% of the desired steering angle by the time a line arc transition is reached.

For high speed position based navigation, the delay in processing and executing
commands is an important factor. Here, it is more important to know now where the vehicle
will be several seconds later if a particular command is issued now. Some methods model
the system behavior to predict the posture of the vehicle with respect to the path after some

time increment if a certain steering angle is commanded [O1191, Kel94, Mur94].

25

Ollero and Amidi [Ol191] utilized generalized predictive control (GPC) to develop
the Generalized Predictive Path Tracking (GPPT) method, which is based on the receding
horizon approach. This method uses a simple model of the vehicle’s kinematics and a first-
order dynamic model of the steering system. By assuming the vehicle’s velocity remains
constant, the vehicle’s motion is represented by a locally linearized Controlled Auto-
Regressive Integrated Moving Average (CARIMA) time discrete model.

The GTTP formulation is intended to minimize a cost index with the errors between
future desired outputs and predicted outputs, and future increments of control. Results of
experiments conducted on the NavLab vehicie were presented only for path tracking at a
constant velocity of 3.4 m/s. The maximum range of the receding horizon within which
outputs are predicted is said to be automatically tuned, although no details are given.

Ollero et al. [O1194] conducted further experiments with the GPPT method (as well
as the pure pursuit method) on a RAM-1 mobile robot testbed, built for research in indoor
and outdoor industrial environments. The RAM-1 has two driven wheels and a top speed
of 1.6 m/s. A fuzzy supervisory system was designed to auto-tune the control parameters of
both methods using 81 fuzzy rules. The inputs are as follows:

1) the distance from the vehicle to the nearest point in the path being tracked,

2) the actual velocity of the vehicle,

3) the curvature at the current target point, and

4) the difference between the heading of the vehicle and the heading of the nearest
point in the path.

26

The fuzzy rules are tedious to generate, requiring refinement through experimentation with
the vehicle it controls.

Kelly [Kel94a, Kel94b] describes a feedforward simulator that models many aspects
of a vehicle’s kinetics that influences an adaptive pure pursuit algorithm during actual (not
simulated) path tracking. The feedforward algorithm estimates where the vehicle will be
after some time increment for several candidate steering commands. The candidate
command which will place the vehicle closest to the target point becomes the vote of the
strategic controller.

The solution of this problem is mathematically complex because it involves solving
a coupled set of eight nonlinear differential equations that form the vehicle’s state space
model. At each step in the simulation loop, suspension, propulsion, steering, and position
are estimated. This work was performed under the Real-time Autonomous Navigator with
Geometric Engine (RANGER) project at Carnegie Mellon University, Pittsburgh,
Pennsylvania.

Murphy [Mur94] has reported on the method of steering control used by the National
Institute of Standards and Technology (NIST) High Mobility Multi-purpose Wheeled Vehicle
(HMMWYV). This research was performed by the Robotic System Division in support of the
Department of Defense’s (DOD) Robotic Testbed program and the Department of
Transportation’s (DOT) Intelligent Vehicle Highway Systems program.

Video cameras are mounted to the windshield of the vehicle and are used to track the
painted stripes on a road that defines the edges of a lane. Steering control is accomplished

using the pure pursuit method. The vehicle steers an amount proportional to the lateral

27

position of the perceived lane. A subgoal is chosen a constant look-ahead distance in front
of the vehicle. The steering angle chosen at each instant is the one that would cause the
vehicle’s control point to pass directly over the subgoal if this steering angle could be
instantaneously applied.

The controller cycles at 15 Hz and the vehicle has accurately tracked the lane of a
road at 55 mph. A model of the system has been developed that properly predicts that
increases in speed causes a decrease in stability while decreases in controller delay causes
an increase in stability. The paper examines the effect of vehicle speed, computational delay,
and the look-ahead distance on system stability. This work uses delay compensation,
effectively eliminating the pure delay associated with the vision processing stage. The
transfer function developed to analyze stability is based on the assumptions that the tracking
error is small and the vehicle tracks paths with small curvatures. No results, however, were
provided with this work.

Three path tracking strategies were analyzed and compared by Amidi and Thorpe
[Ami90] using the CMU developed NavLab robotic vehicle: pure pursuit, a quintic
polynomial fit method, and a control theory approach. A set of perception modules were
used to pass the motion controller module a desired path in terms of two-dimensiona! world
coordinates. An inertial navigation system was used to estimate the vehicle’s position and
heading. The motion controller module has three components, a mapper, a tracker, and a
velocity regulator.

The mapper keeps the list of points specifying the desired path as consistent as

possible. It interpolates between given points (x,y) to estimate the heading of the midpoint.

28

The difference in heading from one midpoint to the next is used to compute the curvature at
each path point. If navigator modules change the desired path, all the points in front of the
vehicle are replaced by the most recent set of path points. The mapper can be configured to
record a motion profile (x, y, z, §, ¢, v) as the vehicle moves. The minimum turning radius
of NavLab is 7 m and data is recorded every half meter.

The tracker chooses a point somewhere ahead of the vehicle on the desired path as
the subgoal point. Then, it is uses the information at the subgoal to define what steering
angle to command. The look-ahead distance the tracker module uses is 5-15 m and is a
function of the vehicle's speed. Note that even at constant speed, the look-ahead distance is
not constant. A particular subgoal may be considered several cycles through the tracker
module before it is time to look at the next subgoal.

The control theory approach corrected for lateral and heading errors. The new

curvature was calculated using the equation

v=28 l(d)subgoal - d>velu'(:le) - gZ(xxubgoal - xvehiclc)’ (2-2)

where g, was determined experimentally and g, was chosen such that g, > 2[g,]'? (i.e., an
over-damped system). Note that a positive lateral error aX=(Xg,pgq - Xvenicie) CONtributes a
negative component to the steering angle and a positive heading error A0=(Ppg001 = Prenicte)
contributes a positive component to the steering angle. Reasonable performance was
reported at speeds less than 3 m/s. At speeds exceeding 3 m/s, attempts to overcome small
heading errors, due to slop in the steering mechanism, led to small oscillations in path

following.

29

The second approach tested continuously fit a quintic polynomial between the current
vehicle location and the subgoal location. A new command curvature was continuously
computed based on the curvature of the quintic at the vehicle’s current location. This
approach was based on a constant speed assumption.

The results using this method were not always good. Several issues were cited that
limits this methods practicality. First, it was unclear how far to travel on a quintic before
computing a new one. Secondly, for a quintic curve to respect a vehicle’s minimum turning
radius, longer look-ahead distances are required. Tracking performance, however, is very
dependant on the look-ahead distance. A further issue that contradicts the goals of this
method is that the entire length of a given polynomial is never completed, indicating that
meeting the heading and goal constraints at the subgoal is not critical. Only simulation
results are shown for this method.

The last approach tested by Amidi and Thorpe was a pure pursuit controller

functioning at 10-15 Hz. The control equation used to determine the new curvature v was

V==X (2.3)

where L is the look-ahead distance and x is the lateral error in the vehicle’s position. Notice
that pure pursuit is simply a proportional controller using the x displacement as the error.
The gain is easily tuned by changing the look-ahead distance L. Good results were reported

up to 8 m/s. A look-ahead distance that was too long resulted in the vehicle cutting corners,

30
whereas, a look-ahead distance that was too short resulted in the vehicle oscillating about the
path.

Pure pursuit steering control, as applied to mobile robots, was borrowed from a
maneuver commonly used by military pilots. The pure pursuit maneuver involves pointing
the pursuer directly at the object being pursued. This is in contrast to the lead pursuit
method, where the pursuer is pointed a fixed number of degrees ahead of the object being
pursued. The pursuer will always converge on the target if the pursuer has a velocity greater
than the target [Hom91].

Ollero and Heredia [Ol1195] analyzed the stability of the pure pursuit algorithm for
path tracking at constant speed (3, 6, and 9 m/s) for straight and constant curvature path
sections, estimating the time lag for computing, communications, and actuator delays. For
each velocity, the minimum look-ahead distance that made the motion stable and the
maximum look-ahead distance that made the motion unstable were determined. The stability
limit lies between these values. Experiments with a computer controlled HMMWYV yielded
stability limits that agreed with the analytical formulation which considers delay.

Krogh [Kro85] has described what he calls "guaranteed steering control" for AGVs
using artificial potential fields. The conditions for attaining the goal state are outlined in
terms of a Lyapunov-type attraction test function and a set of barrier functions. Krogh and
Thorpe [Kro86] proposed a method for using the output of a path planner in conjunction with
a generalized potential field (GPF) to accomplish path following. The task of moving to a

single goal is effectively broken up into the task of sequentially moving to several critical

31
points or subgoals. GPF's are used for local feedback control to guide the robot to each
subgoal.

Feng and Krogh [Fen90] have presented an algorithm for reflexively steering a
steered-wheeled vehicle to a goal point through an obstacle dense environment. Their two-
stage algorithm involves first generating a visible subgoal by a subgoal selection algorithm
(SSA), and then generating and implementing recommended steering and velocity commands
with a feedback steering control algorithm. Local sensor data are used to update the visible
subgoals while the vehicle is in motion. This algorithm was tested on the CMU NavLab
vehicle. Experiments showed the algorithm was able to drive NavLab at 1.5 m/s through an
obstacle course.

The concept of longitudinal control for AHVs envisions automatic controlled
platoons of vehicles, each containing sensors, actuators, and communication equipment. The
goal of longitudinal control is to decrease the required intra-vehicular spacing for a platoon
of vehicles traveling at high speeds. These methods usually develop control laws for each
vehicle in the platoon using the lead vehicle’s velocity and acceleration, the preceding
vehicle’s velocity and acceleration, and the distance between the vehicle and the preceding
vehicle [She91,Hed91].

The concept of lateral control for AHVs involves developing steering control laws
capable of keeping an automated vehicle inside a perceived lane. Hessburg et. al. [Hes91]
has investigated the performance and limitations of a PID/feedforward controller for a 50 kg
computer controlled scale model (4WSD) car on a mock automated highway. The emphasis

of the study, called the Program on Advanced Technology for the Highway (PATH), was

32

determining the feasibility of a proposed discrete magnetic marker/sensing system. A
secondary objective was the formulation of a control law that achieves “good vehicle
tracking to the center of the lane while maintaining smooth ride quality, in terms of lateral
motion”.

A series of magnetic markers were placed in the center of a predefined path for the
vehicle and magnetometers were mounted on the front center of the vehicle to measure the
magnetic field from markers. The standard deviation of the reference positioning error was
calculated to be 0.4 cm. The control law is reported to have performed well under nominal
operating conditions but oscillations resulted when operating conditions deviated from
normal values (such as simulated wind gusts).

Peng and Tomizuka [Pen91] have investigated a preview control law as applied to
the lateral control problem. The addition of two feedforward terms to a feedback control
algorithm based on the frequency-shaped linear quadratic (FSLQ) control theory, has been
shown (in simulation) to greatly improve tracking performance and reduced the peak value
of lateral acceleration.

Typically the control of AHVS are anticipatory rather than compensatory. A preview
of the road geometry (curvature) may be encoded in the reference system (in the road
surface) and then used in a feedforward term. Ackermann et. al. [Ack94] has presented a
nonlinear control strategy based on the sliding mode theory which requires no preview of the
road curvature. Two cascaded controllers are used to accomplish lateral control. The first

uses the sensed lateral deviation from the guideline and the steering angle and the second

33

uses the vehicle yaw rate. Velocity control is not addressed and only simulation results are
provided. The control parameters were hand tuned.

Some path tracking methods consider the possibility of moving obstacles being
present during path execution. Griswold [Gri90] has developed a control law where sensed
objects are avoided by controlling the speed of the autonomous land vehicle along a
predetermined path. The input to the speed controller is the vehicle’s speed and a description
of each sensed object’s velocity. The output of the speed controller is an acceleration and
the time of duration of the acceleration. The only change that occurs when obstacles are
encountered is the speed along the predefined path.

Kehtarnavaz and Sohn [Keh91] have developed a steering control algorithm for a
Dodge Caravan vehicle using neural networks. The system is applied to the vehicle tracking
problem. A stereo vision sensor provides a vision cue to the controlling algorithm, which
is used to detect the range and heading of the lead vehicle in real-time. This information is
used to determine the appropriate steering and vehicle commands to track the lead vehicle.
The network is trained by real data obtained from live vehicle-tracking test runs. Only
simulation results are provided.

Chen [Che87] has described a human-like reflexive navigation algorithm for an ALV.
A vision system provides images of the local environment from which a way point is selected
at a constant distance ahead of the vehicle. The subgoal’s direction and constrained open
space are represented by a cone. The cone’s vertex, spine, and orientation are parameterized
as inputs to the control algorithm. The position and heading offsets are used to obtain a set

of nonlinear differential equations that describes the vehicle's navigation performance. The

34

navigation law is analogous to proportional navigation for air vehicles. Simulation results
are provided for speeds up to 6 m/s, a lead distance of 24 m, and a curvature of 1/150 m™.

DeSantis [deS93] has developed an elegant solution to path tracking for car-like
robots. It is valid when the path is a set of lines and circular arcs, and if one can make the
assumptions that 1) the motion is planar and exempt from side slippage, 2) the lateral,
heading, and velocity-tracking offsets (errors) are kept small, and 3) the assigned tracking
velocity is constant. Under these assumptions and conditions, path tracking is shown to be
equivalent to the stabilization of a linear system. Simulated experiments are alluded to but
no results are provided.

Muller [Mul92] has outlined a procedure for superimposing feedback control and a
rule-based feedforward control law to vision based road following that involves turning from
one road to another. This work is built on a four-dimensional approach to modeling the
world thru machine vision. No results are provided with this work.

Samson and Ait-Abderahin [Sam91] also proposed nonlinear control laws for the
stable tracking of a trajectory for a nonholonomic cart with two driven rear wheels and a fully
rotatable front wheel. d'Andrea-Novel [dAn91, dAn92] described dynamic feedback
linearization control laws for stable path tracking for three-wheeled robots (with two front
wheels and one steerable rear wheel) and omnidirectional vehicles.

Canudas de Wit and Sordalen [Can91] proposed a piecewise continuous pure
feedback law for a nonholonomic mobile robot with two DOF that exponentially stabilizes
the cart about the origin. They later expanded this work to obtain stabilization about an

arbitrary point in space [Sor92]. This was used to track a sequence of via-points along a path

35

composed of line segments and circular arcs. A velocity vector and error vector is specified
for each via-point along the path. Desired velocities could be specified as either positive or
negative.

Similarly, Kanayama et al. [Kan88, Kan90] proposed a method that takes a sequence
of reference postures that define the planned path and passes them to the vehicle’s control
system, one at a time at a constant rate. The posture control loop determines the error in the
vehicle's position and orientation with respect to the current reference posture. Then the
error components are PID filtered to produce new command velocities. A new control rule
is proposed and proven stable using a Liapunov function.

The concept behind the method used by Nelson and Cox [Nel88] is virtually identical
to the early Kanayama approach. A local path planner passes a path segment to a reference
path generator which determines the appropriate reference state for the robot to track. Path
segments can be lines, arcs, or splines. The reference state to be tracked is updated at each
control cycle. New command variables are a function of the previous command variables
plus the weighted errors in position and heading.

Rathbone et al. [Rat87] argued that the specified path to be followed should include
rate of change of direction information. Path following around a curve did not significantly
increase their computational cost but offered better predictability of the actual vehicle's path.
van Turennout et al. [van92] have studied feedback control for tracking a wall at constant
speed. The distance to the wall, obtained using ultrasonic sensor data, is maintained during

vehicle motion.

36
Open loop strategies for path tracking have been considered by Murray and Sastry

[Mur90], and Lafferiere and Sussman [Laf91].

