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AUTONOMOUS NAVIGATION AND DENSE SHAPE
RECONSTRUCTION USING STEREOPHOTOGRAMMETRY AT

SMALL CELESTIAL BODIES

Jacopo Villa*, Jay McMahon†, Benjamin Hockman‡, Issa Nesnas§

Navigating spacecraft and mapping the surface in the vicinity of small So-
lar System bodies is historically challenging. While surface landmarks and re-
lated optical measurements are key to enhance navigational performance in such
an environment, processing close-proximity images relies on ground operations
and requires demanding, human-led coordination between orbit determination,
shape modeling, and image processing tasks. In this paper, we present a vision-
only autonomous pipeline for terrain-relative positioning, landmark matching, and
dense mapping to perform such optical-navigation tasks onboard. We leverage
stereophotogrammetric techniques, in particular structure-from-motion for camera
pose estimation and dense stereo matching for shape reconstruction. The pipeline
requires no prior knowledge of the environment or the observer’s state. Further,
we propose a novel feature matching algorithm based on geometric invariant prop-
erties between landmarks, rather than local image data, for feature description; we
show its robustness to lighting and viewpoint variations. We assess performance
for each pipeline phase using real imagery from the OSIRIS-REx mission, com-
paring our results with the mission’s reconstructed estimates. We demonstrate
good performance of the proposed approach using close-proximity images of the
rubble-pile asteroid Bennu, where surface shadowing and viewpoint changes are
prominent.

INTRODUCTION

Small body missions remain an active and lively area in astronautics. A deeper knowledge of
these celestial objects would not only provide great scientific value to study the formation and
evolution of our Solar System,1, 2 but it would also open technological opportunities such as ex-
ploiting small-body resources during future space missions and refining current planetary-defense
techniques for asteroid deflection.3, 4 On top of the tremendous achievements in small-body explo-
ration missions over the last decade, such as NASA’s OSIRIS-REx,5 JAXA’s Hayabusa26 and ESA’s
Rosetta,7 more and more missions are planned for the upcoming years, demonstrating that there is
still much to learn from these targets. NASA’s Psyche,8 Lucy,9 and Janus,10 as well as ESA’s Comet
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Interceptor,11 are just some examples of upcoming missions reaching a diverse and largely unknown
set of targets.

Today, operating a spacecraft in the vicinity of a small body is challenging, chiefly due to strong
perturbations in the dynamical environment, as well as the lack of knowledge about most target bod-
ies and their related physical properties, when these are firstly reached. In this context, precise navi-
gation plays a crucial role to ensure mission safety, GNC performance, and ultimately the fulfillment
of operational requirements. An established technique to achieve this is using imagery of the small
body to track reference surface points, a process known as landmark-based navigation. Tracking
surface landmarks using images is known as an arduous task: the appearance of small-body sur-
face topography, as seen from the spacecraft camera, is subject to continuous evolution, due to (1)
the rapid spin of small bodies about the axis of rotation, affecting surface lighting conditions and
causing shadow patterns to change, and (2) the relative motion between the surface and the orbiting
spacecraft, which in turn affects the viewpoint the surface is observed from. In current small-body
navigation, detecting and extracting landmarks from images is a ground-based process requiring
experienced specialists. Images are inspected and surface landmarks are selected and tracked man-
ually, based on the operator’s expertise. This process is highly coupled with shape-estimation tasks:
the appearance of the topography surrounding landmarks is predicted using simulated data, which
is then used to update both the local topographical data and the state of the observing spacecraft.
This process is known as Stereophotoclinometry (SPC) and is performed in closed-loop with opti-
cal navigation and orbit determination.12 These techniques represent the state of the art in terms of
navigation accuracy and shape modeling. However, performance trade with operational complexity
and reliance on human expertise, which in turn affect the scalability of small body missions and
put constrains on in-situ operations. A greater level of onboard autonomous navigation would in-
crease our capabilities in the Solar System, accelerating the exploration of the diverse and abundant
population of small bodies and potentially increasing the scientific return.13

Recently, the OSIRIS-REx mission pioneered autonomous vision-based navigation at the target
asteroid Bennu during the Touch-and-Go maneuver to acquire a surface sample. This operation
was successfully performed using Natural Feature Tracking (NFT), a technique leveraging a-priori
knowledge of surface topography to predict the appearance of optical data around landmarks and
match predictions with observed data during the descent.14 While this technique achieved mis-
sion objectives with outstanding performance and in an autonomous fashion, it still relied on prior
knowledge collected via human-based operations, especially the high-resolution shape model of the
asteroid Bennu and the higher-resolution topography map of the Touch-and-Go site, as well as the
set of surface landmarks selected for navigation. Another example of autonomy applied to small-
body missions is the upcoming vision-based navigation system aboard the ESA’s HERA mission.
The system makes use of frame-to-frame feature tracking techniques for proximity operations, but
is not provided with any feature matching or loop closure capabilities.15 Additionally, descriptor-
less feature tracking may only work for some types of surface topography (e.g. sparse rocks on top
of a relatively smooth surface background) and may suffer from drift due to moving shadows, as
previous studies have shown.16

Previous work has advanced autonomous navigation capabilities for several small-body scenar-
ios, such as optical navigation during far and close approach, as well as silhuette-based shape recon-
struction.17 Studies have also shown that modern Simultaneous Localization and Mapping (SLAM)
frameworks can be used for navigation.18 However, most of these works focused on real or sim-
ulated small body images capturing a relatively smooth topography, where the effects of evolving
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lighting conditions are less prominent and those of viewpoint are easier to compensate with proper-
ties of traditional visual features, such as SURF.19

