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Jupiter’s icy moon Europa is among the most promising locations to explore for signs of extraterrestrial life in our

solar system. However, searching for biosignatures on the surface of Europa presents an unprecedented set of

challenges: immense uncertainty, limited energy, and few opportunities for operator feedback. Effectively carrying

out a robotic science campaign under these conditions will require a system with a greater degree of autonomy than

any planetary exploration mission to date. In particular, onboard scheduling and execution are required for

robustness to uncertainty in surface conditions, variation in lander performance, and science discoveries to

maximize the quantity and quality of science data returned to Earth during a fixed, limited lander lifetime. Here

we represent a proposed Europa Lander surface mission as a utility-driven hierarchical task network and establish

through analysis that onboard autonomy using automated mission planning with execution feedback and predictive

taskmodels results inmission execution that ismore consistently productive compared to traditional static approaches.

We design a simulated onboard autonomy framework built by integrating two software components—Multi-mission

EXECutive and Europa Lander Autonomy Prototype—to properly simulate the Europa Lander domain and

demonstrate empirically that the proposed planning and execution system is capable of commanding a set of

realistic surface scenarios as part of a larger Europa Lander surface autonomy software prototype. We expect

that an approach to scheduling and execution grounded in decision theory will be an enabling technology for future

tightly constrained planetary surface missions.

I. Introduction

A I PLANNING for robotic applicationsmust often address varia-

tion in execution and uncertainty in the accuracy of environment

models. In space-based applications, this can be especially challenging
when the environment is largelyunknown, reducing the qualityof our a
priori models of the world. To address these problems, we propose an
integrated approach to planning and execution in an unknown, unpre-
dictable environment that is grounded in decision-theoretic reasoning,
that is, driven by expected return, but still adheres to severe onboard
computing constraints.
The primary motivation for this work is a mission concept to

perform in situ analysis of samples collected from the surface of the
Jovianmoon Europa [1]. The ultimate goal for a Europa Landerwould
be to analyze surface material and communicate the resulting data
products back to Earth. The mission variability results from decisions
of 1)where to excavate and sample and howmany samples to collect in
the face of unpredictable rates of progress, as well as 2) which data to
downlink and how much to summarize in light of whether biosigna-
tures are detected, and if so, how strong the indication of biosignatures
is. To reward the accomplishment of these goals, we assign utility to
tasks such as sample excavation and seismographic data collection, but
the overwhelming majority of the mission utility is not awarded until
the lander communicates the data down to Earth.
Unlike prior NASA missions, a priori domain knowledge is

severely limited and uncertain, and communication with Earth is
limited by long blackout periods (over 42 h out of every 84 h).
Consequently, a successful mission requires a planning and execu-
tion framework that can operate autonomously for extended periods
of time, is robust to unprecedented levels of uncertainty, and is still
capable of maximizing its overall utility. Additionally, because of the
harsh radiation environment at Europa, mission lifetime and onboard
computing are severely limited [2].†††

On the other hand, the Europa Lander mission concept has a well-
defined set of actions the lander must perform in order to execute the
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mission. Our planning algorithm leverages this domain-specific
mission knowledge by making use of hierarchical task networks
(HTNs), which have been successfully used in many real-world
applications (a complete description can be found in Sec. II.C), and
using heuristic-guided search to examine various task combinations
tomaximizemission utility.We further improve the robustness of our
approach with the inclusion of two onboard autonomy capabilities
for handling uncertainty during execution: flexible execution and
replanning with plan optimization.
To validate our approach, we compare four approaches to planning

on the Europa Lander problem, including approaches used in prior
missions—a static planwithout failure recoverymechanisms, a static
plan with ground input for failure recovery (similar to current Mars
Rover operations) [3], flexible execution without replanning, and
flexible execution with replanning optimization—and examine the
effect that onboard autonomy (flexible execution and replanningwith
plan optimization) has on the utility of these approaches. We empiri-
cally demonstrate that each technique shows significant improve-
ment in utility achievement in the Europa Lander domain.
To demonstrate that the proposed approach is applicable to the

