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Abstract— This paper discusses several path planning chal-
lenges for planetary robots and the on-going efforts to address
them. The considered challenges include limited onboard com-
puting resources, degraded/failed mechanical parts, and specific
operating conditions such as the influence of atmospheric
currents on aerobots with significant dynamics. These are
examples of real-world challenges identified in the current
and potential future missions. For each of the challenges, the
paper also illustrates potential future solutions from the current
research efforts.

I. INTRODUCTION

This paper focuses on path planning and navigation as-
pects of planetary robots. The term “planetary robots” is used
here to include not only surface rovers, as the ones already
deployed or planned for Mars and the Moon, but underwater
and aerial robots as well. Some technologies needed for such
robots are currently under development and would have dual
use, both in space-based and terrestrial applications.

The Jet Propulsion Laboratory (JPL) is NASA’s lead
center for robotic space exploration. Several potential future
planetary robots are being designed at JPL for surface oper-
ations, including Mars Science Laboratory (MSL), targeted
in scientific exploration of Mars, and various rovers for
the Moon to support human exploration. Potential undersea
robots for Europa and aerobots for Venus are also under de-
sign and concept development, because the unique planetary
environments, such as potential planetary oceans and dense
atmosphere, might benefit from different types of mobility.
Figure 1 illustrates these missions in artist’s view.

Planetary environments pose unique challenges to robot
operations [4], from many operational perspectives, and
these reflect in path planning constraints and difficulties of
solutions. General challenges relate, for example, to

• Limited bandwidth for communication/control because
the distance to planets precludes real-time teleoperation
(except to the Moon); thus requiring a certain degree of
autonomy.

• Harsh environments leading to more rapid degrada-
tion of components/systems, and aging due to longer
missions. Overall, robots face degraded/faulty compo-
nents and subsystems, from sensors to actuators, and
the computing platforms in between. While designing
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Fig. 1. Artist’s conceptions of future planetary robots: (top, left) Mars
Science Laboratory [1]; (top, right) Lunar exploration with robots and
humans [2]; (bottom, left) Picture of a possible undersea robot that would
explore Europa’s oceans for life: ”Hydrobot” [3]; (bottom, right) Venus
altitude-cycling balloon based on phase-change buoyancy fluids.

robust and fault-tolerant hardware might be conceived
(and would be used in certain cases, for example,
in triple modular redundancy solutions on the critical
subsystems), it would add significantly to the costs, both
directly and indirectly (e.g. increased weight affecting
launch costs, etc.).

• Less-than-state-of-the-art technologies, due to selecting
technologies mature enough far prior to missions, often
in excess of several years prior to launch, also due to
difficult/expensive process of flight validation.

There are also specific challenges, which might depend on
a particular scenario, such as aerial exploration with balloons
subjected to various currents. In addition to Earth, seven
other bodies in the Solar System have enough atmosphere
to allow aerial exploration. The NASA 2003 Solar System
Exploration Roadmap identified aerial vehicles as a strategic
new technology for Solar System exploration [5], and empha-
sized the development of advanced autonomy technologies as
a high priority area for the operation of aerial probes. NASA’s
2006 Solar System Exploration Roadmap [6] confirms and
extends this vision, listing future Titan and Venus in situ
missions using lighter-than-air vehicles as two of its top
three flagship mission priorities. In situ platforms would
be essential because of the dense clouds that cover Titan
and Venus, limiting orbital surveys. However, the dense
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atmospheres at Titan and Venus enable the use of buoyant
robotic vehicles (aerobots) that could be either self-propelled
(airships) or wind-driven (balloons). The primary challenge
associated with their operation would be that they must
address currents constantly changing in the dynamic aerial
environments during navigation.

The rest of the paper is organized as follows. Section II
elaborates the specific challenges that planetary robots face.
Section III describes some of the ongoing efforts conducted
at JPL to address these challenges. Finally, Section IV
discusses future directions.

II. CHALLENGES IN CURRENT AND FUTURE
PLANETARY ROBOT MISSIONS

A. Resource Constraints

JPL has operated two Mars Exploration Rovers (MERs)
called “Spirit” and “Opportunity” since January 2004. In
2009, the third generation rover called Mars Science Lab-
oratory (MSL) is planned to be launched. These current and
future Mars rovers are subject to limited computation and
power resources constraints.