CHAPTER 3
SPECIFYING A PATH

Many robotic applications benefit from the systematic execution of an efficient
preplanned path. In autonomously clearing a beach of mines, or surveying a field for buried
munitions, achieving 100% coverage of the area is critical. Here, it is a imperative that the
vehicle accurately follow the specified route. Such navigation systems are position based.
The positioning solution is required to be extremely accurate and available at a high rate.

This chapter discusses the various ways in which a path can be specified. The path
execution software is flexible in that it is able to receive a variety of path types, each to be
explicitly followed.

Area Map Manager

With position-based navigation systems, information about the environment is
usually available to the onboard computer. This information is used to generate safe and
efficient routes for the vehicle to travel. The NTV’s onboard computer stores two-
dimensional information about the operating environment in data files on the hard disk.

As shown in Table 1, an environment file contains a work space perimeter polygon,
circular and polygon shaped obstacles, and center points along roads and preferred paths.

A survey file contains the perimeter of regions to be surveyed. A path file contains

37

38

prerecorded paths, where the path points are separated by one meter, or are specified by a

series of line segments and circular arcs that are to be concatenated together.

Table 3.1. Area map data management.

File Type Data Scope of
Memory
Work space perimeter
environment) global
Obstacles (circular or polygon) (shared)
Preferred path points
survey Perimeter of regions
local
path Prerecorded paths
Line/arc paths

Map information is recorded in these data files in geodetic coordinates (latitude,
longitude). The standard sign convention is followed, where negative longitudes are in the
western hemisphere and negative latitudes are in the southern hemisphere. It is convenient
to use these absolute coordinates since everybody can agree on where they are. It is not
convenient, however, to plan paths in a polar coordinate system. The area map manager uses
standard formulas (implemented by the author and Mr. David Novick) for converting
geodetic coordinates into a Cartesian coordinate system called the Universal Transverse
Mercator (UTM) grid [Dep58]. The parameters associated with the 1984 World Geodetic
System (WGS84) are used.

The area map manager can be sent messages to read these data files. The

environment data are placed directly into shared memory where other programs, such as path

39
planners, have direct access to them. The other data are stored locally in dynamically
allocated memory. When this information is required by other programs, a request for it is
sent to the area map manager.
Path Types

Paths can be computer generated (planned), user generated, or prerecorded by
manually driving or remotely operating the vehicle. Table 2 illustrates the many ways in
which a path can be generated. The author has implemented a suite of path planning
algorithms, each of which returns a set of via points. These points define a safe path when

connected together with line segments.

Table 3.2. Types of paths that can be specified.

Types of Paths Ways to Generate Paths

Preferred Paths Planner

Computer generated Obstacle-Avoiding Planner

Site Survey Planner

Goal-Ordering Planner

Select via points from GUI

User generated)
g Define a sequence of lines and

arcs

Record a path during manual
Prerecorded operation

Record a path during remote
operation

40

The user can specify a path by transmitting a series of via points to the vehicle from
a computer at a command center. A graphical user interface (GUI) designed at Wright
Laboratory allows the user to generate a path by selecting points with a mouse that are
outside of obstacles but within the work space.

A user can also design a path by specifying a sequence of line segments and circular
arcs that are to be concatenated together. Line/arc paths are defined with respect to the
vehicle’s current position and heading. Line/arc paths are specified in a path data file and
are stored locally within the area map manager. They can be requested from a user interface
program when needed.

Prerecorded path points can be recorded while manually driving the vehicle or during

remote operation of the vehicle. Path points are stored at one meter intervals.

Goal
Figure 3.1. Shortest collision-free path Figure 3.2. Shortest path between two
between a start pose and goal pose. points along a network of preferred paths.
Path Planning

Several planar path planning algorithms have been implemented on the NTV in an

effort to enable it to make intelligent decisions on how to get to where it needs to go. An A*

41

search algorithm, which is used to generate the shortest collision-free path between two
vehicle poses, was implemented by the author as a part of his Master’s research (Figure 3.1).

Subsequent to this work, the search algorithm was modified to generate the shortest
path along a set of preferred paths (Figure 3.2). The preferred paths can be roads, sidewalks,
hallways, aisles, trails, etc. Notice in Figure 3.2 that the start and goal points can be specified
off of the preferred paths. The algorithm considers off-path travel valid but twice as costly

as on-path travel [Ran96c¢].

Figure 3.3. A site survey plan for achieving 100%
coverage of the site.

A third planner was then developed called a Site Survey Planner (SSP). The goal of
a SSP is to specify an efficient path in a bounded region that, if followed accurately, will
cause the vehicle to traverse 100% of the site (Figure 3.3). The work space is divided into
a set of parallel rows. The total path is then organized such that each row is traversed only
once (except when there are an odd number of rows, in which case the middle row is

traversed twice). The algorithm is smart enough to plan alternate routes around obstacles

42

that lie inside the site to be surveyed. The shortest alternate route is specified, unless it
would require a turning radius less than the vehicle’s minimum turning radius. In such cases,
the planner incorporates the longer alternate route into the path [Ran96a].

Finally, a high-level planner was implemented that sequentially calls the obstacle-
avoiding planner, and determines the order in which a set of goal poses should be visited so
that the total path length is minimized. This planner concatenates the recommended goal-to-
goal paths and outputs the optimized total path (Figure 3.4). This planner has been tested in

simulation but not on the NTV.

N O S S W A . . M W W W w s W) R - = .

Figure 3.4. A goal ordering algorithm minimizes the total path
length.

43

Each of these planners outputs a set of via points that defines an optimal path when
connected by line segments.

Standardizing and Smoothing a Path

There are several types of paths that the vehicle can be requested to execute: a path
planned by one of the four off-line planners, a path that was previously recorded during
manual operation, a path synthesized by a user from a GUI at a command center, or a path
specified by the concatenation of a set of circular arcs and line segments. The suite of
planners returns a set of via points that define a piecewise linear path when connected with
line segments.

Flexibility in path specification is desirable from the user friendly standpoint. It does
present a control problem, however. Flexibility would appear to necessitate the rewriting of
the control algorithm for each path representation. This would be tedious, though, since
every new control algorithm tested on the NTV would require several forms. A better way
to solve this problem is to convert each allowable path representation into a standard path
representation. This is accomplished by a program called the subgoal generator.

As shown in Figure 3.5, the subgoal generator’s primary role is to cast any of the

Piecewise
Linear Path ~—
Prerecorded » Subgoal ' Linked-list
Path ‘ Generator of Subgoals
Line/Arc
Path

Figure 3.5. The subgoal generator program
converts paths to a linked-list of subgoals.

4

acceptable path representations into a format that the control algorithm expects; a linked-list
of subgoals where the top node is the first path point and the bottom node is the goal point.
The controlling program is then passed a pointer to the top of this list. At any given time
during path execution, a new list of path points can be sent to the controlling program by the
subgoal generator and the vehicle will instantly begin to track the new path.

A secondary role of the subgoal generator is to smooth out the rough edges in a path.
Since a user is allowed to generate a path, it is not assumed that all paths can be
autonomously tracked (without using both the forward and reverse gears). A user may not
have a good feel for how sharp a turn the vehicle can execute. Figure 3.6 illustrates how the

subgoal generator filters a user defined path.

=

Figure 3.6. A path filtered by the subgoal generator program.

45

The largest dots represent a sequence of points specified by a user. Path segments
are fitted with points at 1 meter intervals that lie on a circular arc having a radius equivalent
to the vehicle’s minimum turning radius. Segments that cannot be fit with circular arcs are
fit with cubic polynomials. Cubic polynomials are used to bypass path segments that cannot
be tracked. Figure 3.7 illustrates path tracking along a path around an obstacle that has been

smoothed by the subgoal generator.

Figure 3.7. Traveling along a cubic curve
around the side of an obstacle.

CHAPTER 4
CONTROL STRATEGY

This chapter describes the strategy developed by the author to autonomously control
a steered-wheeled all-terrain land vehicle. The strategy is geometry-based in that the
command variables are specified based on the geometric characteristics of the vehicle. Most
of the techniques used to control automatic guided vehicles (AGV’s) in factory settings are
not applicable to autonomous land vehicles (ALV’s), since the properties of the surface on
which ALV’s are expected to operate do not remain constant. An accurate mathematical
model of the system requires some knowledge of the terrain/wheel interaction, and this
changes from one type of terrain to another.

As with geometry based control systems, the vehicle control point is chosen to be the
center of the rear axle. This choice allows for the decoupling of the steering and propulsion
control. Velocity control is under study by a graduate student who is implementing a fuzzy
logic controller on the functions of throttle and braking. For the author’s research, velocity
control is treated like the cruise controller on automobiles. A command velocity is specified
prior to the commencement of path tracking. The author’s task is to design and tune steering
controllers that accomplishes accurate path following over a range of speeds (0-4.5 m/s).

The strategy the author has developed is based on a carrot following approach. A

subgoal is generated in real-time at a specific look-ahead distance in front of the vehicle’s

46

47

current position and on the preplanned path, or on the circular or cubic arc that connects the
current path segment with the next path segment. At any given instant, the vehicle is directed
to move towards the current subgoal. Two steering control methods are to be evaluated: PID
control where the feedback error is the vehicle’s heading error, and the pure pursuit method.
Software Control Architecture

Figure 4.1 illustrates the flow of information between computer programs during
autonomous navigation. Each box, with the exception of the positioning solution box, can
be considered a program that handles a specific task. The positioning solution box is a suite
of programs that interface positioning sensors. The data from an inertial navigation system
(INS) and a differentiél global positioning system (DGPS) are integrated with an external

Kalman filter. The output is the system’s best estimate of the vehicle’s current attitude.

User Interface > System Manager- -~
Y Y
" Area Map € Path Planner Auto Tune < -Evaluate
il ‘ A
Y Y 4

————> Subgoal _ 5, Backseat —IFront-seat;

Generator A
Positioning Low-level:
Solution™
Motors

Figure 4.1. The flow of information between the
autonomous navigation programs.

As an example, the user specifies the vehicle’s start and goal configurations and then
sends a command to the system manager (from the user interface) to move the vehicle to the

goal configuration. The system manager instructs the path planner to generate a safe and

48

efficient path that guarantees to avoid collisions with all known obstacles in the area map
database. The planned path is passed to the subgoal generator, which filters the path and
loads a linked-list of subgoals. A linked-list of subgoals is the standard form of an
executable path.

The path is passed to the backseat program and vehicle motion begins. The backseat
program generates in real-time carrot positions on the path that are a specific look-ahead
distance in front of the vehicle. The backseat program also estimates the curvature of the
path in the neighborhood of the real-time carrot and calculates a desired vehicle velocity.
The front-seat program looks at the current carrot position and uses PID or pure pursuit
control to specify a command steering angle. In the current implementation, PID control is
used to specify command throttle, brake, and transmission positions. An alternate approach
for steering control that has been evaluated is a weighted PID/pure-pursuit solution.

The low-level program evaluates the steering, throttle, brake, and transmission
motor’s feedback values and moves the motors towards the command values. If a new
command value is issued before the old command value is reached, the old command value
if forgotten and the new command value is tracked.

Table 4.1 shows the program distribution on four Force CPU boards (cailed Bart,
Homer, Lisa, and Marge) in the NTV’s VME computer. Bart is used to run programs that
estimate the vehicle’s current attitude (latitude, longitude, elevation, roll, pitch, yaw, and
velocity). Homer runs programs involved in obstacle avoidance and site characterization.
Lisa runs programs that are required to plan and execute paths. Magie runs miscellaneous

nonreal-time programs (such as a user interface) and a data logger.

49

Table 4.1. Navigation software distribution on four NTV computer board.

Force 33 (Margel Force 30 (Bart) Force 33 (Lisa) Force 30 (Homer)

User interface INS interface System manager Sonar interface

Data logger GPS interface Area map manager Vision communication
Kalman filter Path planners Sensor fusion /

Obstacle avoidance

Subgoal generator

Backseat driver

Front-seat driver

Low-level controller

Radio-modem
communications

Performance
evaluator

Steering calibration /
Auto-tuning

Calculating a Target Position in Real-Time

The backseat program is responsible for recommending a general direction in which

the vehicle ought to move. The backseat program receives a pointer to a list of subgoals

from the subgoal generator program. This list of subgoals represents the executable path.

The first task the backseat program performs is it makes a local copy of the list of subgoals.

If the path is commanded to be executed once, the copied path is sequentially removed from

memory as the vehicle finishes traversing path segments. When no path segments are left,

or the vehicle is within a predefined tolerance of the goal position, the backseat program

reports to the system manager that the goal pose has been reached.

50

The global copy of the path continues to exist in shared memory until the subgoal
generator is instructed to generate a new executable path. The subgoal generator can
generate a new executable path without affecting the local copy currently being tracked.
With this structure, backseat’s work is shielded from other programs. Path planning, subgoal
generation, path execution, and obstacle avoidance are all tasks that can occur concurrently
without the vehicle being required to stop.

Path tracking is accomplished by generating a target position on the path and ahead
of the vehicle by a look-ahead or lead distance. There are two ways in which to apply the
look-ahead distance. In the first method, the target position is located by finding the first
normal to the path that intersects the vehicle’s current position. In Figure 4.2, the
intersection of the normal and the path is the lateral path point P. The target point T is
located on the path a distance L, (which is a function of the vehicle speed) from the lateral
path point.

In the second method, the target point T is determined by finding the intersection

(ahead of the vehicle) between the circle centered at the vehicle’s current position V with

B PI(_L“ > D
A ~ -7
— £ .-~ T C
¢ Lb

\%

path
& yiTj_)[xBLyBFq"("Cth > Xp yp

Figure 4.2. Calculating the real-time carrot from a
path linked-list.

51
radius L,, and the path. The look-ahead distance L, is normally used with the standard pure
pursuit method.

The current lateral path point P and target point T are placed in shared memory by
the backseat program at 10 Hz. The distance between the lateral path point and the vehicle’s
current position V is the current tracking (or lateral) error &. The tracking error ¢ is also
calculated by the backseat program and placed in shared memory. The error is negative if
the vehicle is to the right of the path and positive if the vehicle is to the left of the path.

In Figure 4.2, the executable path is a linked list of the (x, y) points A, B, C, and D.
The lateral point P is currently between path points B and C. The pointer path always points
to the path point just behind the lateral point. The subroutine that obtains the real-time carrot
can operate in two modes. In the first mode, the specified path is continuously repeated.
This is particularly useful in auto-tuning. In the second mode, the path is executed until the
goal point is reached, at which time the subroutine returns a status indicating so.

If the vehicle is commanded to continuously repeat the path, the linked list is made
cyclic by having the last node point to the first node. If the vehicle is commanded to execute
the path once, then the points prior to the one pointed to by path are removed from je linked
list in real-time. If the vehicle’s current position is behind to the first leg of the path, then
the extended first path segment is tracked. If the vehicle is close to the goal point and the
target point moves off-path, then the target is placed on the last path segment extended.

The subroutine that finds target positions also estimates the path curvature in the

neighborhood of the vehicle. This curvature estimate can be used to modify the command

52
velocity and to rotate the target off-path a slight amount so that the path tracking of a trailer
is improved around path comers.
Evaluating Path Tracking Performance

A survey of the literature indicates a lack of tools that can be used to evaluate the
accuracy with which autonomous navigation is currently achieved. All too often, a paper
includes a plot of a test run in its results section with one line labeled planned path and
another line labeled actual vehicle path, and the reader is left to subjectively decide how
accurate navigation was accomplished, and where the work fits in with other methods that
achieve accurate navigation.

