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SUMMARY

In this paper, we consider the output synchronization problem for heterogeneous networks of right-invertible
linear agents. We assume that all the agents are introspective, meaning that they have access to their own
local measurements. Under this assumption, we then propose a decentralized control scheme for solving the
output synchronization problem for a set of network topologies. The proposed scheme can also be applied
to solve the output formation problem with arbitrary formation vectors. We also consider the regulation of
output synchronization problem, where the output of each agent has to track an a prior specified reference
trajectory, generated by an exosystem. In this case, we assume that the root agent has access to its own output
relative to the reference trajectory. Copyright c⃝ 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The synchronization problem in a network has received substantial attention in recent years (see [9,
31, 18, 1] and references therein). Active research is being conducted in this context and numerous
results have been reported in the literature, to name a few see [10, 11, 14, 15, 17, 24, 12, 25, 8, 23].

Much of the attention has been devoted to achieving state synchronization in homogeneous
networks (i.e., networks where the agent models are identical), where each agent has access to a
linear combination of its own state relative to that of neighboring agents (e.g., [10, 11, 9, 17, 15, 24]).
Roy, Saberi, and Herlugson [19], Tuna [24], and Yang, Roy, Wan, and Saberi [33] considered the
state synchronization problem for more general network topologies. A more realistic scenario—
that is, each agent receives a linear combination of its own partial-state output relative to that of
neighboring agents—has been considered in [13, 25, 26, 8]. The results of [8] were expanded by
[34] to more general network topologies. Many of the results on the synchronization problem are
rooted in the seminal work of Wu and Chua [29, 30].
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1.1. Heterogeneous networks and output synchronization

Recent activities in the synchronization literature have been focused on achieving synchronization
in heterogeneous networks (i.e., networks where the agent models are non-identical). This problem
is challenging and only some partial results are available, see for instance [6, 32, 4, 7, 28].

In heterogeneous networks, the agents’ states may have different dimensions. In this case,
the state synchronization is not even properly defined, and it is more natural to aim for output
synchronization—that is, asymptotic agreement on the agents’ partial-state outputs. Chopra and
Spong [4] studied the output synchronization problem for weakly minimum-phase nonlinear
systems of relative degree one, using a pre-feedback to create a single-integrator system with
decoupled zero dynamics. Kim, Shim, and Seo [7] considered the output synchronization problem
for uncertain single-input single-output, minimum-phase linear systems, by embedding an identical
model within each agent, the output of which is tracked by the actual agent output.

The designs mentioned in this section generally rely on some sort of self-knowledge that is
separate from the information transmitted over the network. More specifically, the agents know their
own state, their own output, or their own state/output relative to that of the reference trajectory. We
shall refer to agents that possess this type of self-knowledge as introspective agents, to distinguish
them from non-introspective agents – that is, agents that have no knowledge of their own state or
output separate from what is received via the network. The output synchronization problem for a
heterogeneous network of non-introspective agents have been considered in [5] and [35].

1.2. Organization of this paper

The remainder of this paper is organized as follows. In this rest of Section 1, we introduce some
notations and recall some results of algebraic graph theory. Section 2 presents the heterogeneous
network considered in this paper. In Section 3, we propose a decentralized controller to solve the
output synchronization problem. The design is applied for solving the output formation problem in
Section 4. The regulation of output synchronization problem is considered in Section 5. The results
are illustrated by examples in Section 6.

1.3. Preliminaries and notations

Given a matrix A ∈ Cm×n, A∗ denotes its conjugate transpose, and λi(A) is its i’th eigenvalue.
A ∈ Cn×n is said to be Hurwitz stable if all its eigenvalues are in the open left-half plane. ⊗ denotes
the Kronecker product between two matrices of appropriate dimensions. Given a matrix A ∈ Cm×n

and a matrix B ∈ Cp×q the Kronecker product A⊗B is defined as the Cmp×nq matrix

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ,
where aij denotes element (i, j) of A. In denotes the identity matrix of dimension n, similarly, 0n
denotes the square matrix of dimension n with all zero elements; we sometimes drop the subscript if
the dimension is clear in the context. 1 denotes a column vector with all entries equal to one whose
dimension should be clear from the context. For column vectors x1, . . . , xn, [x1; · · · ;xn] denotes
the column vector by stacking the elements of x1, . . . , xn.

2. HETEROGENEOUS NETWORK

Consider a heterogeneous network of N linear agents{
ẋi = Aixi +Biui,
yi = Cixi

(1)

for i ∈ {1, . . . , N}, where xi ∈ Rni , ui ∈ Rmi , yi ∈ Rp.
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OUTPUT SYNCHRONIZATION FOR HETEROGENEOUS NETWORKS 3

The agents are introspective, meaning that the agents have access to their own local information.
Specifically, each agent has access to the quantity

zi = Cm
i xi. (2)

where zi ∈ Rqi .
The network infrastructure provides each agent with a linear combination of its own output

relative to that of other agents. In particular, each agent i has access to the quantity

ζi =

N∑
j=1

aij(yi − yj), (3)

where aij ≥ 0 and aii = 0 with i, j ∈ {1, . . . , n}. This network can be described by a weighted
directed graph (digraph) G with nodes corresponding to the agents in the network and edges with
weight given by the coefficients aij . In particular, aij > 0 means that there exists an edge with
weight aij from agent j to agent i.

We also define a matrix G = [gij ], where gii =
∑N

j=1 aij and gij = −aij for j ̸= i. The matrix
G, known as the weighted Laplacian matrix of the digraph G has the property that the sum of the
coefficients on each row is equal to zero. In terms of the coefficients gij of G, ζi given by (3) can be
rewritten as

ζi =

N∑
j=1

gijyj . (4)

With the local information zi given by (2) and the information ζi given by (4) provided by the
network, the agent i, where i ∈ {1, . . . , N}, has the following dynamical equations:

ẋi = Aixi +Biui,
yi = Cixi,
zi = Cm

i xi,

ζi =
∑N

j=1 gijyj .

(5)

We make the following assumption regarding the network communication topology:

Assumption 1
The digraph G has a directed spanning tree.

From [16, Lemma 3.3], it is well known that under Assumption 1, the weighted Laplacian matrix
G associated with network topology G has a simple eigenvalue at the origin, with the corresponding
right eigenvector 1, and all the other eigenvalues are in the open right-half complex plane. We then
let λ1, . . . , λN denote the eigenvalues of G, such that λ1 = 0 and 0 < Re(λ2) ≤ . . . ≤ Re(λN ).