One key challenge for autonomous navigation at small bodies is enabling robust, vision-based
navigation for proximity operations. This is the scenario where local shadowing effects – usually
caused by rocks and boulders – become dominant and, given the close-range perspective, viewpoint
changes are harder to model without an accurate topographical map of the surface, such as the those
produced via SPC. In this work, we propose an algorithmic pipeline to perform both navigation and
mapping in the proximity-operations scenario, where lighting and viewpoint are subject to rapid
evolution. Our pipeline is solely based on images as inputs and makes use of Stereophotogrammetry
(SPG) techniques to firstly estimate the camera poses and a sparse cloud of surface landmarks, and
secondly perform dense shape reconstruction of the observed surface. In addition to estimating
landmarks and camera poses for navigation purposes, onboard shape reconstruction can be valuable
to enhance situational awareness, such as performing hazard detection and avoidance, as well as
selecting landing and operational sites during the mission.

NAVIGATION AND MAPPING PIPELINE

In this paper, we define landmarks as the 3D locations on the small body surface corresponding
to an optical observation, and keypoints as the projections of landmarks into the camera plane, i.e.
the actual pixel coordinates of optical observations. Features are the data describing the traits of a
given keypoints, e.g. data related to the image region surrounding a keypoint. Camera poses are the
joint representation of camera position and orientation in 3D space. Finally, loop closure is the task
of detecting previously-estimated landmarks in order to refine the current camera pose and back-
propagate corrections in previous landmarks and camera poses. The latter is a common practice
within SLAM algorithms.

The proposed process is illustrated in Figure 1. The input data is imagery of the target body.
Camera intrinsic parameters can either be inputted or estimated in the process, depending on their
availability and accuracy. Input images can either be consecutive frames, or frames sampled under
considerably different lighting and viewpoint conditions. In the former case, frame-to-frame fea-
ture matching is executed to link optical observations throughout the image set. In the latter case,
an image pre-processing step is applied to detect keypoints ad extract robust feature descriptors
that are invariant to lighting and viewpoint; then, feature matching is performed using such robust
descriptors. Once feature matches are computed, a Structure-from-Motion (SfM) algorithm is run
to reconstruct both the observer’s camera poses and the observed surface landmarks. Lastly, using
such estimates of the observed scene, stereo matching is employed to estimate a dense representa-
tion of the small body surface. Stereo matching provides a dense point cloud as the output, which
can eventually be converted into a mesh representation of the surface.

This pipeline is solely based on optical data as inputs, and hence represents a purely vision-based,
surface-relative navigation system. As such, it requires no a-priori knowledge of the observed
scenario or the observer’s state. All estimated parameters are relative to the coordinate system
corresponding to the first camera pose. These can be translated and rotated to the small body-
fixed reference frame if an estimate for this transformation is available. Further, camera poses and
3D landmarks can be fed into a navigation filter in order to link such geometric estimates to the
dynamical environment and inertial parameters. One should note that, since the process is based on
monocular-camera images, the poses and landmark outputs lack an estimate of absolute scale. In
actual operations, this can be compensated by estimating the scale factor in the navigation filter, e.g.
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Figure 1: Proposed pipeline for navigation and dense mapping.

estimating the size of the observed small body.

SIMULATION SETUP

To assess robustness to the appearance and rapid evolution of optical data in proximity opera-
tions, we test our algorithms using real imagery from the OSIRIS-REx mission. The rich and rocky
surface of the mission target, asteroid Bennu, provides challenging surface conditions such as the
very dense field of rocks and boulders with self-similar traits, as well as the rapidly evolving sur-
face shadows. We use images acquired by the Natural-Feature-Tracking Camera (NFTCAM)20 to
assess frame-to-frame matching and SfM performance, and an imageset from the OSIRIS-REx’s
mapping camera (MAPCAM)21 to test robust feature matching, where the same scene is observed
with enough overlapping surface, but under different lighting and viewpoint. More details on each
imageset are provided in the corresponding section below. Further, we use reconstructed mission
data from the OSIRIS-REx’s SPICE kernels as references to compare our estimates with.22

POSE ESTIMATION

The first task executed by the autonomous pipeline is camera pose estimation. Not only is this
step essential for navigation, but it also provides reference geometric data for dense shape recon-
struction. In particular, the parameters of interest are the camera poses and the 3D landmarks,
in this case observed on the surface of the target body. Numerous approaches exist to tackle the
simultaneous estimation of camera poses and the environment 3D geometry. In this work, we ap-
ply a standard Structure-from-Motion algorithm: multiple observations of surface landmarks, from
different viewpoints, are leveraged to estimate the structure of the observed scene. We choose an
image set from the OSIRIS-REx mission, immediately before the descent for the Touch-and-Go
maneuver, using the imagery from the NFTCAM*. This is the image set processed by the onboard
autonomous system to guide the spacecraft to the surface and collect the sample. This scenario is
particularly challenging from the lighting standpoint, as shadows and shading effects rapidly evolve

*https://sbnarchive.psi.edu/pds4/orex/
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Figure 2: First (left) and last (right) images of the set used for the Structure-from-Motion simulation.
The imagery is from the OSIRIS-REx’s NFTCAM, and has been collected before the Touch-and-Go
descent.

form image to image. The first and last image of this set are shown in Figure 2. The time stamps
of the first and last images, in Coordinated Universal Time (UTC), are “2020-10-20 18:58:51.696”
and “2020-10-20 20:11:12.782”, respectively.