Accurate navigation along an explicit path depends not only on the accuracy of real-
time positioning but the accuracy of vehicle control. Positioning is accomplished on the
NTV by the integration of INS and DGPS data with an external Kalman filtering algorithm.
An Ashtech Z-12 GPS receiver internally logs time-stamped position data at 1 Hz. This data
is post-processed by software provided by Ashtech Inc. to determine the actual path of the
vehicle to within a few centimeters.

The total path following error is the sum of the positioning error and the control error.
Positioning error is determined post mission by taking the difference between the time-
stamped post-processed GPS position data and the time-stamped real-time (Kalman filtered)
positioning solution. The control error can be determined in real-time by comparing the real-
time positioning solution to the path that is being tracked.

The control error can be thought of as the error in position between where the vehicle

ought to be and where the vehicle thinks it currently is. If the real-time positioning data are

33

not smooth, control error can be induced. This work focuses on measuring and reducing
control error during path tracking. Other graduate students are working to improve the
accuracy of real-time positioning.

The real-time performance evaluator calculates the vehicle’s average, maximum, and
standard deviation from the path at 10 Hz. These parameters are reset each time the subgoal
generator passes a pointer (to a new executable path) to the backsear program. The average
and standard deviation values for an executed path can be skewed, however, if the desired
velocity is not accurately maintained. As a result, these measures are not ideal for making
critical decisions concerning the modification of control parameters.

The performance index used by the author in making such decisions is the area
between the actual path of the vehicle (as indicated by the real-time positioning solution) and
the executable path, normalized by the path length. The area of the quadrilateral V;- V,, -
P, - P, is calculated each cycle through the performance evaluator using equation 4.1, where
a, b, c, and d are the lengths of the sides, p is the distance between the a-5 and c-d corner

points, and q is the distance between the a-d and b-c comers points.

32 7292 2. .33
Area=ﬂpq (b ;d a’-c’) 4.1

Other indices of performance includes an oscillation index and a smoothness index.
A buffer zone of 0.2 meters is centered about the path. The oscillation index is defined as
the number of times the vehicle intersects both sides of the buffer zone per 100 meters of the

path. A buffer zone of 4° is centered around the home steering position (0°). The

54

smoothness index is defined as the number of times the steering wheel intersects both sides
of this buffer zone per 100 meters of the path.
PID Steering Control
One method of steering control investigated by the author is proportional-integral-
derivative (PID) control, as applied to the error in the vehicle’s heading. As shown in Figure
4.3, that there are two levels of steering control. High-level control encompasses all the steps
taken in obtaining a desired steering position. Low-level control encompasses all the steps

taken to move the steering wheel to, or towards, the desired steering position.

LOWLEVEL

)?- 3| plant —e—
actual steering angle

_m subgoal
! >algorithm

Figure 4.3. Steering control strategy using a high-level PID algorithm.

A low-level program issues steering commands to a servo module that drives a motor
attached to the steering column. High-level control occurs at the software level, whereas
low-level control occurs primarily at the hardware level. The author’s work focuses on high-
level control. The NTV’s low-level control is discussed in the Modeling the NTV’s Steering

Behavior section of chapter 5.

55

As shown in Figure 4.3, the input to the high level steering controller is a general
path. The general path is smoothed and cast into a standardized form by the subgoal
generator. The output of the subgoal algorithm is an executable path. The executable path
is compared with the vehicle’s current position at 10 Hz by the backseat algorithm, and a
target position is produced. The front-seat algorithm calculates the vehicle’s current error
e, and a PID controller generates a desired steering angle ¢,.

The idealized equation of a PID controller is shown in Equation 4.2. A PID

_ ket + L fetar + T, 260
d() = Kle(®) T { enyds + T,—

(4.2)

controller contains a term that is proportional to the error, one that is proportional to the
integral of the error, and one that is proportional to the derivative of the error. The integral
term acts as a spring (in a spring-mass-damper system) in that it eliminates steady state error.
The derivative term acts as a damper. The parameters characteristic to the system are the
proportional gain K, the integral time T, the derivative time T, and the sampling time 7. For
small sample times T, the idealized equation can be written as a nonrecursive difference

equation, as shown in Equation 4.3.

¢, = K Tnif La,) (4.3)
= e + — e. + —(e —-e .
n n T,~j=0 j T n n-1

In this form, rectangular integration was applied.

56

The heading error e, is calculated by finding the orientation (in radians) of the vector
from the vehicle’s control point to the target position with respect to the axis in the direction

of the vehicle’s current heading (see Figure 4.4). The error is bounded by the equation

-T<e <T. (4.4)

A positive error results in a left turn and a negative error results in a right turn. An error

greater than /4 automatically results in the maximum steering position.

—-Real-time carrot

Y y
RS z
o wemor — Path
—Vehicle control point

X

Figure 4.4. PID steering control is based on the current
heading error.

Equation 4.2 can be rewritten as the difference equation

Ad, = Kye,+Kie, + Kye, ,, 4.5)
where,
K, = K(T,IT)
K, = K(-1+T/T,~2TIT) 4.6)
K, = K(T,IT)

57

Figure 4.5. Inherent PID
error € around curves.

PID control works to force the heading error to zero so that the vehicle is always
pointed towards the current carrot position. The advantages and disadvantages of using PID
control are discussed in the Weighted PID/Pure Pursuit Steering Control section of this
chapter. Here, it is noted that an inherent lateral error € to the path exists when tracking
curves, even when tracking is perfect, as shown in Figure 4.5. A method for determining the
characteristic parameters of a PID controller is discussed on the Auto-Tuning Control

Parameters section of this chapter.

HIGHLEVEL CONTROL

. FRONTSEAT . LOWLEVEL

‘ desired

o R e
o - . angle error —_—
o B ™ i | -
= - A actual steering angle
i ! * vehicle k

J ._____‘_T heading

Kalman ﬁltcrl
'y

o ms| oS

Figure 4.6. Steering control strategy using a high-level pure pursuit algorithm.

58
Pure Pursuit Steering Control
A second method of steering control has been evaluated by the author. Pure pursuit
is probably the most popular method of high-level steering control used on ALV’s. Figure
4.6 illustrates the steering control strategy when pure pursuit is used. This strategy and the

one described in Figure 4.3 (which uses PID control) differ only in the front-seat algorithm.

= Real-time carrot

Y y
A
‘- Path
L ‘ . .
s —Vehicle control point

X

Figure 4.7. Look-ahead L to the target for standard
pure pursuit steering control.

The real-time carrot to be pursued by the vehicle under standard pure pursuit control
is a point on the path a specific look-ahead distance L from the vehicle’s current position, as
shown in Figure 4.7. If the vehicle if farther than L from the path, then the real-time carrot
coincides with the lateral path point P. Adaptive pure pursuit, a variant of the standard form,
makes the look-ahead distance L a function of the lateral path error €.

The pure pursuit method generates a command steering angle ¢ that would drive the
vehicle through the current real-time carrot if the steering angle could be changed
instantaneously, as shown in Figure 4.8. The controlling equation for pure pursuit is

Wy, o

-

¢ = atan , 4.7)

39

Figure 4.8. Pure Pursuit determines the command steering
angle, ¢, that will drive the vehicle’s control point through
the carrot.
where, Wis the distance between the axles on the vehicle and y,,, is the position error along
the y-axis of the vehicle coordinate system.
Weighted PID/Pure Pursuit Steering Control

Both the PID and pure pursuit methods of high-level steering control have advantages
and disadvantages. The PID method is stable when the vehicle’s velocity is small and the
distance to the carrot is large. The disadvantages of the PID method is that 1) it is difficult
to accurately tune its control parameters, 2) it is unstable at high velocity, and 3) it causes
comers to be cut due to an inherent error.

The pure pursuit controller is easy to tune and performs well over the tested velocity
range (0-4.5 m/s) when the vehicle is started on the path. If the lateral error is large,
however, this method becomes unstable. Stability can be improved by using an adaptive
rather than standard pure pursuit controller. With the adaptive version, the look-ahead

distance is a function of the lateral path error. Even with the adaptive controller, however,

stability can still be a problem when converging to a path.

60

The NTYV is capable of detecting and avoiding obstacles that block the planned path.
After avoiding an obstacle, the NTV is expected to return to the planned path and continue
tracking it. Thus, it is important that path tracking be stable, even when there is a large
lateral path error.

The author has attempted to combine the desirable features of both controllers into
a single controller. In general, the pure pursuit method performs well when the vehicle is
near the path and the PID method performs well when the vehicle is approaching the path
from a distance. The weighted solution will use 100% of the PID recommendation when far
from the path, 100% of the pure pursuit recommendation when near the path, and a
combination of the two recommendations when in between those conditions.

Autonomous Steering Calibration

When a certain steering position is commanded and a circle is traced out with the
vehicle, the diameter of the circle is not what would be expected from the geometry. There
are several reasons for this:

1) The steering encoder on the NTV measures how much the steering column has

rotated. The meaning of this steering angle can be thought of in this way: If the

vehicle had one front wheel, as tricycles do, this would be the angle that the wheel

makes with the body. But the vehicle does not have just a single front wheel.

2) It is tedious to precisely find the steering home position (0°). The procedure

requires “homing” the steering, driving forward, and checking to see if the vehicle’s

heading has changed. Error in defining the home position will be reflected in moving

to all other positions.

3) Under ideal conditions (no wheel slippage), the relationship between the steering

angle ¢ and the curvature y of the path traced out by the vehicle is y=tan($p)/W,

where, W is the distance between the front and rear axle. Ideal conditions usually

don’t exist, however. The curvature of the path traced out by the vehicle is a function
of the steering angle, surface conditions, vehicle speed, tire stiffness, etc.

61

The output of the high-level controller is a desired steering position. The purpose of
performing the following calibration procedure is to collect information useful in predicting
the steering position that should be executed, in order that the curvature of the path traced

out by the vehicle corresponds to the specified desired steering position.

o\ ¢=I5 y Ny | /
o ﬂ&\“’/ \/ S

Figure 4.9. Eight circles autonomously executed to
calibrate the steering.

Figure 4.9 shows the steering angles used to trace out eight circles. At the press of
a button, each circle is repeated three times without stopping at a speed of 1.34 m/s. The
diameter of each circle is measured six times in software and recorded. (The diameter is
calculated when the vehicle’s heading has changed by rt). The first measurement for each
circle is discarded since the vehicle had to accelerate from a stop during the first part of that
lap. After each circle has been repeated three times, the vehicle stops for 30 seconds to allow
the INS to correct for drift.

After the procedure is completed, the data are fit with a line using the method of least
squares. The slope and y-intercept are recorded in a calibration file. The area of clear space

needed to complete this procedure with the NTV is approximately 17.3 m x 34.6 m.

62
Auto-Tuning Control Parameters

As pointed out in the Motivation section of chapter 1, manually tuning control
parameters is usually a straight-forward but tedious process. Ball-park values have been
established which can be used as starting points for fine tuning. Fine tuning may need to be
repeated, however, if the terrain or system dynamics of the vehicle have significantly
changed since the last time the procedure was completed. These facts makes this application
ideal for auto-tuning.

The gains that need to be tuned for the PID method includes a proportional gain K,
an integral time T}, a derivative time T, and the look-ahead distance L. The only gain that
needs to be tuned for the pure pursuit method is the look-ahead distance L. Adaptive pure
pursuit is used in this study, where the adaptive look-ahead distance is a function of the tuned
look-ahead and the lateral path error. The PID gains are tuned using the method specified
in the next section. The look-ahead distance for both the PID and pure pursuit methods are
tuned using the golden section search (GSS) optimization technique.

PID Relay Auto-Tuning

The majority of controllers used in the industry are the PID type. The fundamental
goal of a self-tuning PID controller is conceptually simple: observe the behavior of the
process and modify the controller’s gains until the closed-loop system performs as desired.
In practice, however, implementing a self-tuning controller that performs at least as well as
a manually tuned controller can be a complex problem [Van94].

There are two major ways to tune a PID controller: the step response method and the

frequency response method. In the step response method, the process open-loop response

63

to a step input is analyzed graphically to determine the dead time and time constant. In the
frequency response method, the proportional gain is increased (with the other gains set to
zero) under closed-loop control until oscillations are sustained.

The proportional gain that produced sustained oscillations is the ultimate gain K,.
The ultimate period T, can be measured from a graph of the response. The ultimate gain and
period describe the point of intersection of the Nyquist curve with the negative real-axis for
an open-loop system.

The Ziegler-Nichols tuning rules are one of the most popular methods for specifying
the PID gains, once the ultimate gain and period for a system are determined. The primary
design criteria was to reduce the effects of load disturbances. A decay ratio of 1/4 was

specified as a design criteria. The Ziegler-Nichols tuning rules for a PID controller are

K = 06K,
T, = 05T, (4.8)
T, = 0.125T,

It is difficult, however, to automate the procedure where the proportional gain is
increased until sustained oscillations are kept under control. A simple relay auto-tuner
described in [Ast95] has been implemented by the author to determine the system’s
characteristic parameters. The method is based on the observation that a system with a phase
lag of at least 7t at high frequencies may oscillate with period T, under relay control.

The vehicle is placed into either autonomous PID control mode or relay tuning mode
by the press of a button. This is represented by the switch in Figure 4.10. In autonomous

PID mode, the vehicle tracks the given path. In relay mode, the vehicle is oscillated about

64

—->» PID '—C*
—_— Ce
> < T~ Process: Y

- 5
A -~ Relay —

Y

1 €—
Figure 4.10. Astrom PID relay auto-tuner.

a straight line at a given speed and the ultimate gain and period are calculated. The wltimate

gain can be estimated as

K, =—, (4.9)

where, d is the amplitude of the commanded steering angle and a is the amplitude of the

sustained oscillations.
Figure 4.11 illustrates the procedure. When the error in heading is positive, the

command steering angle is set to a constant negative value, which corresponds to a turn right.

8 . g
6 a a —A——t12 2
-§4 A [\ [\ ' g 2
s Y A VY B VY A VY g
5 T Y O S 1
= I\ AN VA N Y WY N b -
Sapl~ A A / -
<SS I VAR VA VAN v -

A — ——-16 3

0 2 4 6 8 10 12 14 16
Time (seconds)

—— Heading Error - - - Command Steer Angle

Figure 4.11. Simulation of PID relay auto-tuning at 1.34 m/s.

65

Similarly, when the heading error is negative, the command steering angle is set to a constant
positive value, which corresponds to a turn left.
Auto-Tuning the Look-Ahead Distance

If the look-ahead distance is too small, path following could become oscillatory.
(Under pure pursuit, but not PID, the system would probably need to be perturbed if the
vehicle is started on-path.) If the look-ahead distance is too long, however, the vehicle will
begin to cut the path corners.

The look-ahead distance is autonomously tuned with an implementation of the golden
section search (GSS) optimization method. A lower and upper bound on the search region
is estimated. The optimum look-ahead distance is targeted by progressively eliminating
portions of the search region that are not expected to contain it. The procedure is an iterative

process which is complete when the search region is reduced to 0.03 m or less.

30.5m

1.54 m

Figure 4.12. Calibration paths for auto-tuning the
look-ahead distance.

66

With the press of a button the procedure begins. The calibration paths shown in
Figure 4.12 are used. First, a path is generated 1.54 m to the left of the vehicle. The vehicle
then executes the path using a GSS specified look-ahead distance. During path execution,
the area between the calibration path and the path traced out by the vehicle is calculated as
a performance index. When the vehicle arrives at the goal, the performance index is passed
to the GSS subroutine and it returns the next recommended look-ahead distance.

The left and right paths are alternated so that the vehicle does not work its way across
the test field. The calibration paths are always oriented parallel to the vehicle’s current
heading. The GSS subroutine reports when the search region is smaller than the specified
tolerance. The GSS is used to auto-tune the look-ahead distance for both the PID and pure
pursuit methods.