Let us now introduce the following definition to characterize a set of network communication
topologies:

Definition 1
For any given γ ≥ β > 0, let Γβ,γ denote the set of digraphs that satisfy Assumption 1 and
for which the corresponding Laplacian matrix has the following properties: Re(λ2) ≥ β, and
maxi=2,...,N |λi| < γ for i ∈ {2, . . . , N}.

Assumption 2
For each agent i ∈ {1, . . . , N}, we make the following assumption:

1. (Ai, Bi) is stabilizable;
2. (Ci, Ai) is detectable;
3. (Ci, Ai, Bi) is right-invertible; and
4. (Cm

i , Ai) is detectable.

Remark 1
Right-invertibility of a triple (Ci, Ai, Bi) means that, given a reference output yr(t), there exist an
initial condition xi(0) and an input ui(t) such that yi(t) = yr(t) for all t ≥ 0. For example, every
single-input single-output system is right-invertible, unless its transfer function is identically zero.
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3. OUTPUT SYNCHRONIZATION

In this section, we consider the output synchronization problem for a heterogeneous network. The
output synchronization is defined as follows:

Definition 2
A heterogeneous network of N agents is said to achieve output synchronization if

lim
t→∞

(yi(t)− yj(t)) = 0, ∀i, j ∈ {1, . . . , N}.

Let us now formally formulate the output synchronization problem for a heterogeneous network.

Problem 1 (Output Synchronization)
Consider a heterogeneous network of N agents (5). For any given γ ≥ β > 0, and the resulting
set Γβ,γ of communication topologies, the output synchronization problem is to find, if possible, a
linear dynamical controller {

ẋi,c = Ai,cxi,c +Bi,cζi + Ei,czi,
ui = Ci,cxi,c +Di,cζi +Mi,czi,

(6)

for each agent i ∈ {1, . . . , N}, such that output synchronization is achieved for any network
communication topology represented by the digraph G ∈ Γβ,γ .

Remark 2
Since (Cm

i , Ai) is detectable for i ∈ {1, . . . , N}, one can, without any communication among
agents, simply asymptotically stabilize each individual agent by utilizing zi, and hence achieve
the output synchronization with zero synchronization trajectory, that is limt→∞ yi(t) = 0, i ∈
{1, . . . , N}. In this paper, we are not interested in such a case. We are aiming to achieve output
synchronization with non-trivial synchronization trajectories.

Theorem 1
Consider a heterogeneous network of N agents (5). Let Assumptions 1 and 2 hold. Then the output
synchronization problem with Γβ,γ for any γ ≥ β > 0 as defined in Problem 1, is solvable via N
decentralized controllers of the form (6).

We shall prove Theorem 1 by explicit construction of synchronization controllers for each agent.
The fundamental challenge of the output synchronization problem for heterogeneous networks is
that the agent models are non-identical. Therefore, we first design a local pre-compensator to make
all the agents almost identical, which we refer to as homogenization of network. Next, we show
that the output synchronization problem with respect to the new almost identical models can be
converted into a simultaneous stabilization problem. Finally, we design controllers via a low-gain
approach to solve the reformulated simultaneous stabilization problem in the homogenized network.

3.1. Homogenization of network

Since each agent is introspective, we use the local information zi to manipulate the agent dynamics
such that all the agents’ models are almost identical to the rest of network. This is shown in the
following lemma.

Lemma 1
Consider a heterogeneous network of N agents (5). Let Assumption 2 hold, and let n̄d denote the
maximal order of infinite zeros of (Ci, Ai, Bi), i ∈ {1, . . . , N}. Suppose a triple (C,A,B) is given
such that

1. rank(C) = p,
2. (C,A,B) is invertible, of uniform rank nq ≥ n̄d, and has no invariant zeros.

Then for each agent i ∈ {1, . . . , N}, there exist a pre-compensator of the form{
ξ̇i = Ai,hξi +Bi,hzi + Ei,hvi,
ui = Ci,hξi +Di,hvi,

(7)
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such that the interconnection of (5) and (7) can be written in the following form:
˙̄xi = Ax̄i +B(vi + ρi),
yi = Cx̄i,

ζi =
∑N

j=1 gijyj ,
(8)

where ρi is given by {
ω̇i = Ai,sωi,
ρi = Ci,sωi,

(9)

and Ai,s is Hurwitz stable.

Proof
The proof of Lemma 1 will be given in Appendix B by explicit construction of a pre-compensator
of the form (7).

Remark 3
We would like to make several observations:

1. The property that the triple (C,A,B) is invertible and has no invariant zero implies that (A,B)
is controllable and (C,A) is observable.

2. The triple (C,A,B) is arbitrarily assignable as long as the conditions are satisfied. They play
a role as design parameters. We shall use this freedom in various places in this paper.

Remark 4
Without loss of generality, we assume that the triple (C,A,B) has the following form:†

A = A0 +BH, A0 :=

[
0 Ip(nq−1)

0 0

]
, B = B0 :=

[
0
Ip

]
, C = C0 :=

[
Ip 0

]
, (10)

where H is such that the matrix A0 +B0H has desired eigenvalues. The existence of such an H is
guaranteed by the fact that (A0, B0) is controllable.

Lemma 1 shows that we can design a pre-compensator based on local information zi to transform
each non-identical agent model given by (5) into a new model given by (8) and (9). The new agent
models (8) are almost identical except for different exponentially decaying signals ρi in the range
space of B, generated by (9). We shall solve the output synchronization problem with respect to
the new almost identical models (8) and (9), and then combine the result with Lemma 1 to prove
Theorem 1.

3.2. Connection to simultaneous stabilization problem

In this section, we show that the exponentially decaying signals ρi are irrelevant for solving the
output synchronization problem with respect to the new almost identical models (8) and (9), and
that the problem is essentially reduced to a simultaneous stabilization problem.

For solving the synchronization problem for a network of N agents (8) and (9) with a set of
possible communication topologies Γβ,γ , we consider N general decentralized controllers of the
form (11) {

χ̇i = Akχi +Bkζi,
vi = Ckχi,

(11)

for i ∈ {1, . . . , N}, where χi ∈ Rnc , which should be independent of the specific communication
topology G ∈ Γβ,γ .

†If (C,A,B) is not in this form, from [22], which is also reviewed in Appendix A.1, there exist nonsingular state and
input transformations, such that the transformed system is in this form.
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With x̃i := [x̄i;χi], the closed-loop system of (8) and (11) for each individual agent can be written
as 

˙̃xi =

[
A BCk

0 Ak

]
x̃i +

[
0
Bk

]
ζi +

[
B
0

]
ρi,

yi =
[
C 0

]
x̃i,

ζi =
∑N

j=1 gijyj .