Frame-to-Frame Feature Matching

Firstly, keypoints are collected in each image. When keypoints related to the same surface land-
mark are sampled from multiple views, these can be used to estimate the 3D position of both the
camera and the landmark. Each keypoint corresponds to a visual feature, i.e. a representation of the
image neighborhood around the interest point. Features are commonly used to link keypoint obser-
vations between pairs of images – a process known as feature matching. The first step is feature
detection, where interest points are identified in each image. We use KAZE features because of their
boundary-preserving property and the use of a nonlinear scale space, which improve detection ac-
curacy.23 In the context of asteroid-surface imagery, rocks, and in particular their centroids, can be
used as keypoints, which can be detected using region-based feature detectors such as SIFT, SURF,
or KAZE.24 In the considered dataset, KAZE features provide the highest number of detections and
good matches when compared to SURF or SIFT, two other state-of-the-art, region-based feature
types. For example, the total number of detections for the first image is 33959 for KAZE, 23100
for SIFT, and 6506 for SURF. Further, KAZE features are well-suited to precisely detect and track
surface rocks with highly irregular shape, commonly found in small body imagery, since it does not
leverage Gaussian blurring to detect features (whereas SIFT and SURF do).

In each image, we detect KAZE keypoints and keep the 100 strongest detections, extracting a
descriptor for each of them. Then, pairwise feature matching is performed between consecutive
images. An example of matched features between the 7th and the 8th image in the set is shown in
Figure 3. Using frame-to-frame matching, a given feature is tracked over more than two frames.
The mean track length is 2.3 frames, with 72% of features tracked for 2 frames, 19% for 3 frames,
5% for 4 frames, 3% for 5 frame, and 1% for 6 frames. These numbers are highly case-specific and
depend on multiple factors, such as the frame-to-frame pixel displacement, small body’s spin rate,
and number of keypoint appearances within the camera field of view. However, it is interesting to
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(a) Full-size image. (b) Image magnification around a set of features close
to the image center.

Figure 3: Example feature matches using KAZE, between the 7th and 8th image (shown in false
colors), in the NFTCAM dataset. 100 features are extracted in each frame for matching. Feature
detections are commonly placed close to the centroid of surface rocks.

note that most features are tracked for a relatively short number of consecutive observations, likely
due to the increasing changes in viewpoint and lighting, affecting the local feature data.

Structure-from-Motion

Pairs of point correspondences provided by feature matching are the input for the actual SfM
process, which is summarized in the following. For each pair of images, the camera essential matrix
is estimated, as a first step, using the M-estimator sample consensus (MSAC) algorithm.25 We set
the Sampson distance threshold to 0.05, used to reject outliers (such as feature matches with low
detection accuracy). We assume that camera intrinsic parameters are available and accurate. (We
do not compensate for off-nominal camera geometric distortions affecting the NFTCAM.) Note
that if this is not the case, the camera fundamental matrix could be estimated, instead. Second,
the camera essential matrix is used to estimate the camera pose relative to the previous frame; this
process is repeated until at least 95% of keypoints related to the camera pose are inliers. Third,
matched keypoints and the corresponding camera poses are stored in the set of views which links
all keypoint observations with their observing geometry. The global coordinate system used for the
process is the camera frame at the first image. Additionally, feature tracks are created or updated
so that pairwise observations of a given keypoint are linked to the broader set spanning all views
where that keypoint appears. As a next step, for each feature track, a corresponding 3D landmark
is estimated by triangulating all views and observations related to such a keypoint.26 This process
provides initial guesses for all observed 3D landmarks. Finally, bundle adjustment is used to refine
both the 3D landmark estimates (for all views) and camera poses using all the previous observations.
After this optimization step, all landmarks whose reprojection error into the camera plane is larger
than 0.5 pixels are discarded, while the others are processed in the next update (i.e. where new
images are sampled).

SfM results for the pre-TaG scenario are shown in Figures 4 in 3D space and in Figure 5, as the
position error in the Radial-Transverse-Normal (RTN) frame. Estimated positions are compared
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with the OSIRIS-REx’s reconstructed trajectory. Positions are estimated sequentially, using all
images acquired up to the epoch considered, without using future observations. Since the SfM
process is by design independent of scale, we use the same scale factor for the estimated and ground-
truth cases in order to compare results. As shown by the RTN plot, the positioning error is below
3 meters in the radial direction, 10 meters in the transverse, and 5 meters in the normal direction.
For reference, the maximum transverse position error is below 2% of the radial distance at that
epoch (520 m from the asteroid’s center of mass). A total of 150 landmarks are accepted at the
end of the process, i.e. after the last image poses are refined via bundle adjustment. Interestingly, a
relatively low number of feature matches and related surface landmarks is sufficient to provide good
positioning performance, which in turn decreases computational requirements for this process. In
fact, we noticed decreasing position accuracy when processing a higher number of lower-quality
detections. These results highlight the importance of accurate detections for small body autonomous
navigation. Finally, note that we assume that no 3D landmarks were known a priori to perform loop
closure. Using known 3D landmarks, e.g. extracted at previous orbits around the body, can further
improve navigation accuracy and decrease the position drift that can appear for longer trajectory
arcs, e.g. via loop closure.

While the proposed SfM algorithm needs to be tested on more small-body scenarios, with a
broader spectrum of surface topographies, the presented results suggest that similar techniques can
be employed for precise terrain-relative navigation at small bodies, even when the shadowing and
viewpoint changes are prominent. Reported data also suggest that long tracks of optical data are
not required for precise positioning, and that links between multiple feature tracks, processed as a
bundle, can compensate for relatively short tracks. In future work, we will (1) test more imagesets
related to multiple target bodies, (2) compare the SfM approach to more modern SLAM algorithms,
(3) evaluate performance for camera attitude estimation, and (4) integrate this pipeline within a
broader navigation-filter framework that accounts for the dynamical environment and related infor-
mation and uncertainties (e.g., spin pole parameters, scale factors, accelerations).