A variation of this method is to start the vehicle on the generated path. When the
vehicle has traveled one-third of the first leg of the calibration path, the auto-tune program
sends a message to the backseat program to translate the path 1.54 m normal to the vehicle’s
start heading. Here, the vehicle is allowed to reach the operational speed at which the look-
ahead distance is to be tuned prior to perturbing the system. If the vehicle is tracking the left
calibration path, it is translated to the left. If the vehicle is tracking the right calibration path,
it is translated to the right.

During auto-tuning, a constant velocity is commanded. Experiments have shown that
the performance index can be noisy due to fluctuations in the vehicle’s velocity. As a result,
the GSS may at times eliminate the region containing the optimum look-ahead distance. To

minimize the effect of this, all the data collected during a search are fit with a cubic

67

polynomial using the method of least squares. The minimum of this cubic (between the
lower and upper bounds) is recorded in a data file as the optimum look-ahead distance for
this commanded velocity.

Gain Scheduling

The optimum look-ahead distance is a function of the vehicle’s velocity. (Evidence
of this fact will be shown in the Results and Conclusions chapter.) As a result, the procedure
for auto-tuning the look-ahead distance should be repeated for several speeds. In a
nongraphical simulation program, the procedure is repeated for 10 speeds between 0-4.5 m/s.
The optimum look-ahead distance for each speed is recorded in a data file.

In a graphical path tracking simulation program, the data file is read and a look-up
table is loaded with the optimal gain data. The user can increase or decrease the vehicle
speed by toggling a key on the keyboard. Each cycle through the program, the look-up table
is accessed and the optimum look-ahead distance for the current speed is returned. Linear
interpolation is performed between entries in the look-up table.

Gain scheduling has not been implemented on the NTV since the current speed

controller is tuned for one speed (1.34 m/s).

CHAPTER 5
COMPUTER SIMULATION

Computer simulations are recognized and used widely as valuable design and testing
tools. The benefits of a robot simulation are numerous. They can be used to develop control
algorithms for a robot and verify the correct operation of the robot. Initial development and
testing can be accomplished in simulation, making the robot available for other use. Initial
testing can be accomplished in an air-conditioned environment. Furthermore, it is easier to
detect motion problems in a control algorithm by observing the simulated motion of the robot
rather than analyzing a set of printed data.

The simulation discussed in this chapter is used to develop and test control algorithms
that improve the tracking of paths by a car-like vehicle (which contains an Ackerman
steering linkage) and a two-wheeled trailer. An auto-tuning program was written and tested
in simulation to autonomously tune the control parameters for a steered-wheeled robotic
vehicle. An accurate representation of the trailer’s motion would be useful in developing
autonomous backing-up control algorithms and path tracking control algorithms where the
control point is the center point of the axle on the trailer.

Modeling the NTV’s Steering Behavior
A major component of the simulation program is estimating the vehicle’s current

position and heading at 10 Hz. This estimate is based on the motion of the steering wheel

68

69

and the vehicle velocity. This section reviews the author’s work in modeling the motion of
the NTV’s steering motor.

The front-seat program of the high-level controller calculates a command steering
position at 10 Hz. This command steering position is communicated to an IndustryPack
Servo Module (manufactured by GreenSpring Computers) by the low-level program. The

servo module is responsible for moving the steering servo motor to the commanded position.

LMG628 (3906 Hz) VME —
Velocity Profile Generator: Backplane
Y Host : Computer
Command Sequencer Interface:
+Y ‘m—" o Amplifier
— > PIDFilter —»DAC — ——
-A Kp=250 ~ pe
Position Feedback Ki=12
Processor Kd=5000 = Motor]
il=1000 —
3800 clicks/degree Incremental Encoder

Figure 5.1. Low-level steering controller.

Figure 5.1 outlines the steps taken by the low-level controiler in controlling the
steering motor. The low-level program, which currently runs on a VME computer,
communicates steering commands over the VME bus to the LM628 Precision Motor
Controller of the servo module. Each time the host interface receives a command, a velocity
profile generator calculates a profile of velocities that will accomplish the command.

As shown in Figure 5.2, the steering wheel will normally accelerate at 121.3 °/s? to
a maximum velocity of 33.4 °/s, remain constant for a while, and then decelerate to a stop

at the commanded position. The velocity profile is used to generate intermediate command

positions at 3906 Hz. The difference in this position and the current steering position is the

70

Angular Velocity
(deg/s)
3341 -

— 121.32 deg/s?

Time (s)

Figure 5.2, A velocity profile is generated
for moving to the command position.

error the low-level PID controller works to drive to zero. The low-level PID controller was
tuned by Mr. Phillip French [Fre94].

Figure 5.3 shows the steering motor’s response to a step input of 28°, as logged by
the low-level program at 60 Hz. The top line is the step input, the middle line is the

intermediate profile positions, and the bottom line is the feedback positions. The steering

30
o 25
z
§% =
T 15
0
o 10 -
g P Kp = 250 Ki=12
s 5 P Kd = 9000 IL = 1000
% 0 Velocity = 33.41 deg/s
-5 Acceieration =121.32 deg/'(s"s) 1
0 0.5 1 1.5 2
Time (s)
— Desired — - Feedback - - - Profile

E‘igure 5.3. NTV steering response to a step input of 28°.

71

motor turns at a maximum speed of 17.5 °/s and can’t keep up with the command profile,
which moves at a maximum speed of 33.4 °/s. The low-level gains and profile velocity and

acceleration are adjustable parameters set in software.

4 T T 1 1T T 1 1
— 5 profile position - feedback position
(o))
D
Z 0
s 5
o . M
2 2 W, ™
17>) [
c‘o_ -4

v

o -
g +
@ -8
9 L an
n

-10 {-command position - feedback position
SR S O O

46 48 5 52 54 56
Time (s)

Figure 5.4. When the error is small, the feedback
position is approximated as the profile position.

The author has observed that when the steering error (the difference between the
command position and the feedback position) is small, then the difference between the
profile and feedback position is negligible. This is shown in Figure 5.4. As was seen in
Figure 5.3, when the error is large, the steering position will change a maximum of 0.292°
every 60" of a second. This observation was tested during autonomous navigation.

A prerecorded path (near the Mechanical Engineering Building of the University of

Florida) is shown in Figure 5.5. The path points are separated by 1.0 m. This path was

72

autonomously executed at 1.34 m/s and the steering profile and feedback positions were
recorded at 60 Hz. An analysis of the data showed that the maximum difference between the

profile and feedback position was 0.052°. The difference between the two was less than

0.01° 91% of the time.

te
—t
o
LY

;0 + 1 -

1
(4]
AT

Ja¢
o
an

-70 -60 -50 -40 -30 -20 -10 O
Easting (meters)

Figure 5.5. A prerecorded path autonomously
executed by the NTV.

The subgoal generator ensures a smooth path. And when the path is smooth, the
steering error remains small at slow speeds, even when the path curvature is large. In the
simulation, a velocity profile is generated every time the front-seat program calculates a new
command steer angle. The current steering angle is updated at 10 Hz using the equations

Ad) = ¢mmnl - d>pruﬁle

B (bpmﬁ,e, if(1Ad! < 1.75°) (5.1)
Pesrrens = + 1.75°sign(Ad), otherwise

P eurrent

73
Simulating Path Tracking
The following list describes the three phases involved in simulating the execution of
a specific path by an animated robot vehicle and its trailer.
1) Plan a safe and achievable path.
2) Initialize the current vehicle and trailer pose.
3) Draw the vehicle, trailer, planned path, actual path, and the environment until the
vehicle is within some tolerance of the goal position and heading.

a) Determine the control parameters from a look-up table.

b) Calculate a command steering angle and vehicle velocity.

c) Determine the new vehicle and trailer pose.

d) Draw the environment.

e) Draw the path to be executed.

f) Draw the vehicle and its trailer at their new pose.

g) Draw a path indicating the actual path of the vehicle or trailer.

After planning a safe and achievable path and initializing the current vehicle and
trailer pose, the steps under phase three are repeated at 10 Hz until the vehicle arrives at the
goal position. If the method of steering control involves gains that change as a function of
the current vehicle velocity, the gains can be calculated by interpolating the data in a
predefined look-up table.

A command steering angle and vehicle velocity are then calculated using controlling
equations specific to the method of vehicle control. A subroutine is then called that updates
the vehicle and trailer pose, given that the vehicle was directed to use a command steering
angle and command vehicle velocity, and assuming the vehicle has traveled 2.54 cm since
the last update. The environment, planned path, actual path, vehicle, and trailer are all drawn
in their proper prospective in three dimensions.

It should be noted that the steps under phase three may not in reality run at 10 Hz.

No timer and delay loops are used here. The simulation is allowed to run as fast as the

74

ﬁgure 5.6. A car-like vehicle with velocity

v and steering ange ¢.
system can perform the calculations and draw all the objects. Thus, position updates
“symbolically” occur at 10 Hz in the simulation. The focus of this section is the
methodology used to determine the current vehicle and trailer pose at this rate.
Kinematic Constraints

Consider the car-like vehicle shown in Figure 5.6, where the controlled point is

chosen to be R, the center of the rear axle of the vehicle. The pose of the vehicle is specified
by the three parameters (x,y,0), where (x,y) are the coordinates of point R and 0 is the
orientation of the vehicle with respect to the x-axis of a global coordinate system. Hence,
the configuration space of the car-like vehicle is three dimensional. Assuming no slip, the
instantaneous velocity of the control point R is along the main axis A of the vehicle. The
space of achievable velocities at any vehicle configuration is thus two dimensional. The

coordinate components of the instantaneous velocity v are

%’:. = ycos0, % = ysin0 (5.2)

75

The equations in (5.2) are combined to yield equation (5.3), a nonintegratible equation of

motion referred to as a nonholonomic equality constraint.

-sinBdx + cosOdy = 0 (5.3)

Nonholonomic constraints are generally caused by one or more rolling contacts
between rigid bodies, where the relative velocity between the contact points is zero. Car-like
robotic vehicles are thus typical nonholonomic mechanical systems. The only other

kinematic constraint on the motion of a car-like vehicle is an upper bound on the steering

ol < It < —’25 (5.4)

angle, ¢, as expressed in equation (5.4). This equation can be rewritten as a nonholonomic
inequality constraint involving the differential motions dx, dy, and d6 [Lat90].

Laumond [Lau86] has proved that in spite of the kinematic constraints, a car-like
robot is fully controllable. In an environment which does not contain obstacles, a car-like
robot can achieve any position in the xy plane with any orientation.

Assumptions

Due to the nonholonomic equality constraint, the space of differential motions (dx,
dy, dB) of the robot at any pose (x,y,0) is a two dimensional space. The instantaneous
motion of the point R is determined by two parameters: the linear velocity v of point R, and
the vehicle’s current steering angle, ¢. Here, it is assumed that the feedback steering angle

(obtained from a steering column encoder) can be approximated in simulation by modeling

76

the vehicle as a tricycle. Although the steering angle constantly changes during vehicle
execution of a curvilinear path, it is sufficient to assume the vehicle and its trailer travels on
circular arcs when the incremental arc distance, 4s, is small. The steering angle is
considered a constant over this interval. In determining the steering angle to use during the
next incremental arc distance, the time 4t it takes to travel 4s is estimated and a new
steering position is calculated using a steering angular velocity profile.

It is assumed that no wheel slippage occurs and that perfect velocity tracking occurs,
1.e., once the command vehicle velocity is obtained, it is maintained. Over the incremental
arc distance, 4s, the velocity v is considered a constant. In determining the vehicle velocity
to use during the next time interval 4, it is assumed that the acceleration/deceleration of the
vehicle is constant when the current vehicle velocity is not equal to the command vehicle
velocity.
Positioning Algorithm

The model discussed in the section Modeling the NTV's Steering Behavior of this
chapter is used in updating the vehicle and trailer’s position and heading in simulation.
Equation (5.1) expresses the observation that the feedback steering position can be
approximated by the profile position when the error is small. Otherwise, the steering wheel
moves at a constant rate of 17.4 °/s. Equation (5.5) expresses the assumption that the vehicle
acceleration/deceleration is a constant, k,, when the current vehicle velocity does not equal

the command vehicle velocity.

v =

{kv for (v =v..) (5.5)

0 for (v_,=v .0

T

The algorithm for updating the vehicle and the trailer is given below.

updateVehicleTrailerPose(@4 Prur Verss Veur)

{
time = 0, done = FALSE
profile = getSteeringVelocityProfile(§,,,, @.na)
while(NOT done)
{
at = 0.0254/v,,,
if(time + at 20.1)
{
done = TRUE
at =0.1 - time
as = vat
/
else
{
as = 0.0254
time = time + at
/
@... = getNewSteerPosition(profile, ., at)
l-.f'(vt'llf < vCﬂlll) vtllf = min(vc’ﬂd’ vcur + kVAt)
else if (v, > Vi) Vour = MAX(V iy V. - k, 48)
else Veur = Vomd
pose = getNewPose(pose, ., V... 4S)
/
/

The subroutine updateVehicleTrailerPose is called 10 times per second. During each call,
the position and heading of the vehicle and trailer is locally updated every 4s=2.54 cm. The
time, velocity, angle, and distance units are respectively seconds, m/s, degrees, and meters.
The next two sections will present the equations used in the getNewPose subroutine to
update the position and heading of the simulated vehicle and its trailer.
Updating the Vehicle Pose

When the steering angle is nonzero, the vehicle moves around a circular arc centered

at C and having a radius of r,, as shown in Figure 5.6. The turning radius r, of the vehicle

78

is related to the steering angle ¢ by the equation

r, ==, (5.6)

where W, is the wheelbase, the distance between the vehicle’s front and rear axles. Over the

time step, point A moves to point B along arc As at a constant velocity v, as shown in Figure

Ce. y
A
B
* A
N : as &Y
A./"\'/ Y.

< 2X)

Figure 5.7. The vehicle moves from point
A to point B along circular arc as during at.

5.7. The change in heading, 26, can be expressed as a function of the arc length as,

&

48 = —, (5.7

and the arc length as can be expressed as a function of the time interval and instantaneous

velocity v.

As = vAr (5.8)

Substituting equations (5.6) and (5.8) into equation (5.7) yields the following expression for

79

40 in terms of known values.

_ vArtand
46 = —— (5.9)

The length of the line segment, /, can be shown to be

l = 2rvsin(ATe) (5.10)

When the steering angle is nonzero, the differential changes (ax,ay) in the vehicle’s position

(x,y) are

Ax = [cos[8 + sign(d) ATB]. Ay = Isin(0 + sign($p) ATe] (5.1D

When the steering angle is zero, r, = =, a8 = 0, and the differential changes (ax,ay) in the

vehicle’s position (x,y) are

Ax = vAtcos®, Ay = vArsin® (5.12)

The current pose of the vehicle is updated locally inside the getNewPose subroutine at 2.54

cm intervals using the equations

ewmv = ev.alll+ A6

xv.nm = xv.pld+ Ax (5. 13)

Yonew = yv.ald* Ay

Case i: ¢=0 and 6,=6,

Figure 5.8. Vehicle/trailer configuration
(.

¢+»0andCH L. TH

Case ii:

Figure 5.10. Vehicle/trailer
configuration (if).

Updating the Trailer Pose

80

Caseiii: ¢=0and 9, = 6,

Figure 5.9. Vehicle/trailer configuration
(uti).

T F

Caseiv: ¢ »0andCH!. TH

Figure 5.11. Vehicle/trailer

configuration (iv).

If the vehicle tows a trailer, then a hitch point and some position on the trailer must

be updated each time the vehicle’s position (x,y) is updated. Figures 5.8-5.11 illustrate four

general cases used to determine the motion of the trailer. For all of the cases, the updated

hitch point can be calculated given the updated vehicle pose, as shown in equation (5.14).