(12)

Define x̃ := [x̃1; · · · ; x̃N ], ρ := [ρ1; · · · ; ρN ],

Ā =

[
A BCk

0 Ak

]
, B̄ =

[
0
Bk

]
, C̄ =

[
C 0

]
, and Ē =

[
B
0

]
. (13)

We then obtain the overall dynamics of N agents:

˙̃x = [IN ⊗ Ā+G⊗ (B̄C̄)]x̃+ (IN ⊗ Ē)ρ.

Let U be a nonsingular matrix such that J = U−1GU is the Jordan canonical form of G with
J(1, 1) = λ1 = 0. Define η = [η1; · · · ; ηN ] = (U−1 ⊗ Ipnq+nc)x̃. We then obtain the following
dynamical equations for η:

η̇ = [IN ⊗ Ā+ J ⊗ (B̄C̄)]η + (U−1 ⊗ Ē)ρ. (14)

Lemma 2
Let Assumption 1 hold. If Ā+ λiB̄C̄ is Hurwitz stable for all i ∈ {2, . . . , N}, then the output
synchronization problem for a network of N agents of the form (8) and (9) is solved via N
decentralized controllers of the form (11).

Proof
The proof is carried out in two stages. In the first stage, we shall show that the output synchronization
problem for a network N agents (8) and (9) via controllers of the form (11) is solved if

lim
t→∞

ηi(t) = 0

for all i ∈ {2, . . . , N}. We then show that this is guaranteed if Ā+ λiB̄C̄ is Hurwitz stable for all
i ∈ {2, . . . , N}.

Suppose that

lim
t→∞

η(t)−

η1(t)
0
...
0


 = 0,

for some η1(t) ∈ Cpnq+nc . Then

lim
t→∞

(x̃(t)− 1⊗ η1(t)) = lim
t→∞

[(U ⊗ I)η − (U ⊗ I)(U−1 ⊗ I)(1⊗ η1(t))]

= (U ⊗ I) lim
t→∞

[η(t)− (U−11)⊗ η1(t)]

= (U ⊗ I) lim
t→∞

η(t)−

η1(t)
0
...
0


 = 0,

where we have used that U−11 =
[
1 0 . . . 0

]′, which follows from the fact that U−1U =
IN and that U consists of all the (generalized) right eigenvectors of G, with the first column
being 1. Hence, the output synchronization is achieved. So far, we have shown that the output
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synchronization is achieved if limt→∞ ηi(t) = 0 for all i ∈ {2, . . . , N}. Next, we shall show that
this is ensured if A+ λiB̄C̄ is Hurwitz stable for all i ∈ {2, . . . , N}.

Define η̄ := [η2; · · · ; ηN ] and ω := [ω1; · · · ;ωN ], from (14) and (9), we obtain that[
˙̄η
ω

]
=

[
IN−1 ⊗ Ā+ J̄ ⊗ (B̄C̄) ((ĪU−1)⊗ Ē)Cs

0 As

] [
η̄
ω

]
, (15)

where

Ī =
[
0 IN−1

]
, Cs = blkdiag{Ci,s}Ni=1, As = blkdiag{Ai,s}Ni=1, J = blkdiag{0; J̄}.

Since IN−1 ⊗ Ā and J̄ ⊗ (B̄C̄) are block upper triangular, the eigenvalues of IN−1 ⊗ Ā+ J̄ ⊗
(B̄C̄) are the union of eigenvalues Ā+ λiB̄C̄ for i ∈ {2, . . . , N}, which are in the open left-half
complex plane by the assumption. Together with the fact that As is Hurwitz stable, it is clear that
the system (15) is asymptotically stable, that is, limt→∞ η̄(t) = 0 for any initial conditions η̄(0) and
ω(0).

Remark 5
In view of Lemma 2, the dynamics of η1(t) is governed by

η̇1(t) = Āη1(t) + (v′ ⊗ Ē)ρ(t), η1(0) = (v′ ⊗ Ipnq+nc)x̃(0),

where v′ is the first row of the matrix U−1, i.e., the left eigenvector corresponding to the eigenvalue
of G at zero. Since ρ(t) is exponentially decaying, from [27, Lemma B.1] and Lemma 2, we see that
for each i ∈ {1, . . . , N},

lim
t→∞

(x̃i(t)− eĀtη̃1) = lim
t→∞

[(x̃i(t)− η1(t)) + (η1(t)− eĀtη̃1)] = 0, (16)

for some η̃1 ∈ Rpnq+nc .

From Lemma 2, we see that the output synchronization problem for a network of agents (8)
and (9) is achieved if Ā+ λiB̄C̄ is Hurwitz stable, for all i ∈ {2, . . . , N}, which is a simultaneous
stabilization problem. More specifically, we need to design the parameters Ak, Bk, and Ck in (11),
such that the following compensator {

χ̇ = Akχ+Bkz,
u = Ckχ,

(17)

simultaneously stabilizes all the N − 1 systems given by{
ẋ = Ax+Bu,
z = λiCx, i ∈ {2, . . . , N}. (18)

Due to the linearity, it is easy to see that the compensator (17) simultaneously stabilizes (18) if it
simultaneously stabilizes all the N − 1 systems given by{

ẋ = Ax+ λiBu,
z = Cx, i ∈ {2, . . . , N}. (19)

Lemma 3
The output synchronization for a heterogeneous network of N agents (5) as defined in Problem 1 is
solvable if (17) simultaneously stabilizes all the N − 1 systems (19).

Proof
If (17) simultaneously stabilizes all the N − 1 systems (19), then the composition of (7) and (11),
which is of the form (6), solves Problem 1.

Lemma 3 converts the output synchronization problem for a heterogeneous network of N agents
(5) as defined in Problem 1 to a simultaneous stabilization problem.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2012)
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3.3. Simultaneous stabilization via a low-gain approach

In this section, we design the parameters Ak, Bk and Ck of the compensator (11), such that the
compensator (17) simultaneously stabilizes all the N − 1 systems (19).

It is clear that we can choose the matrix H in (10) such that the matrix A has all the eigenvalues
on the imaginary axis.

Given a β > 0, such that Re(λ2(G)) ≥ β for any G ∈ Γβ,γ , let P (ε) = P ′(ε) > 0 be the unique
solution of the continuous-time algebraic Riccati equation

A′P (ε) + P (ε)A− βP (ε)BB′P (ε) + εIpnq = 0. (20)

We then design the controller of the form (11) as:{
χ̇i = Akχi +Bkζi := (A+KC)χi −Kζi,
vi = Ckχi := B′P (ε)χi, i ∈ {1, . . . , N}, (21)

where the matrix K is such that A+KC is Hurwitz stable, and ε > 0 is a low-gain parameter. Note
that (21) is of CSS type observer, see [3].