execution of a realistic surface mission, we present a prototype imple-
mentation of onboard planning and execution software that exhibits
these features (flexible execution and replanning with plan optimiza-
tion) based on two primary software components: the Multi-mission
EXECutive (MEXEC) [4] and the Europa Lander Autonomy Proto-
type (ELAP).We provide a detailed description of both components as
well as our efforts toward integrating them into a prototype environ-
ment that models the relevant behaviors of a hypothetical Europa
Lander. Additionally, we demonstrate this planning and execution
software in action by commanding mission simulations under a wide
variety of conditions representative of the wide range of situations a
hypothetical Europa Lander might be expected to handle effectively.
The paper is therefore structured as follows: We begin with a

description of the Europa Lander mission concept, including two
concrete mission baselines, and our formulation of the problem as an
HTN. Next, we describe the planning algorithm and the integrated
planning and execution techniques—flexible execution and replan-
ning with plan optimization—that comprise the main planning and
execution approach.We then describe a prototype implementation of
the proposed techniques using MEXEC, the Multi-mission EXECu-
tive, integrated into a higher-fidelity simulation environment, the
ELAP, to carry out realistic surface mission scenarios. Afterward,
we present empirical results of a basic surface mission simulation for
the Europa Lander mission concept and examine the effectiveness of
our approach across a wide array of plausible mission scenarios.
Finally, we conclude with a review of related work and a brief
discussion of future work.

II. Europa Lander Mission Concept

A. Problem Description

The primary goal of the Europa Lander mission concept is to
collect samples of material from the Jovian moon’s surface, analyze
the sampled material for signs of biosignatures, and communicate
that data back to Earth [1]. Because of the harsh radiation environ-
ment, sampling activities must be preceded by an excavation step,
which removes the sterilized upper layers of the surface and exposes a
region for sampling that is more promising in the search for bio-
signatures. Additionally, there are secondary objectives to take pano-
ramic imagery of theEuropan surface and collect seismographic data.
Lander operations are generally limited to the accomplishment of
these two overarching goals. This provides significant structure to the
problem since the mission concept clearly defines the sequence of
actions required to achieve these goals.
The lander is tasked with excavating one or more sites on the

Europan surface, collecting one or more samples from each site,
analyzing those samples, and returning that data to Earth. The work-
space accessible to the lander’s robotic arm is divided into multiple
excavation sites and further into multiple sampling targets within each
site. The relative scientific value of any given sample is unknown until
it is collected, and the lander is expected to assess the potential value of

each target in situ using visual information before deciding which
samples to collect and in what order. After excavation and sample
collection, samples must be transferred into scientific instruments that
analyze the material and produce data products. Data generated from
sample analysis is assigned a scalar science value for planning pur-
poses, but, crucially, themission is not considered to have achieved any
actual utility from these sampling activities until the resulting data
products have been communicated back to Earth.
In addition to sampling tasks, the lander may engage in seismo-

graphic data collection and period panoramic imagery tasks. These
are considered secondary goals, with lower utility associated with
their completion. As such, the data products that these tasks generate
are considered to have a lower value. However, these tasks also
involve no surface interaction and have less uncertainty associated
with them as a result.
It is important to note that primary utility is only achieved when

data is downlinked back to Earth.‡‡‡This is true for both the sampling
and seismograph/panorama tasks. Some excavation sites or sampling
targets may provide more utility than others if, for example, one of
those targets has a positive biosignature and the other does not.
However, regardless of the quality of the material that the lander
samples, no utility is achieved unless that data is communicated. This
dynamic means that while potential utility is generated during the
sampling and analysis phases, it is only realized by completing
relevant communication tasks.
The Europa Lander mission concept is also constrained by a finite

battery that cannot be recharged. Battery life is a depletable resource,
and the lander must use its energy as efficiently as possible. Each task
saps energy from the battery, and our algorithm must therefore plan
accordingly tomaximize utility given this constraint. In addition to this
challenge, the surface characteristics of Europa are uncertain, and any
prior mission model that is generated before landing is sure to have
inaccuracies. In particular, the energy consumption of the excavation
and sample collection tasks is largelyunknown.There is also significant
variation in the utility of any given sample, since thevalue of sampling a
given target on Europa depends onwhether thematerial is scientifically
interesting, for example, whether a biosignature is present.