81

Xypew = Xynow™ W,cos(,,,.)

. (5.14)
Yinew = Yonew™ W,sin(@,,,.)

Case (i) is the simplest case. Here, the vehicle is traveling straight ($p=0) and the

trailer heading coincides with the vehicle heading. In case (i), the hitch point H moves along

8, = 0,- sign($)tan”!

(5.15)

W,ltand’l

v

a circular arc centered at C and having a radius of CH. Here, CH is perpendicular to the
main axis of the trailer (TH) and the instantaneous velocity of point T is in the direction of
the main axis of the trailer. CH is perpendicular to TH when 6, is equal to the expression in
equation (5.15). For case (i) and (i), the new trailer pose is calculated by the equations in

(5.16).

0w = B

Xinew = Fnnow~ Wi08(0,,,.) (5.16)

yumv =Y hnew WrSin(eulew)

In case (iii), the steering angle is zero, but the trailer heading does not coincide with
the vehicle heading. Case (iv) is the most general case for a vehicle executing a turn. Here,
the steering angle is nonzero and CH is not perpendicular to TH. It is assumed that in both
case (iif) and (iv), the trailer point T moves about the circular arc centered at F and having

radius TF. In case (iii), point F is found using the equations in (5.17).

82

k = sign(HB x HT)

o= - kW,sin(Owu) . x

i — a v hold
sin(6, ,,,- 0,) 5.17)
kW.os®,)

Y = —r T vold Yot

sin(6, ,,- 6, oid)

For case (iv), point C is given by the equations in (5.18),

x, =x, .- sign(@)rsin(@,), Ve = Yoou* Sign(@)r,cos(©,) (5.18)

and point F can be found by determining the intersection of the line through CH and the line

through the axle of the trailer.
°C
g3
Wi 4 -«
m
T, ‘T
rT ./F

Figure 5.12. Hitch point H moves to H' and trailer
point T moves to T’

83

As shown in Figure 5.12, the hitch point A moves to the point H’ and the trailer point
T moves to the point T'. Once point F is found for case (iii) and (iv), the algorithm for

finding the new trailer position, 7', and its heading, is then as follows:

m = ,/(x,,,,,..,-ar,)2 + (v,.,.,w-)',)2

V/(~iold "'f) Oroa Yf)z

W em?-r}
B = cos!|——v-—"
2W,m
@ = atan2 (Y, Yy o X X perw (5.19)

k = sign(HF xHT)

X + Wcos(a + kp)

Lhew xluxzw

+ Wsin(a + &)

yr.new= Y haew

eumv =atan2 Yy pou ™ Yinew Fnnew™ xrm,)

Simulating Auto-Tuning

The equations developed in the Simulating Path Tracking section of this chapter are
incorporated into a simulation that auto-tunes the steering control parameters of a steered-
wheeled robotic vehicle. The Auto-Tuning Control Parameters section of chapter 4
discusses the procedures used for auto-tuning the control parameters.

The auto-tuning procedure is a time consuming process, therefore, this simulation is
nongraphical. First, the user is asked if he/she wants to tune the PID or pure pursuit
controller. Next, the user is asked if he/she wants to use an oval shaped path, as shown in
Figure 4.12, or a figure 8 shaped path. A subroutine generates a figure 8 given the length of
the straight sections and the angle between the straight sections. A figure 8 path is beneficial

because it contains both a left and a right turn.

84

If the PID controller was chosen, then the [Ast95] relay tuner and the Ziegler-Nichols
tuning rules [Zie42, Ast95] are used to generate an optimal proportional gain, integral time,
and derivative time for 10 speeds between 0-4.5 m/s. Theses gains are written to a file.
During path following, the gains are loaded to a look-up table. They are retrieved using
linear interpolation, based on the user defined command velocity.

For both the PID and pure pursuit controller, the look-ahead distance is tuned using
the golden section search (GSS) optimization technique for 10 speeds between (0-4.5 m/s).
The performance index is the area between the planned path and the path traced out by the
vehicle’s control point. The vehicle’s position is translated 1.54 m at the beginning of each
lap to initially perturb the system.

These gains are also written to a file and loaded to a look-up table during path
following. They are retrieved using linear interpolation, based on the user defined command

velocity.

CHAPTER 6
RESULTS AND CONCLUSIONS

The high-level control strategy discussed in chapter 4 was demonstrated in simulation
(as discussed in chapter 5) and implemented on the NTV. This chapter presents some results
from tests run on the simulation programs and the NTV. It ends with some conclusions that
can be drawn from this research.

Simulation Results

The model of the NTV’s steering behavior that was discussed in chapter 5, was

implemented for the simulation programs on a Silicon Graphics IRIS Crimson computer.

Figure 6.1 shows the NTV and simulation steering response to a step input of 28.0°. Figure

30 35
25 § 3 -
=AE-To) © 25
o 2 2
2 15 2 .. =
< 10 < i
2 2 1 ,
5 S g 05
& 0 & o

-5 -0.5 +

0 0.5 1 1.5 2 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (seconds) Time (seconds)

— Command — NTV - - Simulation =NTV + Simulation
Figure 6.1. NTV and simulation Figure 6.2. First 1/3 second in Figure
response to a step input of 28°. 6.1.

85

86

6.2 shows the first 0.33 seconds following the command. As discussed in chapter 5, the
steering position can be approximated by the profile position, calculated from a generated
velocity profile, except when the profile velocity exceeds 17.52 °/s. This appears to be the
maximum angular velocity of the steering servo motor.

The raw data from auto-tuning the pure pursuit look-ahead distance for 10 speeds (0-
4.5 m/s) can be found in Appendix A. An implementation of the golden section search
technique is used to progressively home in on the optimum look-ahead distance. For this set
of data, the look-ahead distance was defined as L,, as shown in Figure 4.2. At the beginning
of each lap around the rectangular test path shown in Figure 4.12, an initial lateral error of
1.54 m is introduced.

The pure pursuit data shown in Appendix A is summarized in Figure 6.3. The upper
line in the figure shows that the optimal look-ahead distance increases as the vehicle speed
increases. The lower line shows that the lateral path error also increases as the vehicle speed
does. Over the velocity range, the optimal look-ahead distance varied between 2-4 m and

the average deviation varied between 10-25 cm.

5 50 _5 50
—~ E -
E — E — £
o4 40 5 § 4] 40 %
§ S -] 8
> o — [
2 b - - o
B2 20 © 22 A 20 g
£ 4 o <. E
3 g =1 10 ©
g’ gl |8 g
- < 0 0
0 0
0.44 1.78 3.12 4.47 0 12 3 4 5
Vehicle Velocity (m/s) Vehicle Velocity (mvs)
~e Lock-Ahead e Avg Deviation -~ Look-Ahead = Avg Deviation
Figure 6.3. Pure pursuit auto-tuning Figure 6.4. PID auto-tuning results.

results.

87

The raw data from auto-tuning high-level PID controller is also listed in Appendix
A. The proportional gain X, integral time T, and derivative time T, are shown in Table 6.1
for the 10 test speeds. It is noted that the proportional gain does not change in a uniform

way. The integral and derivative times do not change much beyond 2.68 m/s.

Table 6.1. PID gains derived from auto-tuning.

Speed (m/s) K T, Td___‘
0.45 2.666 4478 1.119
0.89 1.916 2.711 0.678
1.34 1.727 1.911 0.478
1.79 1.392 1711 0.428
2.24 1.309 1411 0.353
2.68 1.231 L.211 0.303
3.13 1.034 1.211 0.303
3.58 0.899 1.211 0.303
4.02 0.801 1.211 0.303
4.47 0.649 1.300 0.325

Results from auto-tuning the look-ahead distance for the PID controller is shown in
Figure 6.4. The PID gains determined for each speed, as shown in Table 6.1, were used for
this simulation test. As with the pure pursuit method, the optimal look-ahead distance
increases with vehicle speed. The average deviation also increases with vehicle speed. The
look-ahead distance varied between 1-3 meters and the average deviation varied between 10-

45 cm.

88

Both the pure pursuit and PID steering controllers were easy to implement. The PID
controller appears to be poorly tuned by the relay auto-tuner. Auto-tuning provides merely
a starting point for further fine tuning. The author was able to improve on the path following
accuracy by manual tuning using trial and error modifications. As tuned by the auto-tuning
procedures, there are advantages and disadvantages associated with both of the steering
controllers.

The PID controller is stable when the vehicle velocity is low or the lateral path error
is large. (The look-ahead distance is large when the lateral path error is large). The
disadvantages of the PID controller are 1) it is difficult to accurately auto-tune, 2) it is
unstable when the vehicle velocity is high, and 3) even when it is accurately tuned, there is

an inherent error that causes corners to be cut short.

Figure 6.5. PID control Figure 6.6. PID control Figure 6.7. Off-path to on-
with short look-ahead at with larger look-ahead at path transition using PID
1.34 mv/s. 1.34 mv/s. control at 1.34 m/s.

As the look-ahead distance is shortened, the lateral error starts to decrease but control
becomes jittery. Micro-oscillations are produced, as shown in Figure 6.5. As the look-ahead

distance is increased, as shown in Figure 6.6, the lateral error begins to increase around

89
corners but the control is smoother. When approaching a path from a distance, the transition
from off-path to on-path travel is smooth, as shown in Figure 6.7.

The advantage of the pure pursuit method is that the steering control is stable and
accurate when the lateral error is small, for all velocities tested. (The lateral error is initially
small, and remains so, when the vehicle is started on-path). This controller is also easy to
auto-tune if sufficient space is available. The disadvantage of this controller is that it can

become unstable when the vehicle is making a transition from off-path to on-path travel.

]y

Figure 6.8. Pure pursuit Figure 6.9. Off-path to on- Figure 6.10. Off-path to on-
control with vehicle started path transition using pure ~ path transition using pure
on-path at 1.34m/s. pursuit control at 1.34 m/s. pursuit control at 1.34 m/s.

Figure 6.8 illustrates the accuracy of path following using the pure pursuit method
when the vehicle is started on path. When the vehicle approaches a path nearly perpendicular
to it, as shown in Figure 6.9, the transition from off-path to on-path travel is fairly smooth.
When the approach is from a smaller angle, the control can become unstable, as shown in
Figure 6.10.

Even though the PID controller appears to be poorly tuned, it is the more stable
method for approaching a path from off-path travel. On-path travel is more stable and

accurate when the pure pursuit controller is used. An attempt was made to incorporate the

90

100% PID

100% PP

0 1 2 3 4
Lateral Path Error (m)

Figure 6.11. Weighted PID and pure pursuit
control solution.

positive features of both control methods by using a weighted control solution. The weighted
control solution is illustrated with Figure 6.11.

When the lateral path error is less than | meter, the recommended steering angle is
taken to be the output from the pure pursuit controller. When the lateral path error is greater
than 3 meters, the recommended steering angle is taken to be the output from the PID
controller. And when the lateral path error is between 1-3 meters, the recommended steering
angle is a combination of the pure pursuit and PID controllers. Figures 6.12 and 6.13 shows
smooth transitions from off-path travel to on-path travel for a couple of different approach

angles.

—_——

Figure 6.12. Off-path to on-path Figure 6.13. Off-path to on-path
transition using weighted control at transition using weighted control at

1.34 m/s. 1.34 m/s.

91
Navigation Test Vehicle Results

The high-level control strategy discussed in chapters 3 and 4 was implemented in
simulation as well as on the NTV. The results from autonomous steering calibration, auto-
tuning, and path following are provided {n this section.

Autonomous steering calibration was performed to compensate for the effects of the
Ackerman steering linkage, wheel slippage, and an inaccurate home steering position. The
autonomous calibration procedure described in the Autonomous Steering Calibration section
of chapter 4 was followed. Figure 6.14 shows the experimentally measured relationship
between the command steering angle and the curvature of the turn for 40 samples taken on
a grass surface while driving at 1.34 m/s. (Five samples were collected at each of eight
steering positions.) Also shown in the figure is the expected relationship. The experimental
data are fit with a line using the method of least squares and the slope (m) and y-intercept (b)

are written to a calibration file.

04
Expected 04 T -
E(o):: y = 0.0122x P < Eg:g }L)/;:
e o1 < o1
s o i S o &
801 Experimental] g -0.1 — X
S .02 = y =0.01x +0.0023 7] € 02 Expected
(6] 4 —TT T O .03 y =0.0122x
0.3 1T { I 1 y
04 I s 04 s
% -20 -0 0 10 20 30
-3 -20 -10 0 10 2 30 .
Steering Angle (deg) Steering Angle (deg)
Figure 6.14. Relationship between the Figure 6.15. The adjusted steering angle

command steering angle and turn curvature yields the desired turn curvature for 40
based on 40 measurements. measurements.

92

The relationship between the command steering angle ¢,,, that the high-level

controller outputs and the expected curvature k., is given by Equation 6.1,

k= —d (6.1)

where, W is the distance between the axles. To execute a turn with this curvature, the

steering must be commanded to the position ¢, as given by Equation 6.2.

by = mk,y + b (6.2)

The adjusted steering angle, as a function of the command steering angle, is given by

Equation 6.3.

m-tand_, ,
¢,,d,- = _W_ +b 6.3)

The calibration procedure was run a second time for eight steering positions, five
samples for each position. For each command steering position, the adjusted steer position
in Equation 6.3 was executed. Figure 6.15 shows the measured curvature for each adjusted
steer position. The measured curvature for all 40 tests are very close to the expected
curvature.

The high-level PID controller was auto-tuned using the method outlined in the PID
Relay Auto-Tuning section of chapter 4. This controller was previously tuned manually with

no derivative gain (PI). In order to compare the results of the auto-tuned controller with the

93

manually tuned controller, this controller was auto-tuned for PI control. The Ziegler-Nichols

tuning rules for a PI controller are

=
"

04K,

08T (6.4)

>3
"

Table 6.2. Auto-Tuned PID and PI gains at 1.34 m/s.

Characteristic PID Gains PI Gains
Sample Parameters
K, T, K, K; Ky K K,
1 1.93 5.03 1.16 0.46 0.73 0.717 0.19
2 1.93 5.07 1.16 0.46 0.73 0.77 0.19
3 2.05 4.80 1.23 0.51 0.74 | 0.82 0.21
4 1.87 5.13 1.13 044 0.72 0.75 0.18
5 2.04 4.83 1.22 0.51 0.73 0.82 0.21
6 1.81 5.23 1.09 042 0.71 0.72 0.17
7 2.31 4.26 1.39 0.65 0.74 | 0.92 0.27
8 2.14 4.61 1.28 0.56 0.74 0.86 0.23
9 2.02 4.79 1.21 0.51 0.73 0.81 0.21
10 1.88 5.10 1.13 0.44 0.72 0.75 0.18
Average | 2.00 4.89 1.20 0.50 0.73 0.80 0.20

The characteristic parameters (elicited through relay auto-tuning) and the

corresponding PID and PI gains for 10 trials are shown in Table 6.2. These tests were

94

performed on a fairly level grass surface at 1.34 m/s. For PID and PI control, the gains can

be written in the form

K =K

K

K =2
{ Tl (6.5)

K, = KT,

where K|, is the proportional gain, K; is the integral gain , and K, is the derivative gain.
The average auto-tuned proportional and integral gains were 0.80 and 0.20,
respectively. The manually tuned proportional and integral gains were 1.0 and 0.18,
respectively.
The look-ahead distances for both the PI and pure pursuit controllers were tuned

using the method outlined in the Auto-Tuning the Look-Ahead Distance section of chapter

3 _35.
E E
g 25 g 3
S 825 |
3z 2 z =
a
2
815 g
s 1.5
T 1 &
; s
505 %o.s :
O o ;
0 0 ‘
2 1 2 3 4 5 6 7 8
Trials Trials
Figure 6.16. Five trials of auto-tuning Figure 6.17. Eight trials of auto-tuning
the look-ahead distance for a PI the look-ahead distance for a PP

controller. controller.