Following the proof of [23, Theorem 4], with just a little bit modification, we see that there exists
an ε∗, which depends on γ, such that for ε ∈ (0, ε∗], the compensator (17) with the parameters
Ak, Bk and Ck given by (21) simultaneously stabilizes all the N − 1 systems (19).

Remark 6
Note that the matrix Ak in the controller (21) is Hurwitz stable and the matrix Ā given by (13) is
block upper triangular. It is then follows from the result of [27, Lemma B.1] and Remark 5 that the
output synchronization trajectory is given by

lim
t→∞

(yi(t)− CeAtd) = 0, ∀i ∈ {1, . . . , N}.

for some d ∈ Rpnq .

4. APPLICATION TO OUTPUT FORMATION

In this section, we consider the output formation problem to be formally defined shortly. We shall
show that the output formation problem can be solved by slightly modifying the design procedure
for solving the output synchronization problem as defined in Problem 1.

Definition 3
An output formation is a family of vectors {h1, · · · , hN}, hi ∈ Rp, i ∈ {1, . . . , N}. The
heterogeneous network of N agents (5) is said to achieve the output formation if

lim
t→∞

[(yi(t)− hi)− (yj(t)− hj)] = 0, ∀i, j ∈ {1, . . . , N}. (22)

For this problem, we assume that the network infrastructure provides each agent with the
following information

ζ̂i =

N∑
j=1

aij [(yi − hi)− (yj − hj)] =

N∑
j=1

gij(yj − hj), (23)

With the local information zi given by (2) and the information ζ̂i given by (23) provided by the
network, the agent i, where i ∈ {1, . . . , N}, has the following dynamical equations:

ẋi = Aixi +Biui,
yi = Cixi,
zi = Cm

i xi,

ζ̂i =
∑N

j=1 gij(yj − hj).

(24)

Let us formally formulate the output formation problem for a heterogeneous network.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2012)
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Problem 2 (Output formation)
Consider a heterogeneous network of N agents (24). For any given γ ≥ β > 0 and the resulting set
Γβ,γ , and an arbitrarily given family of vectors {h1, · · · , hN}, where hi ∈ Rp for i ∈ {1, . . . , N},
the output formation problem with a set of communication topologies Γβ,γ is to find, if possible, a
linear dynamical controller {

ẋi,c = Ai,cxi,c +Bi,cζ̂i + Ei,czi,

ui = Ci,cxi,c +Di,cζ̂i +Mi,czi,
(25)

such that the output formation as defined in Definition 3 is achieved for any network communication
topology G ∈ Γβ,γ .

Theorem 2
Consider a heterogeneous network of N agents (24). Let Assumptions 1 and 2 hold. Then the
output formation problem with a set of communication topologies Γβ,γ for any γ ≥ β > 0, and
any formation vectors {h1, · · · , hN}, where hi ∈ Rp for i ∈ {1, . . . , N}, as defined in Problem 2, is
solvable via N decentralized controllers of the form (25).

The proof of Theorem 2 is very similar to the proof of Theorem 1 by explicit construction of a
formation controller of the form (25). We first design a local pre-compensator of the form (7) for
each agent such that the resulting systems are almost identical, that is, all the resulting systems are
characterized by the same triple (C,A,B) for which the output formation is always achievable. The
following lemma shows the existence of such a triple (C,A,B).

Lemma 4
For an arbitrarily given family of vectors {h1, · · · , hN}, hi ∈ Rp, i = 1, . . . , N and an integer
nq > 0, there exist a triple (C,A,B) and another family of vectors {h̄1, · · · , h̄N} of appropriate
dimensions, such that

1. rank(C) = p,
2. (C,A,B) is invertible, of uniform rank nq, and has no invariant zero,
3. A has all its eigenvalues in the closed left-half complex plane,
4. Ah̄i = 0,
5. Ch̄i = hi.

Proof
Since we have freedom to chose the triple (C,A,B) in Lemma 1, let us choose the triple (C,A,B)
as follows:

A = A0 +B0H, B = B0, C = C0,

where A0, B0, C0 are given in (10), H =
[
0 H0

]
, and the matrix H0 is such that the matrix

Ā0 + B̄0H0, where

Ā0 :=

[
0 Ip(nq−2)

0 0

]
, B̄0 :=

[
0
Ip

]
,

has all the eigenvalues in the closed left-half complex plane. Such an H0 exists due to the fact that
(Ā0, B̄0) is controllable. It is then easy to see that the matrix A0 +B0H has p(nq − 1) eigenvalues,
which are the eigenvalues of Ā0 + B̄0H0, and the remaining p eigenvalues are simple eigenvalues
at zero. Therefore, the third condition is satisfied.

We then define a family of vectors {h̄1, · · · , h̄N} as follows:

h̄i =

[
hi
0

]
, i = 1, . . . , N.

It is then easy to see that

Ch̄i = C0

[
hi
0

]
=

[
Ip 0

] [hi
0

]
= hi,
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and

Ah̄i = (A0 +B0H)

[
hi
0

]
=

[
0 Ip(nq−1)

0 H0

] [
hi
0

]
= 0.

Proof of Theorem 2
For any triple (C,A,B) which satisfies the condition of Lemma 4, from Lemma 1, it is clear that
we can design a pre-compensator of the form (7) for each agent, such that the interconnection of (5)
and (7) can be written in the following form:

˙̄xi = Ax̄i +B(vi + ρi),
yi = Cx̄i,

ζ̂i =
∑N

j=1 gij(yj − hj),
(26)

where ρi is given by (9).
Define x̄i,s = x̄i − h̄i, since Ah̄i = 0 and Ch̄i = hi for i = 1, . . . , N , (26) can be rewritten in

term of x̄i,s as: 
˙̄xi,s = Ax̄i,s +B(vi + ρi),
yi = Cx̄i,s + hi,

ζ̂i =
∑N

j=1 gij(yj − hj).
(27)

Following the design procedure given in Section 3.3, we then design the following decentralized
controller for each agent {

χ̇i = (A+KC)χi −Kζ̂i,
vi = B′P (ε)χi,

(28)

where the matrix K is such that A+KC is Hurwitz stable, ε > 0 is a low-gain parameter, and
P (ε) = P ′(ε) > 0 is the unique solution of the algebraic Riccati equation (20).