For example, the onboard computer of the MER vehicles
uses a radiation hardened processor, with a 20 MHz CPU and
128 MB of RAM. Furthermore, each CPU runs more than
90 concurrent tasks such as data communication, command
handling, and health monitoring. In addition, interfaces with
instruments are not optimized for speed; simply taking an
image and storing it into RAM can take a minimum of 5
seconds.

MSL is expected to have an average power generation of
about 100 W. Considering the power consumption of driving
motors and electronics, the navigational autonomy system
will not be able keep all the sensors powered on and/or keep
high CPU utilization for very long.

B. Hardware Degradation

Another challenge for planetary robots is that repairing
their hardware is infeasible once they leave Earth. During a
long mission, hardware failures will limit the capability of
the robot. In such cases, the navigational autonomy must be
able to work even with these failed hardware components.

The mission life of MERs was designed to be three
months. However, with successful operation in the Martian
environment, the rover missions have been extended sig-
nificantly (both rovers landed on Mars in January, 2004,
and both of them are still operational as of June 2008).
In 2006, Spirit’s right front drive motor stopped working,
creating significant drag on one side. Figure 2 shows the
trench developed by dragging this frozen wheel along the
ground. Spirit was able to continue driving successfully using
its onboard Visual Odometry software to compensate for the
drag induced by the stuck wheel.

C. Spatio-Temporal Planning

The challenges presented above are associated mainly
with deep space missions, where sending astronauts would
be infeasible. In future space missions in a closer range,

Fig. 2. Trench developed by dragging broken drive motor on the MER
Spirit planetary rover.

such as moon, robots would work closely with astronauts
and/or other groups of robots. How to deal with moving
agents (called movers) in the environment is becoming an
important challenge to be addressed. In addition to spatial
path planning, to avoid potential collisions, the robot must
take into account how other agents would move. In such a
case, the temporal component would play a key role, and the
path planning would become more complicated compared to
the current Mars rovers which are able to plan assuming a
static environment.

What makes the problem more challenging is the un-
certainties associated with the movers. The future motion
of astronauts would hardly be deterministic, and the future
motion of the robots operated on an unknown terrain could
not be known exactly. Thus, the planning algorithm must
accurately infer and predict their future trajectories while
allowing for the inherent uncertainties.

The planning with movers is becoming an active research
area also outside of the context of space exploration. For
example, the DARPA Urban Challenge (DUC), in which
89 teams from universities and industry teams competed,
demonstrated the urban driving capabilities of the robotic
cars that interacted with numerous manned and unmanned
traffic vehicles.

D. Airborne Navigation

Trajectory planning for an aerobot would pose very dif-
ferent problems from those faced by ground robots. These
would include the dynamics of the vehicle, and the dynamics
of the atmosphere. Planetary rovers move at very low speeds,
and from the point of view of vehicle dynamics, path
planning could be considered quasi-static systems. Aerobots,
by contrast, would have significant vehicle dynamics (which
include virtual inertias). This is true both for self-propelled
vehicles (airships or Montgolfiere balloons with propellers)
and for standard unpropelled Montgolfieres (which would
have altitude control, but no horizontal control capability).

Atmosphere dynamics expresses itself in weather (storms
and turbulence) and in the planetary wind field. For safety
reasons, an aerobot would need to avoid turbulent weather,
which can be considered a dynamic, spatio-temporal “obsta-
cle“. At the same time, a planetary aerial vehicle should



Fig. 3. Pre-drive annotation on the image from the MER onboard camera

Fig. 4. Opportunity Drive Modes in first 410 Sols [9]

take advantage of local and global winds to reach a de-
sired destination. This would be important for self-propelled
aerobots, due to onboard power limitations, and would be
crucial for unpropelled aerobots, where “sailing” the three-
dimensional wind field might be the only way to reach a
general area of scientific interest (such as the methane lakes
region in the northern hemisphere of Titan) [7]. While initial
estimates of the global wind field might be derived from a
Global Circulation Model (GCM), it would be essential for
an aerobot to estimate the local wind field frequently to take
advantage of it.