95

200 200
E E
o o
£ 150 £ 150
x x
()] 2]
g g
o 100 V o 100
e e
E E 50l
\g 50 \\] /’__\\ g 50 \\ r -- . -
[} h o1 o I
LI et 3 L
242628 3 32343638 4 18 2 22242628 3 3234
Look-Ahead Distance (m) PI Lead Distance (m)
Figure 6.18. Typical data from auto- Figure 6.19. Typical data from auto-
tuning the look-ahead distance for a PP tuning the look-ahead distance for a PI
contoller are fit with a cubic polynomial. controller are fit with a cubic polynomial.

4. The procedure was repeated eight times for the pure pursuit controller and five times for
the PI controller. The results are shown in Figures 6.16 and 6.17.

The results obtained from applying this procedure to the pure pursuit controller are
more repeatable than for the PI controller. Results from typical trials are shown in Figures
6.18 and 6.19. The performance index used to evaluate each run in a trial is the area between
the planned path and the actual path traced out by the vehicle. The data in both graphs are
fit with a cubic polynornial, using the method of least squares.

For the pure pursuit controller, the optimum look-ahead distance (when traveling at
1.34 m/s) is approximately 3 meters. Notice that there is a region about the optimum where
the lock-ahead distance doesn’t change much. There is a region about the optimum where

there is little improvement in path following accuracy.

96

The PI controller is more sensitive to fluctuations in the vehicle’s velocity than the
pure pursuit controller. When speed control is not robust, oscillations about the path can be
induced (when using PI steering control). This can be seen in Figure 6.19, where there is a
stray data point far above other data points. As a result, it is difficult to use this procedure
to auto-tune the PI look-ahead distance and obtain repeatable results.

Once the optimal control paramcters were determined using the auto-tuning
procedures, the NTV was commanded to follow a path while using these gains. A path was
recorded at one meter intervals, having several turns of varying curvature in it. During path
following, the average, maximum, and standard deviation from the path, and a performance
index was calculated.

The performance index, area, is the area between the planned path and the path
traced out by the vehicle. The look-ahead distance was changed as a linear function of the
vehicle velocity, where A is the slope of the line. Simulation tests for auto-tuning the pure
pursuit controller suggests that A=0.5 s is appropriate. The graphs that illustrate the path
following results are too numerous to include here. Instead, they have been placed in
Appendix B.

Figure B.1 illustrates path following (at 1.34 m/s) along the prerecorded path using
the manually tuned gains. Figure B.2 shows how the lateral path error and the vehicle
velocity changed during the trial. Figures B.3 and B.4 are the results from using the auto-
tuned PI gains. The auto-tuned look-ahead distance was increased slightly (to 3 m) to
improve stability. Notice that the auto-tuned PI controller performed as well as the manually

tuned controller. The average deviations were 0.22 m and 0.21 m, respectively.

G7

Figures B.5 and B.6 show the results from path following (at 1.34 m/s) the
preplanned path using the auto-tuned pure pursuit controller. Path following at this speed
is extremely accurate when there is no initial lateral path error. Figures B.7 and B.8 shows
the results from varying the speed (0-3.75 mv/s) during path following when the auto-tuned
pure pursuit controller was used. The average deviations were 2 cm and 6 cm, respectively.

Figures B.9 and B.10 illustrate path following when the auto-tuned PI controller is
used and there is an initial offset in the vehicle’s position. The vehicle’s actual path is
smooth but convergence to the preplanned path is slow. Figures B.11 and B.12 show how
the auto-tuned pure pursuit controller reacts to an initial offset in the vehicle’s position. As
discovered in the simulation tests, the pure pursuit controller becomes unstable when the
lateral error is large (if the look-ahead distance is not increased adaptively and reduced
slowly as the vehicle converges to the path).

Figures B.13-B.16 show path following results (at 1.34 m/s) when the weighted
solution discussed in the Weighted PID/Pure pursuit Steering Control section of chapter 4
was applied. Notice that when there is an initial offset in the vehicle’s position (Figures B.13
and B.14), or the vehicle’s position and heading (Figures B.15 and B.16), convergence to the
path is smooth and fast.

Conclusions

This research involved the development of a strategy that takes advantage of an
accurate positioning system, and ensures accurate path following for any steered-wheeled
vehicle over a range of speeds (0-4.5 m/s). Accurate path following was defined as an

average deviation from the path (due to control error) of less than 0.1 m. This work is based

98

on the technique of decoupling the steering and propulsion control and performing them
independently. Here, only steering control was addressed. This section will summarize the
author’s research and specify what he believes to be unique about it.

The author’s path tracking strategy involved standardizing and smoothing a wide
range of acceptable paths, implementing several high-level steering controllers (PID, pure
pursuit, and weighted PID/pure pursuit), developing tools for evaluating the accuracy of path
tracking, generating in real-time a target position for the vehicle to track, and autonomously
tuning the control parameters associated with the tested methods. The control strategy was
implemented and demonstrated in simulation and on an all-terrain navigation test vehicle.

The path tracking software is flexible in that it is able to receive a variety of path
types, each to be explicitly followed. The specified path can be computer generated (by a
suite of four path planners implemented by the author), user generated, or prerecorded. The
path is then smoothed by an algorithm that fits the path segments with circular arcs (having
a radius equivalent to the minimum turning radius associated with the vehicle) or cubic
polynomials. The smoothed path is placed in a standardized linked-list form and passed to
an executioner program, where a local copy is made.

There exists a wall of separation between the work of the path specifier and the path
executioner. The path specifier can be working on one path while the vehicle is tracking a
local copy of the previous path. Subsequently, the vehicle can in mid-stream (without
stopping) change from following one path to another. A shared memory flag can be set by
the user if the path to be executed should be continuously repeated. A path that is currently

being tracked can be translated on the fly in order to induce an error during auto-tuning.

99

The shortest distance from the vehicle’s control point to the path (lateral path error)
is calculated in real-time and used to update a running total on the average, maximum, and
standard deviation from the path. It is also used to calculate the area in real-time between
the planned path and the path traced out by the vehicle. Optimization decisions in auto-
tuning the control parameters work to decrease this area. A smoothness index and oscillation
index are also calculated in real-time, but these parameters were not incorporated into the
auto-tuning performance index.

A target position on the path and ahead of the vehicle is also generated in real-time
as a “carrot” for the vehicle to follow. The carrot is generated by a so called “backseat
driver” program. At any given instant, the only path information the “front-seat driver”
program requires is the location of the target position. The user can specify how far in front
of the control point the target should be placed, or this parameter can be auto-tuned. This
parameter can be changed as a linear function of the vehicle’s speed. In principle, the
backseat driver could be replaced by a program that uses vision data to generate a target point
in the middle of a lane on a street or highway.

When the NTV executes a turn at a specific steering position, the measured curvature
is not what is expected from the kinematic considerations. The measured curvature is a
function of the commanded steering angle, surface conditions, vehicle speed, tire stiffness,
etc. The author has developed an autonomous steering calibration procedure that
approximates the relationship between the commanded steering angle and the resulting
curvature for constant speed. The commanded steering angle is adjusted to compensate for

the established behavior during auto-tuning and path following.

100

Three high-level steering control algorithms that are responsible for tracking the
target position (PID, pure pursuit, and weighted PID/pure pursuit) were implemented and
evaluated. The PID controller was difficult to manually tune on the NTV so this controller
was degraded to a PI controller. In order to be able to compare the manual and auto-tuned
controllers, a PI controller was implemented on the NTV. (An observation made by the
author is that the auto-tuned PI controller performed smoother than the auto-tuned PID
controller). A PID and PI controller was evaluated in simulation. At high speed, the average
deviation from the path associated with the PID controller was significantly smaller.

The (simulation) PID and (NTV) PI gains were auto-tuned using a relay auto-tuner.
This tuner, normally applied to industrial plants, oscillates the system (as in the frequency
response method) so that the characteristic parameters can be calculated. The Ziegler-
Nichols tuning rules are applied to determine the control gains. Here, the vehicle’s heading
oscillates (12 cycles) about some default value by alternating the command steering angle
between a positive and negative value (15°). These controllers are in fact being used to
control the vehicle’s heading by alternating the steering angle. The amplitude and period of
the oscillations are measured and averaged in software.

The manually tuned NTV PI gains (K=1.0, K=0.18) are close to the auto-tuned gains
(K,=0.8, K=0.2). In simulation, the relay auto-tuner was applied at ten speeds between 0-4.5
m/s. The resulting PID gains did not uniformly change. The author found that using the
parameters determined at each speed did not improve path following accuracy above using

the parameters determined at 1.34 m/s for path following at all speeds.

101

The look-ahead distance to the real-time target position is the only gain that needs to
be tuned for the pure pursuit controller. It is also a gain that needed to be tuned for the PID
and PI controllers. A golden section search was performed at several speeds between 0-4.5
m/s in simulation and at 1.34 m/s on the NTV. An educated guess is made on the bounds of
the region suspected to contain the optimum gain. Each iteration narrows the search until
it is smaller than the user defined tolerance (0.03 m) for stopping the search. The author
predefined a search region of about 1.4 meters, which required 10 iterations (20 minutes) to
accomplish the search on the NTV.

Auto-tuning the look-ahead distance for the pure pursuit method produced results that
were repeatable. This was not the case with auto-tuning the look-ahead distance for the NTV
PI controller. This controller appeared to be more susceptible to fluctuations in the vehicle
velocity. It was observed that when the vehicle speed drifted above the commanded value,
oscillations about the path could be induced.

Using the GSS algorithm to auto-tune a PID or PI controller appears to be useless,
unless propulsion control is accurate. (The author used a slightly higher look-ahead distance
of 3.0 m to improve stability for path following trials). An attempt was made to smooth the
data by fitting it with a cubic polynomial, using the least squares method, but this did not
improve repeatability. The lead distance being tuned was also allowed to change as a linear
function of the current velocity, but this did not improve repeatability either.

Two simulation programs were written as a part of this research. A nongraphical
simulation was used to implement the procedures necessary to test the feasibility of auto-

tuning and gain scheduling. A graphical simulation was implemented to demonstrate the

102

path following accuracy of the three high-level controllers that were evaluated. Kinematic
equations necessary to update the vehicle and trailer’s position and heading were derived,
based on the assumptions that the terrain has a constant elevation and there is no wheel
slippage. A future application for the graphical simulation is to develop a controller that
keeps the trailer on the path during forward and reverse motion (while avoiding a jackknife).

To improve the simulation’s representation of reality, the NTV’s steering behavior
was modeled. It was determined that the current steering angle can be approximated using
a trapezoid shaped velocity profile, when the difference between the commanded steering
position and the current steering position is small. The steering position is allowed to change
by a maximum of 17.5 °/s.

The graphical simulation revealed several advantages and disadvantages of the PID
and pure pursuit controllers. The PID and PI controllers are designed to eliminate heading
error. As a result, an inherent lateral path error is inevitable around curved sections of the
path. The pure pursuit controller can become unstaole when there are large changes in the
error (such as approaching the a path from an off-path position).

The PID and PI controllers are stable when the lateral path error is large. (The look-
ahead distance is large when the lateral path error is large). The pure pursuit controller
provides accurate path following when the vehicle is started on-path. The average control
error on the NTV was 2 cm at 1.34 m/s when the vehicle was started on the test path shown
in Appendix B.

A weighted PID/pure pursuit solution was tested in an effort to combine the positive

features of both controllers. At a constant speed of 1.34 mV/s, a lateral error of greater than

103

3 m uses 100% of the PID (or PI) recommendation. A lateral error of less than 1 m uses
100% of the pure pursuit recommendation. Between these error values, a linear combination
of the recommendations are used. The same values developed in simulation were shown to
work well on the NTV.

These results indicate that the combination of the PI and pure pursuit controllers in
a weighted solution performs better than the independent controllers tested. Further, it is
sufficient to use the auto-tuned pure pursuit lead-distance for both controllers (at 1.34 mvs).
The weighted solution meets the accuracy criteria set in chapter 1.

There are several aspects of this path tracking strategy that the author believes are
unique. The author is not aware of other research that smooths out the rough edges in a
planned or user defined path as this work does. There are other implementations that use a
carrot following approach to track an explicit path. But none of these methods calculate the
carrot in real-time. A static (and usually large) set of subgoals is searched for one that is
approximately the look-ahead distance away from the vehicle. This implementation is
memory efficient.

A PID controller has previously been applied to the minimize the lateral path error,
but not the heading error, for a mobile robot. In simulation, the author has experimented
with a new technique of rotating the carrot off-path in an effort to keep a trailer’s control
point on-path. This is one area that need further exploration.

Auto-tuning the control parameters for an ALV has not received any significant
attention in the past. In particular, the application of relay auto-tuning to a mobile plant is

new. Gain scheduling was used effectively in simulation for the pure pursuit controller.

104
Finally, the author has endeavored to quantify the quality of path tracking in real-time, an

ingredient missing in other research reviewed by the author.

APPENDIX A
NONGRAPHICAL AUTO-TUNING SIMULATION

Auto-tuning the lead distance is an iterative process. Each row of data represents one
lap around a rectangular test path. The optimum lead distance for a given vehicle speed is
found by progressively eliminating search areas where it is not expected. The golden section
search optimization technique was implemented. The units of the average deviation from
the path (dev) is in cm. The lead distance used for each iteration is value. The optimum lead
distance is expected to lie within the lower and upper limits.

The characteristic parameters for a PID controller, the ultimate gain K, and the
ultimate period T, are estimated using relay auto-tuning. The proportional gain K, integral

time T, and derivative time T, are calculated using the Ziegler-Nichols tuning rules.