It then follows from the analysis in Section 3.3 that there exists an ε∗, which depends on γ, such
that for all ε ∈ (0, ε∗], the controller (28) solve the output synchronization for a network of N the
models (27). Hence, limt→∞[(yi(t)− hi)− (yj(t)− hj)] = limt→∞(Cx̄i,s(t)− Cx̄j,s(t)) = 0 for
all i, j ∈ {1, . . . , N}.

5. REGULATION OF OUTPUT SYNCHRONIZATION

Note that the output synchronization problem does not impose any conditions on asymptotic
behavior of the outputs of the agent models as long as they are asymptotic identical. In this section,
we consider the related problem of regulating the output towards a desired reference trajectory yr(t),
generated by an autonomous exosystem{

ẋr = Arxr, xr(0) = xr0,
yr = Crxr,

(29)

where xr ∈ Rr and yr ∈ Rp.
We make the following assumption about the exosystem (29):

Assumption 3
For the exosystem (29),

1. (Cr, Ar) is observable,
2. All the eigenvalues of Ar are on the imaginary axis.

Definition 4
A heterogeneous network of N agents is said to achieve the regulation of output synchronization if

lim
t→∞

(yi(t)− yr(t)) = 0, ∀i = {1, . . . , N}.
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For solving the regulation of output synchronization problem, we consider a subset Γs of Γ,
where Γ is the set of all the network topologies, each of which contains a directed spanning tree.
We assume that all the topologies in the set Γs have a common root. Without loss of generality, we
assume that the common root is node (agent) 1. This (root) agent 1 measures its own output relative
to the output of the exosystem, that is, agent 1 has access to a quantity ψ1 = d(y1 − yr), where
d > 0, while ψi = 0 for all i ∈ {2, . . . , N}.

With the local information zi given by (2), the information ζi given by (3) provided by the
network, and information ψi, the agent i for i ∈ {1, . . . , N} has the following dynamical equations:

ẋi = Aixi +Biui,
yi = Cixi,
zi = Cm

i xi,

ζ̄i =
∑N

j=1 gijyj + ψi.

(30)

Let us now formally formulate the regulation of output synchronization problem.

Problem 3 (Regulation of Output Synchronization)
Consider a heterogeneous network of N agents (30) and the autonomous exosystem (29). . For any
given set Γs ⊂ Γ, the regulation of output synchronization problem is to find, if possible, a linear
dynamical controller {

ẋi,c = Ai,cxi,c +Bi,cζ̄i + Ei,czi,
ui = Ci,cxi,c +Di,cζ̄i +Mi,czi,

(31)

for each agent i ∈ {1, . . . , N}, such that regulation of output synchronization is achieved for any
network communication topology represented by the digraph G ∈ Γs.

We present some preliminary work which are needed for presenting the result for the regulation
of output synchronization problem as defined in Problem 3. Let Ḡ denote an expanded network
constructed from G ∈ Γs by adding the exosystem as node 0 and the edge from exosystem to agent
1 with weight d. It is then easy to see that the Laplacian matrix of the network Ḡ is given by

Ḡ = [ḡij ] =


0 0 0 · · · 0
−d g11 + d g12 · · · g1N
0 g21 g22 · · · g2N
...

... · · ·
...

...
0 gN1 gN2 · · · gNN

 . (32)

In view of (32), ζ̄i in (30) can be rewritten as

ζ̄i =

N∑
j=1

gijyj + ψi =

N∑
j=0

ḡijyj . (33)

Also note that the expanded network also contains a directed spanning tree rooted at the node
0. It is then easy to see from [16, Lemma 3.3] that all the eigenvalues of Ḡ are in the closed
right-half complex plane. Let λ̄1, · · · , λ̄N+1 denote the eigenvalues of Ḡ, such that λ̄1 = 0 and
0 < Re(λ̄2) ≤ . . . ≤ Re(λ̄N+1).

Assumption 4
There exist γ̄ ≥ β̄ > 0, such that for each expanded network, the corresponding Laplacian matrix
has following properties:

1. Re(λ̄2) ≥ β̄ > 0;
2. maxi=2,...,N+1 |λ̄i| ≤ γ̄.

We are now ready to present our result for the regulation of output synchronization.
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Theorem 3
Consider a heterogeneous network of N agents (30) and the autonomous exosystem (29). Let
Assumptions 1, 2, 3 and 4 hold. Then the regulation of output synchronization problem as defined
in Problem 3 is solvable via N decentralized controllers of the form (31).

Proof
For an exosystem given by (29), it is shown in Appendix C that there exist another exosystem given
by {

˙̃xr = Ãrx̃r, x̃r(0) = x̃r0,

yr = C̃rx̃r,
(34)

such that for all xr0 ∈ Rr there exists x̃r0 ∈ Rr̃ for which (34) generates exact the same output yr as
the original exosystem (29). Furthermore, we can find a matrix B̃r such that the triple (C̃r, Ãr, B̃r)
is invertible, of uniform rank nq, and has no invariant zero, where nq is an integer greater than or
equal to maximal order of infinite zeros of (Ci, Ai, Bi), i ∈ {1, . . . , N} and all the observability
index (see [2] for the definition) of (Cr, Ar). Note that as seen from Appendix C, the eigenvalues of
Ãr consists of all the eigenvalues of Ar and additional zero eigenvalues, which are degenerate.

The new exosystem can be rewritten as:{
˙̃xr = Ãrx̃r + B̃r(vr + ρr), x̃r(0) = x̃r0,

yr = C̃rx̃r,
(35)

where vr(t) = 0 and ρr(t) = 0.
Following from the constructive proof of Lemma 1, we then design a pre-compensator (7) for

each agent i ∈ {1, . . . , N} such that the interconnection of (5) and (7) are almost identical to the
exosystem system (35), that is, for each agent i ∈ {1, . . . , N},

˙̄xi = Ãrx̄i + B̃r(vi + ρi),

yi = C̃rx̄i,

ζ̄i =
∑N

j=0 ḡijyj ,

(36)

where ρi is given by (9).
It is then easy to see that regulation of output synchronization for a heterogeneous network of N

agents is converted to the output synchronization problem for an expanded network ofN + 1 agents
by adding the exosystem system as agent 0 and the edge from agent 0 to agent 1 with weight d. More
specifically, define x̄0 := x̃r, y0 := ỹr, v0 := vr, and ρ0 := ρr, the agent i, where i ∈ {0, 1, . . . , N}
has the following dynamics: 

˙̄xi = Ãrx̄i + B̃r(vi + ρi),

yi = C̃rx̄i,

ζ̄i =
∑N

j=0 ḡijyj .