ROBUST FEATURE MATCHING

Standard feature description and matching techniques (such as KAZE) applied to small body
images appear to perform well for frame-to-frame matching, when the imaging frequency is rela-
tively high. However, poor performance is obtained when the images are taken from substantially
different viewpoints and Sun phase angles. The relative motion between the observing spacecraft,
the small body, and the Sun yields to large changes in surface lighting conditions and perspective,
which affect the surface appearance. Standard feature descriptors are computed locally, i.e. using
the image data in the neighborhood of a given keypoint. While these can be robust to some amount
of lighting and viewpoint changes, they are not robust to moving shadows and the rugged topogra-
phy (i.e. far from resembling planar surfaces) typical of a small body surface. Additionally, many
features on the surface of a small body are very similar with each other. For example, commonly
detected features in close-proximity images are surface rocks and boulders that are similar to other
rocks with the same or different size.

In landmark-based navigation, linking new observations with past ones is valuable to increase
navigation performance and robustness, as well as to store a reasonably low number of landmarks.
The simplest method to do that is detecting the same surface landmarks over multiple body rotations
and from different orbital conditions. In this section, we propose a novel feature matching technique
that is robust to lighting and viewpoint changes and hence can be used to recover features (and
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Figure 4: Structure-from-Motion results for the pre-TaG scenario, shown in XY (left) and YZ (right)
planes of the asteroid-fixed frame. Sequentially estimated camera positions are plotted on top of the
OSIRIS-REx’s reconstructed trajectory, and the related landmarks are reported. Compared results
are adjusted for scale.

Figure 5: Structure-from-Motion sequential-position error for the pre-TaG scenario, reported in the
RTN frame. The maximum error is below 2% of the radial distance. Compared results are adjusted
for scale.
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related landmarks) observed from very different Sun phase angles and perspectives. Instead of using
local image data to construct a feature descriptor, we leverage the geometric constraints between the
landmarks: considering the small body as a rigid body, we assume that the relative position between
landmarks is fixed. Once landmark detections are available, the geometry between them can be used
to progressively restrict the feature search space and identify the best feature match for any given
feature. This technique does not require any a-priori knowledge of the scenario, such as spacecraft
pose, Sun phase angle, and scale factors. As such, it can be used to solve a surface-relative “lost-in-
space” problem, but could also be used for a loop-closure scenario. The proposed feature matching
process is divided into four phases: feature detection, feature description, feature matching, and
feature confirmation, which are described in the following.

We test the feature matching process on four images sampled during the OSIRIS-REx’s Recon-
naissance A phase, using the MAPCAM instrument. We perform feature matching between the first
and the third image, with UTC time stamps “2019-09-26 17:37:36” and “2019-09-26 21:42:42”, re-
spectively. The second (“2019-09-26 17:38:09”) and fourth (“2019-09-26 21:43:14”) images, which
are sampled about 30 seconds after the first and third respectively, are merely used for feature trian-
gulation, as described in the following. We use this pair of images to test feature matching as they
are characterized by different lighting conditions and viewpoint, as can be seen by the shadows cast
on the surface by the visual appearance of the larger boulders and their shadows cast on the surface.
Future work will extend these analyses to more cases and imagery scenarios.

Feature Detection

The first step consists in detecting the surface features of interest. Images sampled in close
proximity are usually rich in details, provided by the dense population of rocks and boulders with
great diversity in size, shape, roughness, and albedo. While most rocks can easily be used as
manually-tracked landmarks, their diversity and density on the surface makes the detection task
more challenging to be performed algorithmically. Nevertheless, rocks are still valuable visual
features as they represent image regions which are detected by state-of-the-art features. One way
to mitigate the abundance of rock-type features is to only detect those with certain user-defined
traits, using image processing techniques. We propose two different detection algorithms to identify
specific rock families within the population: low-variance rocks and high-albedo rocks. These
detections can eventually be used as the input keypoints for the description and matching steps.
Previous work has shown that rocks and boulders can be detected on the surface of small bodies
using neural networks.27 However, such techniques were applied for imagery with lower surface
resolution and hence lower density of rock-type features. Other studies have shown that craters
can also be robustly identified on the surface of and planetary bodies.28 All such techniques could
potentially replace the detection algorithms presented here for different types of planetary surfaces
or different surface resolutions.

Low-Variance Features One way to only detect a subset of surface rocks is applying image pro-
cessing to identify rocks that appear smooth within the image context. One metric for image smooth-
ness is its standard deviation. As such, we extract smooth features using the following process:

1. Given the original image I0, a standard deviation filter is applied to I0. The output Isd is an
image whose pixels are the standard-deviation values of each pixel neighborhood around the
corresponding input pixel. We use a neighborhood window with size w ˆ w, where w “ 3
pixels;
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2. the negative of the image is computed as În “ 1 ´ Îsd, where 1 is the matrix whose elements
are all equal to 1 and Îsd is the image Isd normalized, so that the pixel values span in between
0 and 1;

3. the median of În is subtracted to the image, i.e.: Îms “ În ´ medianpÎnq, where the
median operator computes the median of all pixels in the image;

4. the positive-pixel image Îp is obtained by setting all negative pixel values of Îms to zero and
then by normalizing the image once again;

5. the final low-variance image Îld is obtained applying a bilateral filter to Îp to reduce the noise
while preserving the edges for feature detection.29 We set the closeness-function’s standard
deviation σd “ 3 pixel and the similarity-function’s standard deviation σr “ 0.01;

6. KAZE features are detected on Îld. If two features are closer than 10 pixels with each other,
then only the larger-scale feature is kept and the other one is deleted.