Pure Pursuit Auto-Tuning
speed = 0.45 m/s iterations = 11 11 2.18 133 216 220
count value dev* lower upper lead =2.17 m avgDev =13.3 cm
1 1.98 203.7 198 3.05
2 305 222 198 3.05 speed = 0.89 m/s iterations = 12
3 239 137 198 3.05 count value dev* lower upper
4 264 156 198 3.05 1 1.87 204.1 1.87 3.09
5 223 134 198 2.64 2 309 237 187 3.09
6 2.14 133 198 239 3 233 139 187 3.09
7 208 143 198 223 4 262 153 187 3.09
8 217 133 208 223 5 2.16 144 187 262
9 220 133 214 223 6 244 14.1 216 262
10 216 140 2.14 220 7 227 139 216 244

105

106

8 238 143 227 2244 3 264 18.8 217 3.39
9 231 13.8 227 238 4 293 184 217 3.39
10 229 138 227 233 5 3.10 18.7 264 339
11 228 137 227 231 6 282 18,6 264 3.10
12 228 139 227 229 7 3.00 183 282 3.10
lead =2.28 m avgDev = 13.7 cm 8 3.04 185 293 3.10
9 297 17.7 293 3.04
speed = 1.34 m/s iterations = 12 10 295 18.0 293 3.00
count value dev* lower upper 11 298 180 295 3.00
1 198 1913 1.98 3.20 12 296 17.8 295 298
2 320 263 198 3.20 lead =2.97 m avgDev=17.7cm
3 244 147 198 3.20
4 273 158 198 3.20 speed = 2.68 m/s iterations = 12
5 227 139 198 273 count value dev* lower upper
6 216 156 198 244 I 266 254 266 3.88
7 233 143 2.16 244 2 388 27.1 266 3.88
8 222 153 216 233 3 313 19.1 2.66 3.88
9 229 140 222 233 4 342 209 266 3.88
10 225 147 222 229 5 295 18.6 266 342
11 228 139 225 229 6 284 20.1 266 3.13
12 228 139 227 229 7 302 180 284 3.13
lead = 2.28 m avgDev =13.9 cm 8 306 185 295 3.13
9 299 177 295 3.06
speed = 1.79 m/s iterations = 12 10 298 180 295 3.02
count value dev* lower upper 11 300 174 298 3.02
1 197 176.7 197 3.19 12 3.0117.8 299 3.02
2 3.19 214 197 3.19 lead = 3.00 m avgDev=17.4 cm
3 244 158 197 3.19
4 272 162 197 3.19 speed = 3.13 m/s iterations = 12
5 226 1802 197 272 count value dev* lower upper
6 255 207 226 272 I 270 133.1 270 3.92
7 237 176 226 255 2 392 325 270 3.92
8 248 151 237 255 3 316 206 270 392
9 250 158 244 255 4 345 206 270 3.92
10 246 152 244 250 5 299 229 270 345
11 249 152 246 2.50 6 327 199 299 345
12 247 153 246 249 7 334 195 3.16 345
lead = 2.48 m avgDev = 15.1 cm 8 338 196 327 345
9 332 195 327 338
speed = 2.24 m/s iterations = 12 10 330 197 327 334
count value dev* lower upper 11 333 197 330 3.34
1 2.17 2003 2.17 3.39 12 331 198 330 3.33

2 339 230 2.17 3.39 lead =3.32 m avgDev=19.5cm

107

speed = 3.58 m/s iterations = 12 7 3.69 228 358 3.87
count value dev* lower upper 8 3.80 230 369 3.87
1 3.01 332 301 423 9 373 60.1 3.69 3.80
2 423 296 3.01 423 10 3.77 23.1 373 3.80
3 348 210 3.01 4.23 11 3715 224 373 377
4 377 230 301 423 12 374 604 373 3.76
5 330 303 3.01 3.77 lead =3.75 m avgDev=224cm
6 359 216 330 3.77
7 341 199 330 359 speed = 4.47 m/s iterations = 12
8 337 21.7 330 348 count value dev* lower upper
9 344 19.7 337 348 1 344 1609 344 466
10 345 19.8 341 348 2 4.66 46.6 344 466
11 343 19.6 341 345 3 391 223 344 466
12 342 195 341 344 4 420 263 344 4.66
lead =3.42 m avgDev =19.5cm 5 373 212 344 420

6 362 274 344 391
speed = 4.02 m/s iterations = 12 7 3.80 24.1 362 391
count value dev* lower upper 8 369 793 362 3.80
1 3.11 152.0 3.11 4.33 9 376 259 3.69 3.80
2 433 309 3.1 433 10 372 26,6 369 3.76
3 3.58 101.2 3.11 4.33 11 374 610 372 3.76
4 387 25.1 3.11 433 12 373 251 372 3.74
5 405 253 3.58 4.33 lead =3.73 m avgDev =21.2cm
6 376 225 3.58 4.05

PID Controller Auto-Tuning

speed = 0.45 m/s d=0.075m 10 1.35° 126 133 1.37
T,=8956s K, =4.443 11 1.36 126 135 1.37
K =2.666 T,=4.478 Ty=1.119 lead = 1.36 m avgDev=11.4cm
iterations = 11 curve fit lead = 1.78 m
count value dev* lower upper
1 122 179 122 198 speed = 0.89 m/s d =0.104 m
2 198 155 122 198 T,=5422s K,=3.193
3 1.51 151 122 198 K =2.666 T,=4478 T,=1.119
4 1.69 16.1 1.22 198 iterations = 11
5 1.40 130 122 1.69 count value dev* lower upper
6 1.33 120 1.22 1.5l | 1.20 197 120 1.97
7 1.29 123 122 140 2 1.97 200 120 197
8 1.36 114 129 140 3 1.50 179 120 1.97
9 1.37 127 133 140 4 1.68 20.1 120 1.97

108

5 138 163 1.20 1.68 10 1.89 299 1.87 1.91

6 1.32 160 1.20 1.50 11 1.88 26.1 1.87 1.89

7 1.27 151 120 1.38 lead = 1.88 m avgDev =20.6 cm

8 125 152 120 1.32 curve fit lead = 1.94 m

9 1.29 155 1.25 1.32

10 1.26 159 1.25 1.29 speed = 2.24 m/s d=0.153 m

11 1.28 154 126 1.29 T,=2.822s K,=2.182

lead = 1.27 m avgDev = 15.1 cm K =2.666 T;=4.478 Tys=1.119
curve fit lead = 1.83 m iterations = 11

count value dev* lower upper

speed = 1.34 m/s d=0.116 m 1 1.73 25.1 1.73 2.49
T,=382s K,=2.879 2 249 303 1.73 249
K=2.666 T,=4478 T,=1.119 3 202 518 1.73 249
iterations = 11 4 220 358 1.73 249
count value dev* lower upper 5 231 346 202 249
1 1.12 203 1.12 1.88 6 238 36.1 220 249
2 1.88 208 1.12 1.88 7 227 366 220 2.38
3 141 242 1.12 1.88 8 234 38.1 227 238
4 1.59 22,1 1.12 1.88 9 230 389 227 234
5 1.70 224 141 1.88 10 232 365 230 234
6 1.52 207 141 170 11 231 399 230 232
7 148 193 141 1.59 lead = 1.73 m avgDev =25.1 cm
8 145 192 141 152 curve fit lead = 2.37 m

9 1.44 202 141 148

10 146 192 144 148 speed = 2.68 m/s d=0.162m
11 145 198 144 146 T,=2422s K,=2.052
lead=1.45m avgDev=19.2cm K =2.666 T,=4478 T,=1.119
curve fitlead = 1.72 m iterations = 11

count value dev* lower upper

speed = 1.79 m/s d=0.144m | 1.58 316 1.58 234
T,=3422s K,=2.319923 2 234 277 158 234
K =2.666 T,=4.478 Ty=1.119 3 1.87 437 1.58 234
iterations = 11 4 205 782 158 234
count value dev* lower upper 5 1.76 336 158 205
1 1.30 209 1.30 2.06 6 1.69 427 158 1.87
2 206 287 130 2.06 7 1.80 552 1.69 1.87
3 159 23.1 1.30 2.06 8 1.73 410 1.69 1.80
4 177 23.0 130 2.06 9 1.78 629 1.73 1.80
5 1.88 206 1.59 2.06 10 175 279 1.73 1.78
6 195 263 1.77 2.06 11 1.74 30.1 1.73 1.76
7 184 266 177 195 lead =2.34 m avgDev =27.7 cm
8 191 268 184 1.95 curve fitlead = 1.74 m

9 1.8 332 1.84 191

109

speed =3.13 m/s d=0.193m speed =4.02 m/s d=0250m
T,=2422s K,=1.723 T,=2422s K,=1.335

K =2.666 T,=4478 T,=1.119 K=2.666 T,=4.478 T,=1.119
iterations = 11 iterations = 11

count value dev* lower upper count value dev lower upper
1 219 716 219 295 1 244 551 244 320
2 295 442 219 295 2 320 592 244 3.20
3 248 527 219 295 3 273 766 244 320
4 266 608 2.19 295 4 291 1048 244 320
5 237 446 219 266 5 262 1039 244 291
6 230 459 219 248 6 280 426 262 291
7 241 665 230 248 7 284 7719 273 291
8 234 41.1 230 241 8 277 874 273 284
9 233 69.0 230 237 9 282 767 277 2284
10 235 S1.1 233 237 10 279 925 277 282
11 234 693 233 235 11 281 1049 279 2.82
lead =2.34 m avgDev=41.1cm lead =2.80 m avgDev=42.6cm
curve fitlead =2.39 m curve fit lead = 3.04 m

speed = 3.58 m/s d=0.223m speed = 4.47 m/s d=0.308 m
T,=2422s K,=1.498 T,=2.600s K,=1.082

K =2.666 T, =4478 T,=1.119 K=2.666 T, =4.478 T,=1.119
iterations = 11 iterations = 11

count value dev* lower upper count value dev lower upper
1 2.19 459 219 295 1 265 1126 2.65 3.41
2 295 47.0 219 25 2 341 55.1 265 341

3 248 876 219 295 3 294 61.6 265 341

4 266 1102 2.19 295 4 3.12 663 265 341
5 237 1044 2.19 266 5 283 489 265 3.12
6 255 61.0 237 266 6 276 117.0 2.65 294
7 259 403 248 2.66 7 287 1155 276 294
8 262 787 255 266 8 280 705 276 287
9 258 99.6 255 262 9 284 423 280 287
10 260 715 258 262 10 285 822 283 287
11 259 845 258 260 1 284 56.1 283 285
lead =2.59 m avgDev =40.3 cm lead = 2.84 m avgDev =423 cm
curve fit lead = 2.80 m curve fit lead = 3.24 m

* The units of average deviation (dev) is cm.

APPENDIX B
NTV PATH FOLLOWING RESULTS

10 -

5 V A - ./—-\‘
E o — £
> ey o R .
£ -5 VA A — . . .
£ /o
2 -0 A/

- /

-15 - _/

-20

-60 -50 -40 -30 -20 -10 0 10

Easting (m)
— Planned Path - - Actual Path

Figure B.1. Path following using PI control and manually tuned
gains (K,=1.0, K;=0.18, L=3.24 m) at 1.34 m/s, with no initial
offset and A=0.5.

0.8 4
)
E o4 3 ?S
P N g
i 0 2 3
B Mg u /\J*v-— >
S ‘-,,_\‘ 288 ;1 ~y 1 \" 2
3 ‘0-4 \ N 1 %
7 4 ' >

-0.8 0

0 20 40 60 80 100 120 140

Distance Traveled (m)
—— Lateral Error - - Vehicle Velocity

Figure B.2. The lateral error and vehicle velocity during the test in
Figure B.1. (Avg dev=0.22 m, max dev=0.74 m, std dev=0.22,
area=29.5 m?).

110

111

5 \\\
E o A
E sy SnE
s .0 /
: E
‘15 Y
-20
60 50 40 -30 -20 -10 O 10
Easting (m)
— Planned Path - - Actual Path

Figure B.3. Path following using PI control and auto-tuned gains
(K,=0.82, K;=0.21, L=3 m) at 1.34 m/s, with no initial offset and
A=0.5.

0.8 4
)
S~
E o4 3 E
= 2
2 - 3
_'-_IJ_ 0 : 2 ;5
«© o /‘\. 2 . AN ,: -

§ : \-\. " .“_.I"\"\' /-\r\/l\.o\‘j/ \.\v:-’\\“ %
3 ‘0.4) d ’)) ’ 1 :E
: . .)
| - ; >

-0.8 - 0

0 20 40 60 80 100 120 140
Distance Traveled (m)

Lateral Error - - Vehicle Velocity

Figure B.4. The lateral error and vehicle velocity during the test in
Figure B.3. (Avg dev=0.21 m, max dev=0.73 m, std dev=0.19,
area=27.6 m?).

112

10

5 \\\
g o
g 5 / SR
N =
5]
§ ‘10 /

-20

60 50 -40 -30 -20 -10 O 10

Easting (m)
— Planned Path - - Actual Path

Figure B.5. Path following using pure pursuit control and an auto-
tuned gain (L=3 m) at 1.34 m/s, with no initial offset and A=0.5.

0.3 - -4
E o015 3 £
N 2
g . . i 'g
© 3 - ' A
S f}\ NN A N 3
« 015 . : -1 2
:) o . (Y
j ' >
-0.3 - -0

0O 20 40 60 80 100120 140
Distance Traveled (m)

Lateral Error - - Vehicle Velocity

Figure B.6. The lateral error and vehicle velocity during the test in
Figure B.5. (Avg dev=0.02 m, max dev=0.08 m, std dev=0.02,
area=2.66 m?).

113

5 -]
3 /
o —
é -5
y,
2 /
-15 N
-20
60 50 -40 -30 -20 -10 O 10
Easting (m)
— Planned Path - - Actual Path

Figure B.7. Path following using pure pursuit control and an auto-
tuned gain (L=3 m) at varied speed, with no initial offset and
A=025.

Lateral Error (m)
o
{
Vehicle Velocity (m/s)

-0.3 - 0

0 20 40 60 80 100120140
Distance Traveled (m)

Lateral Error - - Vehicle Velocity

Figure B.8. The lateral error and vehicle velocity during the test in
Figure B.7. (Avg dev=0.06 m, max dev=0.25 m, std dev=0.05,
area=7.4 m>).

114

10
P \ /

E o0 /
£ 5 70 o~
-
5 0l /
2 F‘ /

"15 Ny

-20

60 -50 -40 -30 -20 -10 O 10
Easting (m)

— Planned Path - - Actual Path

Figure B.9. Path following using PI control and auto-tuned gains
(K,=0.82, K;=0.21, L=3 m) at 1.34 m/s, with an initial offset and
A=0.5.

2 - 2.5
E O .- T 2 E
g ..2 . o 0 N ,5. . Y "'\,‘ 15 %‘
1 PNV ey VW NS 2
s -4 1 >
o] " , o o
i : . S
4 -6 : 05 &
3 ~ >
-8 - 0

0 20 40 60 80 100 120 140
Distance Traveled (m)

--- Lateral Error - - Vehicle Velocity

Figure B.10. The lateral error and vehicle velocity during the test
in Figure B.9. (Avg dev=0.63 m, max dev=7.67 m, std dev=1.45,
area=65.2 m?).

115

10
_ 5 — _\ lI[
E o0 |/
[@)]
I —
g -5
5]
Z '10 /
'15 A\
-20
60 -50 40 -30 -20 -10 O 10
Easting (m)
— Planned Path - - Actual Path

Figure B.11. Path following using pure pursuit control and an
auto-tuned gain (L=3 m) at 1.34 m/s, with an initial offset and
A=0.5.

2 2.5
')
£ 0. o2 §
— R >
S 2 Ly . ~- A 158 3§
= : N N T e N WY o
L . ",' - v-\.r' Ny : 6
g 40 1 >
o) v : _ o 2
3 6 : 05 =
6 . =
-8 - 0

0 20 40 60 80 100 120 140
Distance Traveled (m)

Lateral Error - - Vehicle Velocity

Figure B.12. The lateral error and vehicle velocity during the test
in Figure B.11. (Avg dev=0.43 m, max dev=7.51 m, std dev=1.22,
area=35.0 m?).

116

10
-;\ '/

E o0 1
g 5 - —
£ /
2 10 7

‘15 N

-20

60 -50 -40 -30 -20 -10 O 10
Easting (m)
— Planned Path - - Actual Path

Figure B.13. Path following using weighted PUPP control and
auto-tuned gains (K;=0.82, K;=0.21, L=3 m) at 1.34 m/s, with an
initial offset and A=0.5.

2 2.5
0
E °r7 2 E
R S TN O I g
] O g B Y B T A o
s -4 ¢ 1 2
o | @
5 64 105
>
-8 0

0 20 40 60 80 100 120 140
Distance Traveled

— Lateral Error - - Vehicle Velocity

Figure B.14. The lateral error and vehicle velocity during the test
in Figure B.13. (Avg dev=0.41 m, max dev=7.59, std dev=1.45,
area=35.43 m?).

117

10

5 1 ‘<\
-t 1 Y
£ oy
£ 5 A —
= /
2z 10 7

-15 3

-20

60 -50 -40 -30 -20 -10 0 10

Easting (m)

— Planned Path - - Actual Path

Figure B.15. Path following using weighted PI/PP control and
auto-tuned gains (K,=0.82, K;=0.21, L=3 m) at 1.34 m/s, with an
initial offset and A=0.5.