(37)

Following the design procedure given in Section 3.3, we design the following controller for each
agent i ∈ {0, 1, . . . , N} {

χ̇i = (Ãr +KC̃r)χi −Kζ̄i,

vi = B̃′
rP (ε)χi,

(38)

where the matrix K is such that A+KC is Hurwitz stable, ε > 0 is a low-gain parameter, and
P (ε) = P ′(ε) > 0 is the unique solution of the following continuous-time algebraic Riccati equation

Ã′
rP (ε) + P (ε)Ãr − β̄P (ε)B̃rB̃

′
rP (ε) + εIpnq = 0. (39)

Note that in the controller (38), we choose χ0(0) = 0 for agent 0. It is then clear that v0(t) = 0 as
desired since ζ̄0(t) = 0.

It then follows from the analysis in Section 3.3 that there exists an ε∗, which depends on γ̃, such
that for all ε ∈ (0, ε∗], the controller (38), solves the output synchronization for a set of the expanded
network topologies. Hence, limt→∞(yi(t)− yr(t)) = 0 for all i ∈ {1, . . . , N}.
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6. ILLUSTRATIVE EXAMPLE

6.1. Output synchronization

We illustrate our design procedure on a network of four agents. The agents dynamics are of form
(1) with

A1 =

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , B1 =

0 1
0 0
1 0
0 1

 , C1 =
[
1 0 0 0

]
, Cm

1 =
[
1 1 0 0

]
,

A2 =

0 1 0
0 0 1
0 0 0

 , B2 =

00
1

 , C2 =
[
1 0 0

]
, Cm

2 =
[
1 1 0

]
,

Ai =


−1 0 0 −1 0
0 0 1 1 0
0 1 −1 1 0
0 0 0 1 1
−1 1 0 1 1

 , Bi =


0 0
0 0
0 1
0 0
1 0

 , Ci =
[
0 0 0 1 0

]
, Cm

i =
[
1 1 0 0 0

]
,

for i = 3, 4.
Given β = 2.8 and γ = 4.1, we have the resulting set Γ2.8,4.1. Two network topologies in this set

are given by Figure 1.

1

1.2

3.3 1.7

2

3 4

2.3

2.8

(a) Network 1

1

1.2

3.3 1.7

2

3 4

2.8

(b) Network 2

Figure 1. Network Topologies

Note that n̄d = 3, which is the degree of the infinite zeros of (C2, A2, B2). We then choose nq = 3,
and matrices A,B,C as below

A =

0 1 0
0 0 1
0 −1 0

 , B =

00
1

 , C =
[
1 0 0

]
.

It is easy to see that the above matrices A,B,C satisfy the conditions of Lemma 1. Let us choose
ε = 0.01 and

K =

 −6
−10
0


Copyright c⃝ 2012 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2012)
Prepared using rncauth.cls DOI: 10.1002/rnc



14 T YANG ET AL.

and design the dynamic low-gain controller as follows: χ̇i(t) =

 −6 1 0
−10 0 1
0 −1 0

χi(t)−

 −6
−10
0

 ζi(t)
vi(t) = −

[
0.0598 0.0183 0.1423

]
χi(t)

. (40)

Figure 2 and Figure 3 show that the output synchronization is achieved for Network 1 and Network
2, respectively.
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Figure 2. Outputs for Network 1

6.2. Output formation

Consider the same two networks as in Section 6.1, our goal is to achieve output formation. We
choose h1 = 10, h2 = 20, h3 = 30, and h4 = 40. Figure 4 and Figure 5 show that the output
formation is achieved ‡ for Network 1 and Network 2, respectively.

6.3. Regulation of output synchronization

Consider the same network as in Section 6.1, however, our goal now is to ensure that each agent’s
output follows the output yr of the following exosystem ẋr =

[
0 1
0 0

]
xr,

yr =
[
1 0

]
xr,

with xr(0) = [1; 1].

‡Note that xd1, xd2, and xd3 is the coordinate where all the agents are almost identical
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Figure 3. Outputs for Network 2
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Figure 4. Formation for Network 1

We first expand the system to the following form
˙̃xr = Ãrx̃r :=

0 1 0
0 0 1
0 0 0

 x̃r,
yr = C̃rx̃r :=

[
1 0 0

]
x̃r,
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Figure 5. Formation for Network 2

with x̃r(0) = [1; 1; 0].
Let us now choose B̃r =

[
0 0 1

]′. We then follow the same design procedure to design
precompensator to make all the agents almost identical with different exponentially decaying
signals. We then add a link with weight 10 from the exosystem to the root agent 1 for Networks
1 and 2 whose topologies are given by Figure 1. The resulting network topologies are shown in
Figure 6.
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(a) Expanded Network 1
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system

10

(b) Expanded Network 2

Figure 6. Expanded Network Topologies

Choose β̄ = 0.77, γ̄ = 14.18, and ε = 10−8. Figures 7 and 8 show the regulation of output
synchronization is achieved for Network 1 and Network 2, respectively.
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A. PRELIMINARY

In order to better understand our design methodology, the readers need to get familiar with special
coordinate basis (SCB)[22], how to square down the right invertible system, and how to make the
invertible system uniform rank. Therefore, we will briefly review these materials.

A.1. Review of SCB

Consider a strictly proper linear system given by{
ẋ = Ax+Bu,
y = Cx,

(41)

with B injective where x ∈ Rn, u ∈ Rm, and y ∈ Rp. There exist nonsingular transformations Γs,
Γo, and Γi, such that

x = Γsx̃, y = Γoỹ, u = Γiũ,

x̃ =

xaxbxc
xd

 , ỹ =

[
yd
yb

]
, ũ =

[
ud
uc

]
,

xd =


xd,1
xd,2

...
xd,md

 , yd =


yd,1
yd,2

...
yd,md

 , ud =


ud,1
ud,2

...
ud,md

 ,
and that in the new coordinate, (41) can be rewritten as

ẋa = Aaaxa + Labyb + Ladyd,
ẋb = Abbxb + Lbdyd,
ẋc = Accxc +Bc(uc + Ecaxa) + Lcbyb + Lcdyd,
ẋd,j = Ad,jxd,j +Bd,j(ud,j + Ed,j,axa + Ed,j,bxb + Ed,j,cxc) + Ld,jyd,
yd,j = Cd,jxd,j , j = 1, . . . ,md

yb = Cbxb.