The values of w, σd and σr are chosen so to provide a good trade-off between noise and edge
preservation. However, initial trials did not show high sensitivity to such tuning parameters. This
process is also designed to remove shadows in the image, by subtracting the image median and
zeroing all negative pixels, making it more robust to lighting changes. Since the shadows cast by
rocks are usually projected on the surface background (which is generally subtracted by the median
step), the foreground of detected smooth rocks is less affected by shadowing artifacts.

The output image from low-variance filtering is shown in Figure 6b and compared with the orig-
inal MAPCAM image (Figure 6a). Relatively smooth regions appear as the brightest ones, despite
their albedo and size in the original image. The 50 strongest KAZE feature detections for each image
are also shown: while many strong features detected on the original image are centered on shadows
(which do not represent a fixed object, and hence are not a reliable landmark), low-variance fea-
tures are detected roughly at the center of a rock, making it a much more robust landmark to track.
It should also be noted that most strong matches among low-variance features are those spanning
10-30 pixels across. Centroiding performance for such medium-sized features is superior to those
for larger ones, whose appearance is generally more affected by viewpoint changes.

High-Albedo Features One alternative approach to detecting smooth surface regions consists in
filtering the image so that only the locally-bright spots are emphasized. If such regions have higher
albedo than the neighboring ones, then will remain relatively brighter even under varying lighting
conditions. Small body imagery from past missions have shown that scattered higher-albedo rocks
can be found on the surface of some targets. These features can be detected by subtracting the
local median of the image. By doing so, both the lower-albedo background and the shadows are
removed from the output image, which makes the resulting features more robust to lighting, as in
the low-variance case. High-albedo features are filtered as follows:

1. Given the original image I0, a median filter is applied to I0. A median image Im is obtained
where each pixel is the median of the pixels in its w ˆ w neighborhood window. We use
w “ 50 pixels;

2. the median image is subtracted to the original image, obtaining the median-subtracted image
Ims “ I0 ´ Im;

3. The final high-albedo image Îha is the normalized median-subtracted image.
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(a) Original MAPCAM image. (b) Output image from low-variance filtering.

(c) Output image from high-albedo filtering, using a
sliding-window median filter.

(d) Output image from high-albedo filtering when
subtracting the full-image median.

Figure 6: Comparison between image-processing techniques for rock detection. Green markers
represent the 50 strongest KAZE keypoints detected in the image; green circles represent each
feature’s scale.

11



4. KAZE features are detected on Îha. If two features are closer than 10 pixels with each other,
then only the larger-scale feature is kept and the other one is deleted.

The high-albedo output image, as well as the detected features, are shown in Figure 6c. In the case
considered, the features in Îha are smaller on average than those in Îld, but the scale of the stronger
detections does not substantially differ from the low-variance case. One should note that the features
provided by Îha can either correspond to high-albedo regions, or to regions with high reflectance
due to the Sun-surface-observer geometry, or both. This can potentially increase the number of false
detections. One final consideration on this algorithm is that the computational cost of the median
filter depends on the size of the neighborhood window w. A much faster implementation consists
in computing Ims by simply subtracting the median of the full image (Figure 6d), instead of using a
window-based median filter. The downside of this approach is that some image gradient can remain
unfiltered. Nevertheless, detection performance is not highly affected in the case considered.

Feature Descriptors

Once keypoint detections are available, the 3D geometry of the corresponding landmarks is used
to generate feature descriptors. We leverage the triangles connecting a given landmark with two of
its nearest neighbors, in 3D space. In particular, we use the angles related to each of those triangles
as description parameters. Since the relative position between landmarks is fixed, such angles will
not change under multiple observations. Angles are scale-invariant and, since the related triangles
are computed using the 3D points, are also viewpoint-invariant. Finally, the property of being
invariant to lighting conditions is acquired by the visual feature detection step, discussed in the
previous section.

The prerequisite for feature description is estimating the 3D positions (i.e. the landmarks) corre-
sponding to each detected keypoint. We do so by observing the same features in two consecutive
frames, i.e. from two slightly different viewpoints, and then triangulating the views as previously
described. To track features from the first to the second frame, we use the Kanade-Lucas-Tomasi
(KLT) tracking algorithm,30, 31 which performs well when features in consecutive frames are similar
with each other and the pixel displacement is low (which is the case given the small baseline we
use for triangulation). For reference, the mean displacement of the features tracked from the first
to the second frame is 14.8 pixels (0.058˝). The output of the triangulation is an estimate of the
landmarks’ 3D positions as well as the camera pose in the second view relative to the first view.

Feature descriptors are computed as follows. Let p0 “ rx0, y0, z0s be the 3D point (the landmark)
whose descriptor is to be computed. We call this the center point. First, the k-nearest neighbors of
p0 are searched in 3D space;32 we use k=7. We define N “ tp1, ...,p7u as the set of the 7-
nearest neighbors, sorted from the closest to the furthest from p0. Then, let T be the set of the
IDs representing all the 2-combinations within N , i.e. T is the set representing all possible pairs of
elements in T , such as τ12 “ r1, 2s, τ13 “ r1, 3s, etc. For each pair τij , we set the i-th neighbor
to be the closest point to p0 and the j-th neighbor to be the furthest point. So for example, τ13
does exist, but τ31 does not. Note that T represents the set of all possible triangles formed between
p0 and two of its nearest neighbors. Further, let vij,a, vij,b, and vij,c be the vectors from p0 to
pi, from p0 to pj , and from pi to pj , respectively. The parameters in the feature descriptor are
the ordered set of angles arranged in the vector Θij “ rθij,a, θij,b, θij,cs subtended by vij,a, vij,b,
and vij,c, for all combinations in T , as shown in Equation 1. Figure 7 illustrates the geometric
relationships between all such parameters. Finally, the feature descriptor f is constructed using the
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Figure 7: Schematic of the parameters used to construct the feature descriptor. The star represents
the center point and the dots the neighboring points.

