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Magellan

5 ships

270 men

4/5ths of provisions we
Flour l'
Salted meat

28




Lewis and Clark (1804)

* 3 boats
193I|b of Portable soup
130 rolls of Tobacco
30 gallons of “strong spirit”
Medical and surgical suppli
* Oilskin bags |
* Native American presents
* Sextant
* Firearms, powder, and shot




Shackelton (1914)

Woolen hats, under clothes
Canvas jackets

Reindeer fur gloves

Stoves

Tents

Dog teams
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Robotic Exploration 3.0
Subsurface, icy moons, & beyond
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obotic Exploration 1.0
Pre-Apollo Lunar exploratiot

- Mars

High-cadence trial-and-error Incremental sophistication in a multi- One-shot mission with adaptive,
e.g. Ranger, Surveyor, and mission campaign intelligent robot(s)
Mariner missions e.g. Mariner, Viking, Mars Observer,

MGS, Pathfinder, Odyssey, MRO
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Under the methane lakes on Titan?
amiliar, yet alien

EARTH
Lakes and Seas

Surface area:
126,000 km?

Surface area
58,000 km?



Underwater




Metallic Core

Images: NASA/JPL
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TIDAL FLEXING - TIDAL HEATING

Rotation of Europa around Jupiter from above Rotation of Europa around Jupiter from horizontal view

sic

Copyright 2025 California Institute of Technology. Government sponsorship acknowledged.
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HYDROTHERMAL VENTS?

Video: NOAA
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National Aeronautics and Space Administration

CLIPPER

WWW.
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Caltech/SwRI/MSSS/Gerald Eichstadt/Sean Doran

NASA/JPL-

Image



NASA/JPL-Caltech



EUROPA’S INTERIOR

METALLIC CORE

ROCK

OCEAN

ICE CRUST \

Copyright 2025 California Institute of Technology. Governmen

t sponsorship acknowledged.
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EUROPA: MORE WATER THAN EARTH

All of Earth’s water

All of Europa’s water
2x Earth’s

EUROPA

Present conditions for life?

MARS

Past Conditions for life

EARTH

Known life

Copyright 2025 California Institute of Technology. Government sponsorship acknowledged. 22



INGREDIENTS FOR LIFE?

WATER:
Much more than all of Earth’s oceans

ESSENTIAL ELEMENTS:
From formation and impacts

CHEMICAL ENERGY:
From above and below

STABILITY:
“Simmering” for 4 billion years

Copyright 2025 California Institute of Technology. Government sponsorship acknowledged.
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NASA/JPL-Caltech



Images: NASA/JPL/SSI
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NASA/JPL-Caltech/SSI
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NASA/JPL-Caltech/SSI

Global ocean

Rocky core

Hydrothermal vents

— South polar region with active jets
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Image: NASA/JPL-Caltech/SSI; Video: P. Schenk




Enceladus vents: Multiple models

Cryovolcanic

Open Conduit Model Controlled Boiling Model Volatile-Driven Model

LONG-LIVED HIGHLY- SHORT-LIVED HIGHLY- LONG-LIVED OCEAN-LIKE
LOW-SPEED . FRACTIONATED W LG/ -SPEED - FRACTIONATED W LG -SPEED - Je7”
VENTING | S it PRODUCTS JETTING &% PRODUCTS JETTING g PRODUCTS

FRACTIONATLION MACY |\ NOZZLE =7 f§ MACY \ NOZZLE =7
A7 SHALLOW : : ‘
BOILING fISSé_;f (] FRACTIONATION & CIf CULAR | NO
VEN ENTS

INTERFAE & LATENT AT | TN AT ION
RELEASE FROM INTERFACES
CONDENSHATION =5
ON WALLS
TIDAL PUMPING
AATS WATE,
SURFACE-OCEAN > 12/
EXCHANGE? FRACTIONATION : g
CIRCULARTZATION AT DEEP AFTER RAPLD iy
POSSIBLE? | 5,0,115/}/6 &/OLUTION FROM FROM 1OATER
<& 5 FIssURE - S

4> | OCEAN) CHAMBER () 00£4M/C>¢4M35€

Kite and Rubin (2016) PNAS; Nakajlmq lenger

Image: NASA/JPL-Caltech JGR Planets.
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EELS Hardware

EELS 1.0

T "i‘k <«— Sensor head

0
Tail module }
h \ A.:T'v"')v
W TS i
Tether =& % :;—a—’_____/z:_::. ’
\\_ e :‘_‘—;;«,,,ﬂ,. é“l‘ P

EELS 1.5

Hebi actuators

oo

Force/torque sen

Garden-EELS



EELS Ops System

2S State-of-the-art visualizations are used
(LIDAR, IMU, 4 - to monitor and control the robot while
stereo camera o the user interface gives the operator
situational awareness of the robot’s
local environment, health, and
planned movement.

pairs)

Proprioceptive ‘ (7 pcomotion

actuated counter-

perception and control & ’ 7 24 independently-

rotating screws)

O Y e
% 3 5 i

Tether (50m)
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July 202 2 - February 202
progress highlights
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EELS 1.5

Hebi actuators

Avionics box

Dome lidar

Force/torque sensors

Side screws
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Athabasca Glacier
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Athabasca Glacier
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(Athabasca Glacier, Alberta, Canada

Desired Terrestrial Analog Characteristics:

« Physical terrain types suitable for horizontal and vertical
mobility testing (ridges, cracks, crevasses, moulins)

Similar terramechanical properties* to Ocean Worlds
(water-ice with varying salt/regolith contaminants)

Realistic concentrations of habitability indicators for
Instrument validation (in our case, cations and anions)

Straightforward logistical access for a large team with lots
of hardware

*The temperature in the Tiger Stripes near the surface is 200 K (Goguen et al. 2013) and likely
reaches 273 K near the ice-ocean interface.