(42)

Here the states xa, xb, xc, and xd are respectively of dimensions na, nb, nc, and nd =
∑md

j=1 nd,j ,
while the state xd,j is of dimension nd,j for each j = 1, . . . ,md. The inputs ud and uc are
respectively of dimensions md and mc = m−md, while the outputs yd and yc are respectively
of dimensions md and p−md. The matrices Ad,j , Bd,j and Cd,j have the form

Ad,j =

[
0 Ind,j−1

0 0

]
, Bd,j =

[
0
1

]
, Cd,j =

[
1 0

]
.

Some important properties of SCB are summarized as follows:

1. The invariant zeros of the system (41) are the eigenvalues of Aaa.
2. (Acc, Bc) is controllable, and (Cb, Abb) is observable.
3. If the system (41) is right-invertible, then xb, and hence yb are nonexistence, and Γo = I .
4. If the system (41) is left-invertible, then xc, and hence uc are nonexistence, and Γi = I .
5. The system (41) has md zeros at the infinity with the order nd,j , j = 1, . . .md.

A.2. Squaring-down for a right-invertible system

Let us now recall the following result from [21]:
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Lemma 5
Assume that for the system (41), (A,B) is stabilizable, (C,A) is detectable, and (C,A,B) is right-
invertible, then there exists a precompensator of the form{

χ̇1 = A1χ1 +B1u1,
u = C1χ1 +D1u1,

(43)

such that the resulting system of (41) and (43) is invertible.

The proof was given in [21] by explicit construction of such a precompensator. To be self
contained, we briefly review such a design procedure.

If the system (41) is right-invertible, then xb, and hence yb are nonexistence. Therefore, with
nonsingular transformations Γs and Γi, the system (41) can be transformed into the following SCB
form: 

ẋa = Aaaxa + Ladyd,
ẋc = Accxc +Bc(uc + Ecaxa) + Lcdyd,
ẋd,j = Ad,jxd,j +Bd,j(ud,j + Ed,j,axa + Ed,j,cxc) + Ld,jyd,
yd,j = Cd,jxd,j , j = 1, . . . ,md

(44)

Consider the following precompensator for the system (44){
χ̇1 = N ′χ1 +G′u1,
ũ = [WE′

c,M ]′χ1 + [I, J ]′u1,
(45)

where Ec = [E′
d,1,c, E

′
d,2,c, · · · , E′

d,md,c
]′ ∈ Rnc×md , χ1 ∈ Rnc−mc ,

WA′
cc = NW +MB′

c, rank

[
W
B′

c

]
= nc, [G, J ]′ =

[
W
B′

c

]−1

K,

and N and Acc −KEc are Hurwitz stable. Such a matrix K exists since (Acc, Ec) is detectable,
which follows from the fact that (C,A) is detectable.

In [21], it is shown that the resulting system of (44) and (45) is invertible, and has the same
infinize zero structure as the system (44). Moreover, the design procedure introduced additional
invariant zeros, which are eigenvalues of N and Acc −KEc, and hence can be assigned to the open
left-half plane.

It is then easy to see that the precompensator of the form (43) for the system (41) is given by{
χ̇1 = N ′χ1 +G′u1,
u = Γi[WE′

c,M ]′χ1 + Γi[I, J ]
′u1.

(46)

A.3. Rank-equalization for a invertible system

Let us now recall the following result from [20]:

Lemma 6
Assume that the system (41) is invertible, then there exists a precompensator of the form{

χ̇2 = A2χ2 +B2u2,
u = C2χ2 +D2u2,

(47)

such that the resulting system of (41) and (47) is uniform rank.

The proof is given in [20]. The idea is to add an appropriate number of integrators to each scalar
input ud,j for j = 1, . . . ,md. Let us briefly review such a design.

Since the system (41) is invertible, with a nonsingular transformation Γs, the system (41) can be
transformed into the following SCB form: ẋa = Aaaxa + Ladyd,

ẋd,j = Ad,jxd,j +Bd,j(ud,j + Ed,j,axa) + Ld,jyd,
yd,j = Cd,jxd,j , j = 1, . . . ,md.

(48)
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Let r̄ ≥ maxj=1,...,md
nd,j . We then design the following pre-compensator for the system (48){

χ2
j = A2

jx
2
j +B2

ju
2
j ,

ud,j = C2
j x

2
j +D2

ju
2
j .

(49)

Here for the chain j where nd,j < r̄,

A2
j =

[
0 Ir̄−nd,j−1

0 0

]
, B2

j =

[
0
1

]
, C2

j =
[
1 0

]
, D2

j = 0,

while for the chain j where nd,j = r̄, χ2
j , and hence A2

j , B2
j and C2

j are nonexistence, while D2
j = 1,

that is ud,j = u2j .
It is then easy to see that the precompensator of the form (47) for the system (41) is given by{

χ̇2 = A2χ2 +B2u2,
u = C2χ2 +D2u2,

where χ2 = [χ2
1; · · · ;χ2

md
], u2 = [u21; · · · ;u2md

],

A2 = blkdiag{A2
j}

md

j=1, B
2 = blkdiag{B2

j }
md

j=1, C
2 = blkdiag{C2

j }
md

j=1, D
2 = blkdiag{D2

j}
md

j=1.

B. PROOF OF LEMMA 1

We will prove Lemma 1 by explicit construction of the precompensator (7) for each agent. The
design is carried in three steps.

Step 1: Squaring-down precompensator
In this step, we design a compensator for each agent i ∈ {1, . . . , N} such that the resulting system
is invertible. Since the triple (Ci, Ai, Bi) is right-invertible, in order to do so, we only need to design
a pre-compensator of the form: {

χ̇1
i = A1

iχ
1
i +B1

i u
1
i ,

ui = C1
i χ

1
i +D1

i u
1
i ,

(50)

where u1i ∈ Rp, such that the resulting system of (5) and (50) is invertible. The design procedure
was developed in [22] and reviewed in Appendix A.2.

Step 2: Rank-equalizing precompensator
It is clear that the resulting system of (5) and (50) is invertible. For a given nq ≥ n̄d, where n̄d is
the maximal order of infinite zero of (Ci, Ai, Bi) for all i = 1, . . . , N , we design a rank-equalizing
precompensator of the form {

χ̇2
i = A2

iχ
2
i +B2

i u
2
i ,

u1i = C2
i χ

2
i +D2

i u
2
i ,

(51)

where u2i ∈ Rp, such that the resulting system of (5), (50) and (51) is invertible and has uniform
rank nq. The design procedure was developed in [20] and reviewed in Appendix A.3.

Step 3: Observer-based pre-feedback
The third stage is to design a observer-based controller such that the resulting system is given by (8)
and (9).