Trajectory planning for aerobots bears similarities to the
challenges faced by Unmanned Sea Surface Vehicles (USSV)
or Autonomous Underwater Vehicles (AUV). Here, the ocean
dynamics (currents and waves) act as a disturbance on the
vehicle path, and have to be compensated accordingly. JPL is
also addressing this problem in the context of USSV projects,
such as the OASIS boats [8].

III. ON-GOING RESEARCH IN PLANETARY MOBILE
ROBOT PATH PLANNING

This section describes several on-going efforts being con-
ducted at the Robotics section of JPL to overcome the
challenges presented in Section II.

A. MER Activity Planning with Limited Resources

Due to the resource constraints, Mars rovers must be
selective about what resources to use at when. MER has
three drive modes. The so-called “Blind” mode simply drives
to the next waypoint without onboard terrain analysis or
obstacle avoidance. The “VisOdom” mode performs visual
odometry [10] that can measure the actual wheel slip by
comparing images taken before and after each drive step

Fig. 5. A 2D projection of a simple example of the state lattice, a repeated
and regular pattern of sampling robot state and motions (inset in the figure).
Discrete values of state (gray squares in the figure) are vertices of the graph.
The feasible motions that take the system from one state to another are edges
between the corresponding vertices (gray lines). The solution to the motion
planning problem is a path in this graph, a concatenation of edges (thick
black line). Since each edge is kinematically feasible by construction, the
solution is also feasible and can be used by the robot without any post-
processing such as path smoothing.

(normally less than 75cm). This is useful when driving
on steep/rough/slippery terrain. The “AutoNav” mode uses
Stereo Vision to detect geometric hazards, assesses terrain
traversability and then autonomously plans the rover’s drive
to avoid any hazards.

If the rovers had enough computation power, VisOdom
and AutoNav could be always enabled for safe driving. With
limited resources, however, turning on these modes slows
down the rover quite a bit (e.g., Visual Odometry drives are
typically 8-9 times slower than blind drives). Therefore, if
the human assessment of nearby terrain shows a large flat
open field of bedrock, Blind mode is likely to be used [11].
Humans optimize the rover’s time by operators determining
which mode to use in different terrains, relying on images
taken the previous day. Figure 3 shows an example of the
pre-drive assessment made by human rover drivers.

The style of driving changes depending on the terrain.
Figure 4 shows what modes were used during the first 410
Sols of the Opportunity driving. Note that in the area labeled
“Inside of Endurance Crater,” VisOdom is mostly used, while
Blind driving was enough for other areas. That is because the
rover experienced slopes between 17 and 31 degrees while
in the crater.

B. Motion Planning under Computational Constraints

In environments with rough terrain, a robot’s motion plan-
ner must consider a detailed model of the mobility constraints
and capabilities of the vehicle. The only available path may
be a complicated maneuver, and it is important for the
planner to generate it in order to prevent failure of traversing
the environment. At the same time, the motion planner
must operate under significant computational constraints. A
planner based on search in a specially designed search space,
a state lattice, was developed and successfully applied in this



setting. The state lattice is a sampling pattern of robot state
and motions. By representing the state lattice as a graph,
search algorithms (e.g. A*, D*, etc.) can compute the motion
plan by finding the shortest path in this graph. Furthermore,
by discretizing the state space, in contrast to control space,
the state lattice simplifies reducing dispersion of sampling,
thereby allowing a more uniform distribution of samples in
the state space. This is beneficial to exploring the state space
efficiently, as the search attempts to find a path from the
specified initial state to the final state.

A simplified example of the state lattice graph is shown in
Figure 5, where the squares are the vertices, and the lines are
the edges. The example shows a lattice of three dimensions
(translational coordinates (x, y) and heading) projected on
2D plane for illustration. A feasible motion between two
robot states is a concatenation of the edges (thick black line).
This approach was successfully tested in field experiments
using a FIDO rover prototype [12], [13]. The rover was
capable of traversing an unknown rough terrain environment
while replanning, on average at 10 Hz, due to incoming
perception information, using a single CPU shared among
all software processes of the rover.