Image: NASA-JPL/Caltech






The best analog for cryo-vents on icy moons
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Vertical mobility
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EELS 1.5 robot - Generators

R

“Observation
deck”

Lr. o

Image: NASA/JPL-Caltech. Pre-decisional — For information and discussion purposes o
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SPU
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SPU
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SPU
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SPU
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What did we learn?

* No matter the terrain shape or the terrain type, EELS overwhelmed
the problem space with Degrees of Freedom.

* Operators and software develog ould figure out a gait to traverse

any terrain type
* E.g. Sidewinding in sand,
* Screw-mode on ice, or
* Cobra-scan for a large viewshe

S

* Adaptability was our superS‘ WE







Pre-A?ao//b Lunar explora

High-cadence trial-and-error
e.g. Ranger, Surveyor, and
Mariner missions

65

obotic Exploration 1.0

Robotic Exploration 3.0
Subsurface, icy moons, & beyonad

Incremental sophistication in a multi- One-shot mission with adaptive,
mission campaign intelligent robot(s)

e.g. Mariner, Viking, Mars Observer,

MGS, Pathfinder, Odyssey, MRO



Paradigm Change Needed for Future Robotic Exploration

Robotic Space Exploration 2.0 (Current): Incremental sophistication over many missions

* Complex robotic behaviors pre-designed based on detailed environmental knowledge brought by prior missions
* Took 3 decades for Mars

Orbital reconnaissance

Simple surface mission Complex surface mission

Uncertainty: = Complexity:

High Low

Robotic Space Exploration 3.0 (Future): One-shot exploration with adaptive robot(s)
* Arobot (or a team of robots) adapts its behaviors in-situ for incrementally complex tasks
* Robotic system designed for adaptation to a wide range of possible environments

Uncertainty:

Medium Medium

Complexity: Uncertainty Complexity

Low High

Land and obser Adapt for complex surface/s,

Complexity

High

Complexity:

Medium Medium

Uncertainty: = Complexity:

High Low

Uncertainty: Uncertainty

Low




Requirement for RSE 3.0 Adaptivity:
Software-defined Space System

Antenna

Circuit

Space system

Antenna pattern is defined by shape

Spacecraft capabilities are (mostly)
defined by hardware

Software-defined | Hardware-defined

Phased-array antennas

Antenna pattern is modulated by
controller

Circuit is defined by programmable gates

Spacecraft capabilities are (mostly)

defined by software

SPU




Programmable, Software-Defined Devices

Propulsion

Communication Structure Science Instruments

-defi i A tive ion thruster - i i . e
Software deflngd radio daptive io usters . Shape-adaptive materials Programmable microfluidic circuits
' e Software Defined Radio B Electron flux TT"' Fluid Input ) "’] —

b 2 [ = : o e ~ 1)/ Output 5 et
| pac .m:-u = e o ¢ “ l [\ N’ Ay j J v Emissit v < 5
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‘ ® Mixed mode o

wirk
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FILTER: DIA Correction Gut

HﬂRDVMRE

Nanoscaled electron emitters (e.g., nanotubes or nanocones)

Levchenko et al. Nature
Communications 2018

Mobility

Modular/reconfigurable robots

SOTTWARE

LUIS & Maerkl. Lab on a Chip. 2011

Programmable optical device
with metasurface III

amor. crys

Avionics
High den3|ty FPGAs

Beam steering

680ptica| filter

Popescu et al. Advanced Materials, 2024 ‘
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Lordos et al., lEEEAerspace 2013







Software-defined Space Systems for Optics
- Adaptive Optics

. - b
Actuators’ plate

‘ !. ‘4“" g %] 4 N

Small electrostatic MEMS mirror i W -
(Boston Micromachines, 1024 act) 4 _ E £ Reference body \

Capacitive sensor

armatures
Response time: < 1ms

Position noise: < 3nm rms @ 40kHz i
Figure 1. Photograph of an Iris AO . Magnets
PTT111-X deformable mirror. i




Focal plane
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Focusing Optics /

Curved Mirrors

Spectrograph

Fore-Optic/Lens

Entrance port




Software-defined Space Systems for Optics
- Optical Metasurfaces
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KISS Workshop

 Keck Institute for Space
Studies (KISS) at Caltech

* Workshop to explore the
viability and impacts of
adaptable spacecraft

 November 3-7, 2025 (by
invite only)

CE STUDIES

Earth Planetary

Astrophysics Engineer

Workshop: One-shot Outer Solar System Exploration with Software-defined

Space Systems

November 3 - 7, 2025
California Institute of Technology - Pasadena, CA 91125

Team Leads

Hiro Ono

Jet Propulsion Laboratory, California
Institute of Technology

Soon-Jo Chung
California Institute of Technology

Morgan Cable

Jet Propulsion Laboratory, California
Institute of Technology

Dani Selva

Lol D i}

'*‘.

https://kiss.caltech. edu/workshops/onesho{/o n.s-"’»*-'-)f"“ ',,\_,\ ‘ b
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The crew
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