It is clear that the resulting system of (5), (50) and (51) is invertible and has uniform rank nq. It
is easy to see that there exists a nonsingular state transformation Γ̃i,s such thatxiχ1

i

χ2
i

 = Γ̃i,sχ̃i, χ̃i =

[
χ̃i,a

χ̃i,d

]
,
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such that the resulting system of (5), (50) and (51) can be written in the SCB form:
˙̃χi,a = Ãi,aχ̃i,a + L̃i,adyi,
˙̃χi,d = Ãdχ̃i,d + B̃d(u

2
i +Di,aχ̃i,a +Di,dχ̃i,d),

yi = C̃dχ̃i,d,

(52)

where

Ãd =

[
0 Ip(nq−1)

0 0

]
, B̃d =

[
0
Ip

]
, C̃d =

[
Ip 0

]
.

Note that the information z̃i := [zi;χ
1
i ;χ

2
i ] is available for agent i, and z̃i can be represented in terms

of χ̃i,a and χ̃i,d as:

z̃i = C̃i

[
χ̃i,a

χ̃i,d

]
,

where

C̃i =

Cm
i 0 0
0 I 0
0 0 I

 Γ̃i,s.

Define

Ãi =

[
Ãi,a L̃i,adC̃d

B̃dDi,a Ãd + B̃dDi,d

]
, B̃i =

[
0

B̃d

]
It is clear that (C̃i, Ãi) is detectable which follows from the fact that (Cm

i , Ai) is detectable. We
then design the observer-based pre-feedback for the system (52) as:{

˙̂
χ̃i = Ãi

ˆ̃χi + B̃ivi − K̃i(z̃i − C̃i
ˆ̃χi)

u2i =
[
−Di,a F̃d −Di,d

]
ˆ̃χi + vi,

(53)

where vi ∈ Rp is a new input which will be designed in Section 3.3, K̃i is such that Ãi + K̃iC̃i is
Hurwitz stable, and F̃d is such that Ãd + B̃dF̃d has desired eigenvalues. It is easy then to see that
the observer error dynamics ωi = χ̃i − ˆ̃χi is asymptotically stable, therefore, the injection term χ̃i,a

into the dynamics χ̃i,d is asymptotically canceled. Hence, the mapping from vi to yi is given by{
˙̃xi,d = (Ãd + B̃dF̃d)χ̃i,d + B̃d(vi + ρi),

yi = C̃dχ̃i,
(54)

where {
ω̇i = (Ãi + K̃iC̃i)ωi,

ρi =
[
Di,a Di,d − F̃d

]
ωi.

(55)

It is clear that the system (54) is invertible, of uniform rank nq, and has no invariant zero. Moreover,
the system (54) is of the form (8) with x̄i := x̃i,d, the parameters

A = Ãd + B̃dF̃d, B = B̃d, C = C̃d,

and (55) is of the form (9) with Ai,s = Ãi + K̃iC̃i and Ci,s =
[
Di,a Di,d − F̃d

]
.

Note that the observer-based pre-feedback (53) for the system in the original coordinate
[xi;χ

1
i ;χ

2
i ] can be written as{

˙̂
χ̃i = Ãi

ˆ̃χi + B̃ivi − K̃i(z̃i − C̃i
ˆ̃χi),

u2i =
[
−Di,a F̃d −Di,d

]
Γ̃i,s

ˆ̃χi + vi.
(56)

It is easy to see that the composition of (50), (51), and (56), yields a pre-compensator of the form
(7) with the parameters defined in obvious ways.
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C. MANIPULATION OF EXOSYSTEM

Consider an arbitrary exosystem given by{
ẋ = Ax, x(0) = x0,
y = Cx,

(57)

where x ∈ Rr, y ∈ Rp, (C,A) is observable, and C is full column rank.
From [2, Theorem 4.3.1], we know that there exist nonsingular transformations Ts ∈ Rr×r and

To ∈ Rp×p, such that, in the transformed state and output, x = Tsx̃, y = Toỹ, where

x̃ =

x̃1...
x̃p

 , x̃i =

 x̃i,1...
x̃i,ki

 , i = 1, . . . , p, ỹ =

ỹ1...
ỹp

 ,

we have {
˙̃xi = Aix̃i + Liỹ,
ỹi =

[
1 0

]
x̃i, i = 1, . . . , p,

(58)

with an initial condition x̃i(0) related to x(0) in an obvious way, Li is a constant matrix of an
appropriate dimension and

Ai =

[
0 Iki−1

0 0

]
∈ Rki×ki

The set of integers {k1, k2, . . . , kp} is the observability index of (C,A). Note that ki for i = 1, . . . , p
are in general different. In order for the system to have uniform rank nq, we then add an appropriate
number of integrators to the bottom of each chain. In particular, define

x̄ =

x̄1...
x̄p

 , x̄i =

[
x̃i
x2i

]
∈ Rnq , i = 1, . . . , p, x2i (0) = 0.

we then obtain that {
˙̄xi = Āix̄i + L̄iỹ, x̄i(0) = [x̃i(0); 0],
ỹi = C̄ix̄i, i = 1, . . . , p,

(59)

where

Āi =

[
0 Inq−1

0 0

]
, L̄i =

[
Li

0

]
, C̄i =

[
1 0 · · · 0

]
.

It is easy to see that the system (58) and the system (59) generate exactly the same output ỹ. The
system (58) can be rewritten in a more compact form as follows:{

˙̄x = Āx̄, x̄(0) = [x̄1(0); · · · ; x̄p(0)],
ỹ = C̄x̄,

(60)

where

Ā =


Ā1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 Āp

+

L̄1

...
L̄p

 C̄, C̄ =


C̄1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 C̄p


and where ⋆ represents a matrix of less interest, generates the same output as (57). Note that the
eigenvalues of the matrix Ā consists of all the eigenvalues of A and additional zero eigenvalues,
which are degenerate.
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Next, let us define

B̄ =


B̄1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 B̄p

 where B̄i =


0
...
0
1

 ∈ Rnq .

It is then easy to see that (C̄, Ā, B̄) is invertible, of uniform rank nq, and has no invariant zero.
We then restore the output transformation To back to the system (60) as follows:{

˙̄x = Āx̄, x̄(0) = [x̄1(0); · · · ; x̄p(0)],
y = ToC̄x̄.

(61)

Note that the system (61) generate the same output as (57). Since the nonsingular output
transformation does not change the zero structure and invertibility of the system, the system
(ToC̄, Ā, B̄) is also invertible, of uniform rank nq, and has no invariant zero. Finally, there exist
a nonsingular state transformation that transforms the system (61) into the form of (10).
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