angles computed for all the triangles in T , as shown in Equation 2. The resulting descriptor, for
each feature, is a 63-element vector given by 3 angles for each of the
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The reason for storing all possible combinations of triangles formed by the neighbors rather than,
say, only storing triangles formed by neighboring points in N , is that some keypoints might miss
in one image and be present in another, and vice versa. Hence, it is likely that only a subset of the
triangles associated with a given feature will appear in two distinct images. Oftentimes, most of the
keypoints are detected in different images, but are assigned different detection scores, hence might
not be part of the “strongest keypoints” set in one of the images. The number of non-replicated
keypoints depends on the feature detection logic, as well as its robustness to varying lighting and
viewpoint. Future work will enhance detection performance so to increase the number of replicable
keypoints.

The uniqueness of such features descriptors could be enhanced by adding more geometrical prop-
erties of the 3D point cloud and the related triangles. Future work will incorporate more of such
parameters and compare matching performance with the descriptors presented here.
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&

’

%

θij,a “ cos´1
`

ˆvij,a
T ¨ ˆvij,b

˘

θij,b “ cos´1
`

´ ˆvij,a
T ¨ ˆvij,c

˘

θij,c “ cos´1
`

ˆvij,b
T ¨ ˆvij,c

˘

(1)

f “ tΘ12,Θ13, ...,Θiju @τij P T (2)

Feature Matching Using the Five-Triangle Algorithm

The idea behind triangle-based feature matching is the following. Let fα and fβ be features to
be matched, with Θα P fα and Θβ P fβ being the angle vectors composing each descriptor. Note
that, for example, τα,ij P Tα is the triangle associated with the angles vector Θα,ij . Then, if a
geometrical configuration of adjacent triangles in fα matches a configuration of adjacent triangles
in fβ , then the two features are considered a candidate match. For example, if τα,ij and τα,jk are
two adjacent triangles in fα, then the goal is to find at least one matching triangle in fβ for each
of the two τα. This will give the following pairs of matches: tτα,ij , τβ,mnu and tτα,jk, τβ,nou. The
higher the number of matched adjacent triangles, the higher is the likelihood of good match (i.e., the
probability that such feature match is an “inlier”). Increasing the number of adjacent triangles used
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Figure 8: Schematic of the five triangles used to infer candidate feature matches. The star represents
the center point and the dots the neighboring points.

to infer the match increases the good-match likelihood, but it also increases the sensitivity to missing
keypoints (discussed in the previous section). In this work, we use 5 adjacent triangles connecting
5 different points (including the center point) to infer feature matching, as shown in Figure 8. Thus,
if 5 pairs of adjacent triangles are matched, then the features fα and fβ are considered a candidate
match. Note that 2 out of 5 triangles are redundant in constraining the relative positions between
the 5 points. However, these are used to increase robustness and avoid false matches given by error
propagation from one adjacent triangle to the next.

The feature matching process is presented in Algorithm 1. The inputs to the algorithm are (1) the
two features to be matched, the corresponding set of triangle IDs, and (3) a user-set error threshold.
The outputs are (1) a boolean flag indicating whether the two features are considered a candidate
match, (2) an error metric Eαβ,tot used to accept or reject the candidate (described in the following
section), and (3) a set of ID pairs Λαβ corresponding to the 4 vertices used to construct the 5
matching triangles related to the candidate match. Firstly, the algorithm finds the best matches
between triangles in fα and those in fβ . Second, it verifies whether such best-matching pairs are
also part of a configuration of adjacent triangles. If a 5-point, 5-triangle configuration is found, then
the feature is considered as a candidate match. If the error metric associated to such a candidate
match is below the user-set error threshold EMAX , then the candidate match is returned. This
error metric represents the total angular error accumulated by the 5-triangle configuration. We set
EMAX “ 30˝.

One advantage of this implementation is that, once the feature descriptors are generated and
after the best-matches step is performed, triangle matches tτα, τβu and related errors E can be
queried using triangle IDs and look-up tables, requiring relatively low computation cost. While the
current implementation is not optimized for performance, we report for reference that the average
execution time for the function isCandidateMatch (Algorithm 1) is 0.0020 s on a MATLAB
implementation, using a i7-8750H CPU @ 2.20GHz. Future work will optimize the algorithm and
provide more analyses on computation requirements.

When executing the feature matching algorithm for the whole set of features in the first and sec-
ond image, this returns a set µ of ID pairs for all candidate matches, e.g. µ “ trα, βs, rα, γs, rδ, ζs, ...u.
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Algorithm 1 Compute candidate feature matches using 5 adjacent triangles.

function ISCANDIDATEMATCH(fα, fβ , Tα, Tβ)
matchFlag Ð false
ι Ð 0
for Θα P fα do

κ Ð 0
for Θβ P fβ do

ϵκpτα, τβq Ð }Θα ´ Θβ}2 Ź Compute the error between these two triangles
κ Ð κ ` 1

end for
tΘ˚

α,Θ
˚
βu Ð argmin pϵpτα, τβqq Ź Find the best match for this triangle.

Mι Ð tτ˚
α , τ

˚
β u Ź Save the IDs related to this triangle match.