B. Example Surface Missions

The Europa Lander team developed reference surface mission spec-
ifications to establish the context and scenarios within which Europa
Lander surface mission autonomy would be expected to operate [1].
Thesewere used to clarify the set of functionalities that an ELAPwould
need to implement in order to simulate a surface mission, as well as to
provide a framework for designing for the scenarios that should be run
on the completed software. We describe these below.

1. Basic Surface Mission

Basic Surface Mission 1 (BSM-1), depicted in Fig. 1, was used to
guide initial prototype development, and it describes a deliberately
minimal set of requirements for surface operations that includes
excavating a single site, collecting three samples from that site, and
downlinking the resulting data. In parallel to sampling, the lander
must also command ongoing seismometry and periodic panoramic
imaging tasks. This reference mission includes no “ground-in-the-
loop” (GITL) interactions and is to be executed entirely autono-
mously. In BSM-1, the science values assigned to data generated
from sample analysis are fixed values assigned to each potential
sample, but unknown to the system at the start of the mission and
computed onboard. Figure 1 displays the strong dependency struc-
ture inherent to the Europa Lander mission concept. In order to
sample, the lander needs to have excavated a site; in order to analyze,
the lander needs to have collected a sample; etc.

2. Reference Surface Mission

Reference Surface Mission 1 (RSM-1), depicted in Fig. 2, is
designed to explore the complexities introducedbyGITLmanagement

‡‡‡While context imagery while preparing sampling locations has some
science value, the primary science value is from the analysis of the samples.
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of initial excavation and sampling activities. In RSM-1, the lander is
taskedwith collecting, analyzing, and communicating results for up to
three samples at each of a number of different candidate excavation
sites. Depending on the amount of energy available to the lander and
the resource use of onboard activities, it may not be possible to return
data for all reachable sampling targets, so the systemmust intelligently
prioritize activities to maximize productivity. The science values in
RSM-1 for the analysis data are assigned as a function of the full
history of the biosignature results from any already-analyzed samples,
along with a weighting of the estimated relative value of each remain-
ing sample target as determined by visual inspection.
There are checkpoints within the task specification after which a

“ground hold” flag is applied, and sampling may only progress
after ground operators release the hold on a subsequent uplink.
This creates opportunities for ground operators to inspect and influ-
ence the onboard decision-making process if desired. A “fully
autonomous” flag is also provided, which, when set, removes these
GITL checkpoints and allows the lander to plan and command
multiple sampling cycles without intervention.

This scenario also introduces four tiers of data products: Critical
data, whichmust be transmitted immediately,Decisional data, which
must be transmitted at the next predetermined downlink time to
provide context for ground operators, Mandatory data, which must
be transmitted before the end of the mission, and Residual data,
which is only to be transmitted if additional energy remains at the
end of the mission. Finally, this reference mission introduces config-
urable limits on daily and per-downlink energy allowance. The
sampling flow for RSM-1 is illustrated in Fig. 2.
The behaviors illustrated in these diagrams represent commands

that can be issued by the Planning and Execution component. Delin-
eating appropriate interface boundaries was one of the important
questions in the early design stages of the autonomy prototype and
the reference missions.
In RSM-1, the policy that the lander should follow is to collect up

to three samples from a site, continuing to sample at that site as long
as positive biosignatures are discovered there, and moving on to the
next site whenever a negative biosignature is discovered. It should
choose sites, and samples within a site, in the order of relative

Fig. 1 Sampling process specification for Basic Surface Mission 1 (BSM-1).

Fig. 2 Sampling process specification for Reference Surface Mission 1 (RSM-1).
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estimated science value as determined by onboard vision algorithms
run on imagery of the lander’s workspace. We refer to this valuation
scheme as the science subway map, and it is depicted in Fig. 3.