C. Predictive Model Compensation for Impaired Hardware

When mobility systems degrade, a standard technique is
to compensate for the path following error reactively. Spirit
deals with deviations from the intended path caused by the
broken wheel by generating a correction factor proportional
to the measured crosstrack error from Visual Odometry.
In situations with more critical hardware degradation, a
mobile robot could wander significantly from the desired
course, leading to inefficient navigation behaviors that could
endanger the platform. Consider the problem posed in Figure
6, where a mobile robot must move from a start state to a
goal state to deploy instruments on a science target. To model
the effects of degraded hardware, the robot operates with a
disabled rear left drive wheel. If purely reactive approaches
fail to move the base in a position where the science target is
within the workspace of the manipulator, it would be difficult
to generate the proper corrective action given the vehicle’s
nonholonomic constraints (Figure 6a).

Alternatively, predictive motion planning and control
methods could be used to reduce the path following error. A
more informed controller that knows that it must steer to the
right to compensate for the dragging wheel over the course
of the path would potentially be more effective. A model-
predictive control and trajectory generation technique in [14]
can be used to compensate for disturbances predictively,
rather than reactively (Figure 6b). This method was validated
in field experiments using the Rocky8 rover prototype [12]
in the JPL Mars Yard.

D. Spatio-Temporal Planning in Dynamic Environment

1) Decoupled Search: A* search is a widely-used search
method applied over a grid, but extensions are required to
apply it to a robot with kinematic constraints in dynamic

(a) w/o predictive model comp. (b) w/ predictive model comp.
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Fig. 6. Predictive model compensation of impaired mobility and wheel slip.
In (a), a plan is generated assuming ideal mobility and no wheel slip. The
result of applying this action with impaired mobility (broken rear left drive
wheel) is shown. In (b), given the model of impaired mobility, the model-
predictive trajectory generator predictively compensates for this effect.

Fig. 7. Left: Input to the vehicle over two time steps. Right: Resulting
trajectories. The number of branches grows exponentially.

Fig. 8. Search over three time steps. If two different input sequences
(shown in orange lines) result in the same states, one of them is pruned.

environments. In Team Caltech’s entry to DUC, we have de-
veloped a decoupled spatial/temporal planner. It first finds an
obstacle-free path to the goal (spatial planning) that ignores
other movers. It then finds a velocity profile that minimizes
the risk of collisions with movers (temporal planning). This
decoupling allows the planner to be as efficient as the static
planner. Although this is effective for driving on structured
roads, the resulting path could be highly suboptimal in a
more general setting.

2) Search in Action Space with Pruning: Another ap-
proach being developed that uses A* search is a spatio-
temporal planner that can simultaneously find collision-free
trajectories with both static obstacles and movers. The search



Fig. 9. Output of the spatio-temporal planner. The robot is at the bottom,
going to a target in the upper right corner. Movers are shown with black
circles. Note that the best trajectory goes through a mover. By the time the
robot reaches there, the mover will have moved away.

Fig. 10. RRT with closed-loop simulation. Input to the vehicle (shown in
red) is sampled, and using the stabilizing controller and the model of the
vehicle, the predicted states of the vehicle (shown in green) are obtained.

is over the input velocity command to the vehicle and its
duration, and the vehicle states are obtained by feeding in
the velocity command to the vehicle model. Because of the
large decision space, the full dimensional search is limited
to short look-ahead times (on the order of a few seconds).
To avoid the exponential growth of the search space, some
pruning heuristics are employed, as shown in Figures 7 and 8.
Figure 9 shows a representative result of an optimal trajectory
with movers. This algorithm has been also demonstrated on
a mobile robot platform in an environment with pedestrians.

3) Randomized Planning: For problems with a high di-
mensional search space, sampling-based approaches have
been employed successfully. Recently, Rapidly-exploring
Random Tree (RRT) has been extended to include closed-
loop prediction of the full vehicle dynamics [15]. Unlike

Fig. 11. Navigation in a wind field. A 3D wind field is shown on the left,
and an optimal wind-based trajectory going from the start (blue dot) to the
goal (green dot) is shown on the right.