10
5 ==) A
£
g 5 L =
S
S -0 /
-15
-20
60 -50 -40 -30 -20 -10 O 10
Easting (m)
— Planned Path - - Actual Path

Figure B.16. Path following using weighted PI/PP control and
auto-tuned gains (Kp=0.82, K,=0.21, L=3 m) at 1.34 m/s, with an
initial offset and A=0.5.

Ack94

Ale88

Ale89

Ami90

Ast95

Bou92

Can91

Che87

Cox90

Cra95

REFERENCE LIST

Ackermann, J., Guldner, J., and Utkin, V.L, “A Robust Nonlinear Control

Approach to Automatic Path Tracking of a Car,” Proceedings of the JEEE
International Conference on Control, 1, 389(1994), 196-201.

Alexander, J.C. and Maddocks, J.H., "On the Maneuvering of Vehicles,"

SIAM Jouma] of Applied Mathematics 48, 1(1988), 38-51.

Alexander, J.C. and Maddocks, J.H., "On the Kinematics of Wheeled Mobile
Robots," International Journal of Robotics Research 8, 5(1989), 15-27.

Amidi, O. and Thorpe, C., “Integrated Mobile Robot Control,” Proceedings
of SPIE, 1388, (1990), 505-523.

Astrom, K. and Hagglund, T., PID Controllers: Theory, Design. and Tuping,

Instrument Society of America, Research Triangle Park, NC, 1995.

Boukas, E.K. and Kenne, J.P., “Autonomous Vehicle: A Comparative Study

of Control Algorithms,” Engineering Systems. Design. and Analysis, PD-Vol.

47-4,(1992), 183-187.

Canudas de Wit, C. and Sordalen, O.J., "Exponential Stabilization of Mobile

Robots with Nonholonomic Constraints,” [EEE Conference on Decision and
Control, Brighton, England (1991), 692-703.

Chen, C., “Navigation of an Autonomous Land Vehicle,” Proceedings of the

International Conference on Robotics and Automation, Raleigh, NC (1987),

140-144.

Cox, LJ. and Wilfong, G.T., eds., Autopomous Robot Vehicles, Springer-
Verlag, New York, 1990.

Crane, C.D,, Rankin, A.L., Armstrong, D.G., Wit, J.S., and Novick, D.K.,
“An Evaluation of INS and GPS for Autonomous Navigation,” Proceedings

118

dAn91

dAn92

DeS93

Dep58

Fen90

Fen94

Fre95

Gri%0

Hed91

Hes91

119

of the 2nd JFAC Conference on Intelligent Autonomous Vehicles, Espoo,

Finland (1995), 208-213.

d'Andrea-Novel, B., Bastin, G., and Campion, G., "Modelling and Control of

Non-Holonomic Wheeled Mobile Robots," Proceedings of the IEEE
International Conference on Robotics and Automation, Sacramento, CA

(1991), 1130-1135.

d'Andrea-Novel, B., Bastin, G., and Campion, G., "Dynamic Feedback
Lmeanzatlon of Nonholonormc Wheeled Moblle Robots " Proceedings of
: ‘ itomation, Nice, France

(1992) 2527-2532,

DeSantis, R.M., “Path-Tracking for a Car-like Mobile Robot,” Proceedings
of the American Control Conference, San Francisco, CA (1993), 64-68.

Department of the Army, "Universal Transverse Mercator Grid," Techpical
Manual TM5-241-8, National Technical Information Center, Springfield, VA,
Document #ADA 176624 (1958).

Feng, D. and Krogh, B.H., "Dynamic Steering Control of Conventionally-

Steered Mobile Robots," Proceedings of the IEEE International Conference
on Robotics and Automation, Cincinnati, OH (1990), 390-395.

Feng, L., Borenstein, J., and Everett, H.R., “Where Am I? Sensors and
Methods for Mobile Robot Positioning,” Technical Report UM-MEAM-94-
21, University of Michigan, 1994.

French, P.W., “Automation of an All-Terrain Tow Vehicle,” Master’s Thesis,
University of Florida, 1995.

Griswold, N.C., “Control for Mobile Robots in the Presence of Moving

Obstacles,” IEEE Transactions on Robotics and Automation, 6, 2(1990), 263-
268.

Hedrick, J.K., McMahon, D., Narendran, V., and Swaroop, D.,
“Longitudingal Vehicle Controller Design for IVHS Systems,” Proceedings

of the American Control Conference, 3, (1991), 3107-3112.

Hessburg, T., Peng, H., and Tomizuka, M., “An Experimental Study on

Lateral Control of a Vehicle,” Proceedings of the American Control
Conference, 3, (1991), 3084-3089.

Hom91

Kan8§

Kan90

Keh91

Kel9%4a

Kel94b

Kro85

Kro86

Laf91

Lat90

Lau86

120

Hommertzheim, D., Huffman, J., and Sabuncuoglu, L, “Training an Artificial

Neural Network the Pure Pursuit Method,” Computer Operations Research,
18, 4(1991), 343-353.

Kanayama, Y., Nilipour, A., and Lelm, C.A., "A Locomotion Control Method

for Autonomous Vehicles," Proceedings of the IEEE International

Conference on Robotics and Automation, Philadelphia, PA (1988), 1315-
1317.

Kanayama, Y., Kimura, Y., Miyazaki, F., and Noguchi, T., "A Stable
Tracking Control Method for an Autonomous Mobile Robot,” Proceedings

 the IEEE I onal Conf Robafi | 2 .

Cincinnati, OH (1990), 384-389.

Kehtamavaz, N. And Sohn, W, “Steering Control of Autonomous Vehicles

by Neural Networks,” Proceedings of the American Control Conference, 3,

(1991), 3096-3101.

Kelly, A., “A Feedforward Control Approach to the Local Navigation
Problem for Autonomous Vehicles,” Technical Report CMU-RI-TR-94-17,
Carnegie Mellon University, 1994.

Kelly, A., “An Intelligent Predictive Controller for Autonomous Vehicles,”
Technical Report CMU-RI-TR-94-20, Carnegie Mellon University, 1994.

Krogh, B.H., "Guaranteed Steering Control," Proceedings of the American
Control Conference, Boston, MA (1985), 950-955.

Krogh, B.H. and Thorpe, C.E., "Integrated Path Planning and Dynamic
Steering Control for Autonomous Vehicles," Proceeding of the IEEE
International Conference on Robotics and Automation, San Francisco, CA

(1986), 1664-1669.

Lafferiere, G. and Sussmann, H.J., "Motion Planning for Controllable

Systems without Drift," Proceedings of the IEEE Intenational Conference
on Robotics and Automation, Sacramento, CA (1991), 1148-1153.

Latombe, J., Robot Motion Planning, Kluwer Academic Publishers, Boston,
1990.

Laumond, J., “Feasible Trajectories for Mobile Robots with Kinematic and

Environment Constraints,” Proceedings of the International Conference on
Intelligent Systems, Amsterdam (1986), 346-354.

Mui87

Mul92

Mur90

Mur94

Nel88

Nel89

Ol91

Ol194

Ol195

Pay91

Pen91

Ran96a

121

Muir, P.F. and Neuman, C.P., "Kinematic Modeling of Wheeled Mobile
Robots,” Journal of Robotic Systerns. 4, 2(1987), 281-340.

Muller, N., “Feedforward Control for Curve Steering for an Autonomous

Road Vehicle,” Proceedings of the IEEE Intemational Conference on
Robotics and Automation, Nice, France (1992), 200-205.

Murray, R. M. and Sastry, S.S., "Steering Nonholonomic Systems Using

Sinusoids,” IEEE Conference on Decision and Control, Honolulu (1990),
2097-2101.

Applications, ASME Press, New York, 1994, 631-636]

Nelson W.L. and Cox, L, "Local Path Control for an Autonomous Vehicle,"

Proceedi ¢ the IEEE I ional Conf Roboti |

Automation, Philadelphia, PA (1988), 1504-1510.

Nelson W., “Continuous Curvature Paths for Autonomous Vehicles,”

E " the IEEE I “onal Conf Robot] l

Automation, Scottsdale, AZ (1989), 1260-1264.

Ollero A and AI‘mdl 0, “Predlctlve Path Trackmg of Moblle Robots ”

(1991) "1081-1086.

Ollero, A., Garcia-Cerezo, A., and Martinez, J.L., “Fuzzy Supervisory Path

Tracking of Mobile Robots,” Control Engineering Practice, 2, 2(1994), 313-
319.

Ollero, A. and Heredia, G., “Stability Analysis of Mobile Robot Path

Tracking,” Proceedings of the JEEE/RSJ International Conference on
Intelligent Robots and Systems, 3, (1995), 461-466.

Payton, D.W. and Bihari, T.E., “Intelligent Real-Time Control of Robotic
Vehicles,” Communications of the ACM, 34, 8(1991), 48-63.

Peng, H. and Tomizuka, M., “Preview Control for Vehicle Lateral Guidence

in Highway Automation,” Proceedings of the American Control Conference,
3, (1991), 3090-3095.

Rankin, A.L., Crane, C.D., Ammstrong, D.G., Brown, H.E., and Nease, A.D.,
“Autonomous Path Planning Navigation System Used for Site

Ran96b

Ran9%6¢c

Rat87

Sam9l

She9l

Shi%0

Shi9l

Shi92

Shi95

Sin91

122

Characterization”, In: Navigation and Control Technologies for Unmanned

Systems, S.A. Speigle, Ed., Proceedings of SPIE, 2738, (1996), 176-186.

Rankin, A.L., Crane, C.D,, and Duffy, J., “Simulating the Motion of a

Nonholonomic Robot and its Trailer”, In: Recent Advances In Robot
Kinematics, J. Lenarcic and V. Parenti-Castelli, eds., Kluwer Academic

Publishers, Boston, (1996), 277-286.

Rankin, A.L. and Crane, C.D., “A Multi-purpose Off-line Path Planner Based

on an A* Search Algorithm”, Proceedings of the ASME Design Engineering
Technical Conferences, Irvine, CA, August 1996.

Rathbone, R.R., Valley, R.Jr., and Kindlmann, P.J., "Guided Vehicle Path
Specification: Well Behaved Dynamics with Economy of Representation,”

p fings of the IEEE [ional S : Intellizent Control

Philadelphia, PA (1987), 129-134.

Samson, C. and Ait-Abderrahim, K., "Feedback Control of a Nonholonomic

Wheeled Cart in Cartesian Space,” Proceedings of the IEEE International

Conference on Robotics and Automation, Sacramento, CA (1991), 1136-
1141.

Sheikholeslam, S. and Desoer, C.A., “Longitudinal Control of a Platoon of
Vehicles with no Communication of the Lead Vehicle Information,”

Proceedings of the American Control Conference, 3, (1991), 3102-3106.

Shin, D.H. and Singh, S., “Path Generation for Robot Vehicles Using
Composite Clothoid Segments,” Technical Report CMU-RI-TR-90-31,
Carnegie Mellon University, 1990.

Shin, D.H., Singh, S., and Shi, W., “A Partitioned Control Scheme for

Mobile Robot Path Tracking,” Proceedings of the IEEE Conference on
Systems Engineering, Fairborn, OH (1991), 338-342.

Shin, D.H., Sanjiv, S., and Lee, J.J., “Explicit Path Tracking by Autonomous
Vehicles,” Robotica, 10, (1992), 539-554.

Shin, D.H. and Ollero, A., “Mobile Robot Path Planning for Fine-Grained

and Smoothed Path Specifications,” Journal of Robotic Systems, 12, 2(1995),
491-503.

Singh, S., Feng, D., Keller, P., Shaffer, G., Shi, W.F., Shin, D.H., West, J.,
and Wu, B.X., “A System for Fast Navigation of Autonomous Vehicles,”
Technical Report CMU-RI-TR-91-20, Carnegie Mellon University, 1991.

Smi91l

Sor92

Tak90

Van94

van92

Wil90

Zha92

Zie4?

123

Smith, D.E. and Starkey, J.M., “Overview of Vehicle Models, Dynamics, and
Control Applied to Automated Vehicles,” Advanced Automotive
Technologies, DE-Vol. 40, (1991), 69-87.

Sordalen, O.J. and Canudas de Wit, C., "Exponential Control Law for a

Mobile Robot: Extension to Path Following," Proceedings of the IEEE
International Conference on Robotics and Automation, Nice, France (1992),

2158-2163.

Takano, M., “Mechanism of an Autonomous Mobile Robot and its Control,”

Advanced Robotics, 4, 3(1990), 187-202.

Vandoren, V. J., "The Challenges of Self-Tuning Control," Control
Engineering, February (1994), 77-79.

van Turennout, P., Hondered, G., and van Schelvin, L.L., "Wall-following

Control of a Mobile Robot,” Proceedings of the IEEE International
Conference on Robotics and Automation, Nice, France (1992), 280-285.

Wilfong, G.T., "Motion Planning for an Autonomous Vehicle," Proceedings

¢ the IEEE I onal Conf Roboti ! on

Cincinnati, OH (1990), 529-533.

Zhao, Y. and BeMent, S.L., "Kinematics, Dynamics and Control of Wheeled

Mobile Robots," Proceedings of the IEEE International Conference on
Robotics and Automation, Nice, France (1992), 91-96.

Ziegler, J.G. and Nichols, N.B., "Optimum Settings for Automatic
Controllers,"” Transactions of the AMSE, 64, (1942), 759-768.

BIOGRAPHICAL SKETCH

Arturo Lionel Rankin was born January 10, 1963, in Takoma Park, Maryland. He
was awarded the degree of Bachelor of Science in Engineering, with an emphasis in
biomedical applications, from the Catholic University of America, Washington, D.C., in May
1987. In August 1988, he began graduate studies at the University of Florida.

In December 1990, he was awarded the degree of Master of Science in food science
and human nutrition. He has since returned to the field of engineering and in August, 1993,
he was awarded the degree of Master of Science in mechanical engineering. He intends to
work in industry upon completion of a doctoral degree in mechanical engineering.

Arturo has four siblings and his wife, Donna Marie Samuels Rankin, is an
entrepreneur. In 1987, he was awarded the C.C. Chang award, presented each year to a
graduating senior in biomedical engineering. He was recognized by Who's Who Among
Students in American Universities and Colleges in 1986 and is a lifetime member of Tau

Beta Pi. He is also a member of the worldwide Seventh-Day Adventist Church.

124

[certify that I have read this study and that in my opinion it conforms to acceptable
standards of scholarly presentation and is fully adequate, in scope and quality, as a
dissertation for the degree of Doctor of Philosophy.

CON

Carl D. Crane III, Chairman
Associate Professor of Mechanical Engineering

I certify that I have read this study and that in my opinion it conforms to acceptable
standards of scholarly presentation and is fully adequate, in scope and quality, as a
dissertation for the degree of Doctor of Philosophy.

A
mﬁwfi

Graduate Research Professor of Mechanical
Engineering

I certify that I have read this study and that in my opinion it conforms to acceptable
standards of scholarly presentation and is fully adequate, in scope and quality, as a
dissertation for the degree of Doctor of Philosophy.

L it

Mafthew
Associjate Professor of Mechanical Engineering

I certify that I have read this study and that in my opinion it conforms to acceptable
standards of scholarly presentation and is fully adequate, in scope and quality, as a
dissertation for the degree of Doctor of Philosophy.

Paul Mason
Assistant Professor of Mechanical Engineering

I certify that I have read this study and that in my opinion it conforms to acceptable
standards of scholarly presentation and is fully adequate, in scope and quality, as a
dissertation for the degree of Doctor of Philosophy.

benens M oraDun

Sencer Yeralan
Associate Professor of Industrial and Systems
Engineering

This dissertation was submitted to the Graduate Faculty of the College of Engineering
and to the Graduate School and was accepted as partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

May 1997 OS>

Winfred M. Phillips
Dean, College of Engineering

S

Ke'Lren A. Holbrook /
Dean, Graduate Schodl