Eι Ð min pϵpτα, τβqq Ź Save the error for this triangle match.
ι Ð ι ` 1

end for
for tτα,ij , τβ,mnu P M do Ź Loop through all triangle matches.

E1pτα,ij , τβ,mnq Ð Epτα,ij , τβ,mnq Ź Query error for the 1st triangle match.
for tτα,jk, τβ,nou P M p k ‰ i and o ‰ mq do Ź Find adjacent triangles.

E2 Ð Epτα,jk, τβ,noq

for tτα,kl, τβ,opu P M p l ‰ i and l ‰ j and p ‰ m and p ‰ nq do
E3 Ð Epτα,kl, τβ,opq

if tτα,il, τβ,mpu P M and tτα,jl, τβ,npu P M then
E4 Ð Epτα,il, τβ,mpq

E5 Ð Epτα,jl, τβ,npq

Eαβ,tot Ð
ř5

y“1Ey

if Eαβ,tot ă EMAX then
Λαβ Ð tri,ms, rj, ns, rk, os, rl, psu

matchFlag Ð true
return (matchFlag, Eαβ,tot, Λαβ) Ź Match found.

end if
end if

end for
end for

end for
return matchFlag Ź Match not found.

end function
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Match Confirmation

After obtaining a set of candidate matches µ, a match confirmation algorithm is employed to (1)
accept or reject any given matches and (2) select the best match among the accepted ones, for any
given feature. The first step in the process is as follows. Let µα be the set of matches corresponding
to a generic feature with ID α. Among all matches in µα, let β and γ be the feature IDs associated
with the two minimum values of matching error, i.e. Eαβ,tot and Eαγ,tot. Then, candidate feature
matches β and γ are kept, while all other matches are rejected. To choose the best candidate match
between β and γ, the number of ID pairs appearing both in Λαβ and µ is counted. The result is an
integer score sαβ . The same process is performed for Λαγ and µ, obtaining the score sαγ . Finally,
if sαβ ą sαγ , then the feature β is confirmed as the best match for feature α. Additionally, all
the matches in Λαβ are accepted as the best matches. Otherwise, if sαβ ă sαγ , then feature γ is
confirmed as being the best match for feature α and all the matches in Λαγ are accepted as best
matches. In case both sαβ and sαγ are zero, feature α is rejected and not included in the set of
confirmed feature matches. This process is repeated for all features in the two images.

The reasoning behind the above feature confirmation algorithm is that, if a feature match is cor-
rect, then most (if not all) of the matches for the neighboring features should also be correct as
well, as they are often part of the same triangles used for matching. In other words, this process
uses geometric constraints between neighboring features to cross-validate matches. This is true for
sufficiently low numbers of missing keypoints.

Matching Results

We present here feature matching results using the low-variance feature detections (Figure 6b)
previously described. The 50 strongest features are selected in both the first and the second image for
matching. Feature matches are shown in Figure 9 together with the two images used for matching.
Out of 50 detections in each frame, the algorithm provides 13 matches (i.e. 26%). The totality of
such feature matches are inliers, i.e. the matched keypoints represent the same physical points on the
surface (up to the detection error). Figure 10 shows a magnified version of the image patches around
all matched features. One can visually verify that the appearance of matched features is substantially
different in both viewpoint (i.e., geometric appearance) and lighting conditions, with the Sun phase
angle almost symmetrical with respect to the surface normals, between the two images.

For reference, the number of good features matches (inliers) using KAZE feature detection and
description, using the original images, with default tuning parameters, and selecting the strongest
1000 features in each frame, is zero (0%). Using the same setup but increasing the number of
selected strongest features to 10000, the number of good matched rises to 23 (0.23%); however, note
that 20000 KAZE descriptors require roughly 5 GB of storage. Finally, when using SURF features
with default parameters for the matching task, only 678 and 744 features are detected in total in the
first and second image, respectively. The number of good matches related to such features is also
zero. Therefore, we conclude that the five-triangle algorithm substantially outperforms state-of-the-
art techniques for the purpose of feature matching, in the tested scenario of an asteroid surface with
substantially different lighting and viewpoint conditions. We showed that a relatively low number
of detections (i.e. 50 features) is sufficient to match the image with the previously observed one,
thus solving the loop closure problem. In this case, no outliers were produced by the matching task.
However, note that outliers can effectively be rejected by estimating the fundamental matrix and
hence leveraging pose estimates, as previously described. Future work will further increase both the
accuracy and robustness of both feature detection and description.
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Figure 9: Matched features using the 5-triangle algorithm, under different lighting and viewpoint.
13 out of 50 (25%) features for each frame are matched. The totality of matches are inliers. Zero
of out 1000 features (0%) were matched using KAZE detection and descriptors, and zero out of all
detected (678) features (0%) were inlier matches using SURF detection and descriptors. Features
are represented on top of the related OSIRIS REx’s MAPCAM images.

Figure 10: Matched features (green dots) shown on top of neighboring image regions. Rows repre-
sent features in the same image; columns represent pairs of feature matches.
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DENSE MAPPING

The camera poses and landmarks estimated by the Structure-from-Motion process can be used to
perform dense-shape reconstruction of the target body. If a portion of the surface is imaged from
multiple viewpoints, geometric relationships between observations can be used to estimate the 3D
profile of the observed surface. In particular, if the camera pose and some 3D surface landmarks are
assumed to be known for each observation, then the photometric difference between observations
can be used to infer the surface albedo and the 3D topography.