Fig. 12. Waypoint flight control under severe wind disturbances. Desired
positions are marked with ×, and the red lines show the actual flight paths.
[16]

the standard RRT, an input to the controller is sampled,
which consists of a 2D point and a speed command profile.
Then, it performs forward simulation using the vehicle model
and the controller to compute the predicted trajectory, as
shown in Figure 10. This enables the planner to gener-
ate smooth trajectories much more efficiently, while the
randomization allows the planner to explore cluttered and
dynamic environment. The predicted trajectory is checked
with static and dynamic obstacles for feasibility and risk
evaluation. The main advantages are that the simulation can
easily incorporate any nonlinear control law and nonlinear
vehicle dynamics, and the resulting trajectory is dynamically
feasible. This planner was successfully demonstrated at the
final race of DUC.

E. Aerobot Planning with Combined Dynamics

Planning an optimal aerobot trajectory that takes into
account vehicle and atmospheric dynamics requires us to
model the problem in terms of a continuous dynamic system.
An optimal control problem (OCP) can be formulated by
combining the vehicle dynamics and the atmospheric dynam-
ics in the state equation, and defining some cost function to



minimize.
In practice, trajectory optimization problems such as OCP

often are converted to a multistage (discrete time) dynamic
system model, and the solution is obtained using dynamic
programming techniques (of which A* is a special case).
Also, if there is significant uncertainty in the wind field
model, planning should be done over a limited horizon
and the wind field model should be updated with data
obtained from the aerobot. Figure 11 shows a minimum-
time trajectory in a wind field. The generated trajectory can
be followed using a simple feedback control, and waypoint-
based navigation results are shown in Figure 12. In this field
experiment, the maximum speed of the aerobot was 13 m/s,
with wind gusts up to 15 m/s. Even under significant wind
disturbances, the aerobot reached all waypoints (shown with
blue ×).

IV. DISCUSSION

This paper presented the challenges related to path plan-
ning for planetary robots. The following challenges have
been reviewed: resource-constrained autonomy; dealing with
degraded hardware; planning with movers; and significant
vehicle dynamics under significant wind flows. The paper
illustrated how these challenges are addressed by discussing
on-going efforts conducted at JPL.

Despite numerous on-going efforts, several issues remain
open for research.

First, to efficiently use the resource, the MERs had to
be manually configured for each terrain type, even within a
single drive. Optimal resource allocation algorithm should
be developed, and in this regard, a coarse but long-range
terrain analysis is a key to the automatic planning of a drive
mode. This requires better adaptation to novel terrain, and
a new adaptive terrain analysis technology needs to be also
developed that can integrate various types of data such as
slip measurements, terrain geometry, terrain texture, possibly
onboard science analysis.

To develop a planning architecture with resource con-
straints, a more detailed modeling of overall system resource
use is needed, such as a prediction of CPU resource use as
a function of sensed data size (e.g., image resolution).

Feedforward methods using model-predictive trajectory
generation techniques can be effective for mobile robot
navigation when disturbances are regular and reasonably pre-
dictable. In the face of disturbances that are unpredictable or
difficult to predict (e.g. wind, wheel slip), model-predictive
techniques can be effectively used in combination with
feedback control methods. This is important for planetary
mobile robot applications because feedback control rates are
inherently slow from Visual Odometry being so expensive.
Online system identification will further improve the per-
formance of model-predictive techniques for planning and
control by regularly tuning the predictive motion model. An-
other direction for degraded hardware compensation includes
reconfiguration of the hardware itself. Self-reconfigurable
hardware is becoming an active research area although

further efforts are needed to bring the technology to the
robotics field.

Initial results with dealing with movers showed the im-
portance of handling uncertainties. Even with perfect sens-
ing, the movers’ future trajectories are uncertain, and more
stochastic representation of movers and how the planner
plans on it are important areas of further research. In addition
to the drivable/non-drivable representation of the 2D static
path planning, several new representations such as an object
list of movers, a map of occluded region, and flows of
potential mover direction in a currently open space, are
required, which would complicate the planning problem.
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