In this section, we assess the performance of stereophotogrammetric shape estimation for the case
where reference camera poses and surface landmarks are autonomously estimated using SfM. We
perform this analysis using Agisoft Metashape*, a well-known software tool for photogrammetry
applications based on digital imagery. The tool is based on the semiglobal matching method33 for
stereo processing, whereas the mesh generation from a dense point cloud is performed using the
total generalized variation minimization technique.34

The accuracy of the estimated 3D data depends on the accuracy of the reference parameters, i.e.
the camera poses and surface landmarks, as well as user-set tolerances defining the overall quality
of the shape products. In turn, these trade with computational requirements and processing time. In
this study, we set the quality requirements to their maximum so to assess the overall capabilities of
using such techniques for small-body imagery. The impact of this choice on the SfM phase is that
more features are processed than what stated in the above SfM-only simulations, to ensure a high
density of surface landmarks for stereo matching. Future work will relax accuracy tolerances and
provide more insights into computational requirements for onboard processing. We present SPG
results for 3 different image sets: (1) a full revolution around the asteroid Bennu, observed from
the OSIRIS-REx’s MAPCAM (two of the images in this dataset are those shown in Figure 9), with
a total of 180 images; (2) the pre-TaG scenario imaged using the NFTCAM, presented in the SfM
section (Figure 2); (3) the TaG descent scenario from the NFTCAM. In the NFTCAM cases, the
camera intrinsic parameters (focal length, lens distortion, and center pixel) are co-estimated in the
process, with no initial guesses provided.

The MAPCAM image set is used to reconstruct a global shape model of the asteroid Bennu.
The asteroid is observed from a distance of approximately 4 km from its center of mass, which
corresponds to a surface resolution of about 24 cm/pixel. We perform dense stereo matching first,
and we use the resulting point cloud to estimate a triangle mesh of the asteroid. The result is the 4.1-
million-faces, which we compare against Bennu’s 3.1-million-faces shape model, used as the ground
truth. Figure 11 compares the estimated and ground-truth shapes in terms of their Hausdorff distance
computed on the vertices.35 Shapes are adjusted for scale for this comparison. The mean error is
0.892 m and the maximum error is 11.9 m. As shown by the colormap, the shapes differ by less than
1 meter for the majority of surface areas. Large errors are mostly caused by poor observability of the
region of interest, because of surface occlusions, shadows, or both, bad geometry of the viewpoints,
or any of these effects combined. Further, one should note that the reference shape model is not
merely computed using the same 180-image data set, but was produced as part of a much broader
mapping campaign.

SPG results for the NFTCAM image sets are shown in Figure 12, in terms of raw estimates of the
dense point clouds. In both cases, the rich rubble-pile topography of Bennu is captured and rocks
appear separate from each other. Each point in the cloud is also associated with an albedo estimate,

*https://www.agisoft.com/
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Figure 11: Estimated global shape model of asteroid Bennu, using Stereophotogrammetry. Vertex
colors represent the Hausdorff distance error metric compared to the reference shape, adjusted for
scale. The error is also reported as a histogram (bottom-left). The mean error is 0.892 m and the
maximum error is 11.9 m.

which capture differences in the apparent brightness. Despite the lack of a-priori camera calibration,
the algorithm is able to recover the 3D scene accurately. Some surface regions, such as those around
some large boulders, are occluded for all observations and hence cannot be reconstructed in 3D. On
the other hand, regions that are only occluded in some images but are visible in others (e.g. because
of a moving shadow or changing viewpoint) are updated in the stereo matching process by merging
information from all observations. As such, the stereo matching algorithm can compensate for
moving shadows and accumulate information while the body rotates and the Sun phase evolves.

Additionally, the stereo matching algorithm accounts for different image resolutions among ob-
servation, and retains the highest-resolution estimates. For example, Figure 12b shows the topog-
raphy reconstructed using the NFTCAM while descending to the Touch-and-Go site, Nightingale.
In this case, the surface in the immediate surrounding of the site is more resolved than the further
regions, as multiple images were sampled up-close. This scenario suggests that photogrammetry
data acquired at different altitudes and during different mission phases may be merged together
automatically.

In conclusion, although a limited number of observations are used to produce the shape estimates
presented, results suggest that an end-to-end autonomous shape estimation process can produce
compelling results for a number of applications, such as onboard hazard assessment and avoidance.

19



(a) Pre-TaG image set.

(b) TaG image set capturing the Nightingale site (bottom center) and the surrounding region. The point cloud
density increases towards the site, as a function of the surface resolution from descent imagery.

Figure 12: Raw estimates of dense point clouds and points albedo using the NFTCAM image sets.
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CONCLUSIONS

In this work, we present an algorithmic pipeline for autonomous navigation and dense shape re-
construction for small body missions. The pipeline requires no prior knowledge of the observed
scenario and only makes use of imaging data. While we plan to test different scenarios and ex-
tending the algorithmic capabilities on most fronts (feature detection, extraction, and matching, as
well as pose estimation and integration with dynamics and a navigation filter), as described in the
previous sections, the presented results reveal some findings. In particular, we conclude that, for a
rubble-pile surface body observed using close-proximity imagery, and using real imaging data:

1. frame-to-frame feature matching is effective for the purpose of precise surface-relative posi-
tion estimates and 3D-landmark estimation, with no a-priori landmark estimates and using a
relatively low number of features;

2. surface photometric properties can be leveraged to detect morphological features – in partic-
ular rocks, such as low-variance and high-albedo features, previously described;

3. surface 3D landmarks and their geometric relationships provide feature descriptors that are
robust to changes in lighting and viewpoint (including scale);

4. traditional dense stereo matching techniques can effectively reconstruct a dense representa-
tion of the observed small-body shape and related topography. This process is also robust to
temporary occlusions due to moving shadows and can merge shape estimates with even large
changes in local resolution.
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