C. Problem Formulation

We model the problem of commanding the Europa Lander refer-
ence missions using HTNs. While other decision-theoretic models
for sequential decision-making, such as Markov decision processes,
have been used successfully in many settings, they are computation-
ally expensive and generally not well-suited for domains with con-
current actions and continuous states, as considered here. HTNs,
however, allow us to compile significant domain-specific knowledge
of the dependency structure across tasks into the task network to
improve performance so that it can be solved onboard. Indeed, HTNs
have been used successfully in industrial and other real-world appli-
cations to improve the tractability of planning problems in systems
such as SHOP2 [5] and SHOP3 [6].
In an HTN, hierarchical tasks are decomposed into a set of sub-

tasks. We refer to the higher-level tasks as “parent tasks,” and refer to
their children as “subtasks.” Parent tasks may decompose into a
number of different sets of subtasks; we refer to each of these sets
as a potential “decomposition” of that parent task. Finally, we refer to
tasks with no decompositions as “primitive tasks.” These primitive
tasks represent tasks that the lander can be directly commanded to
perform. In the RSM-1 mission concept, the primitive tasks that we
modeled are as follows:
1) Take Mono Panorama
2) Find Excavation Sites
3) Prepare Arm
4) Excavate Site(N)
5) Find Collection Targets(N)
6) Collect Sample(N, M)
7) Transport Sample
8) Prepare HGA Comm
9) Discard Sample
10) Start Seismometer
11) Stop Seismometer
12) Science Analyze
13) Downlink
14) Downlink with Ground Hold
15) Uplink
In addition to these commandable tasks, we also define a Hotel

Load that is scheduled at the start of the mission and models a small
continual energy cost and a Seismometer-ON task, which repre-
sents the resource costs associated with running the seismometer
instrument.
Decompositions enable us to compile domain-specific knowledge

of task dependencies into the task network, significantly reducing the
plan search space. In addition, we can treat all subtasks of a parent
task as a singular block for planning purposes. The lander primarily

achieves utility after completing an entire sequence of sample, ana-
lyze, and communicate. Decompositions allow us to treat “sample,
analyze, communicate” as a single unit and schedule them accord-
ingly. Thus, ourmodel intrinsically biases the lander against planning
to sample without a corresponding communication task. This may
not always be optimal; for example, when excavation and sampling
are cheap, communication is very expensive. However, for our
problem, energy use is dominated by the excavation and sampling
tasks, and the decomposition paradigm effectively encodes this
domain-specific knowledge into our planning routine.
There are three main parent task types in our mission model. The

first is a Preamble task, which consists of post-landing initialization
and other one-time initialization tasks. Second are sampling tasks,
which consist of excavation, sample collection, transfer, analysis,
and communication subtasks. Excavation can take place at one of
three excavation sites and may be skipped if an excavation has
previously occurred for the specified site. For collection tasks, the
lander may choose between nine collection targets—three for each
excavation site. Then, for communication tasks, the lander may
choose to either communicate raw data or compressed data. Finally,
there are Seismograph/Panorama tasks, which consist of seismo-
graphic data collection, panoramic image collection, and commu-
nication of that data.
We assign utility primarily to two activities: sampling and com-

munication. Both of these task models are assigned a numeric value
representing their utility, which can be updated online by the plan-
ning and execution system if knowledge at execution time alters the
expected utility of a given action. Utility for these tasks is achieved
only after their full decomposition has been successfully executed.
Thus, for sampling utility to be achieved, a corresponding commu-
nication step must successfully complete.
We assign utility to sampling tasks in order to differentiate between

sites that may be more or less interesting, depending on the scientific
value of the site. Communication utility is larger and remains con-
stant. For the communication tasks, we assign higher utility and cost
to tasks that communicate raw data compared to those that commu-
nicate compressed data. This simulates a Pareto-optimal “menu” of
communication options. The combination of sampling and commu-
nication utilities represents the overall utility of a parent sampling
task. Seismograph/panorama utility is driven solely by communica-
tion utility.
Formally, we define our planning problem as follows: An input to

the problem is a set of tasks T � ft1; : : : ; tng, with each task tk
represented by a tuple fck; uk; dk; P; Ig, where
1) ck represents the task’s cost,
2) uk represents the task’s utility,
3) dk represents the task’s nominal duration,
4) P is the set of the task’s preconditions (these may be based on

resource values or on the execution state of dependency tasks), and
5) I is the set of its impacts on resource timelines.
This matches the timeline representation of the execution state

used by [7]. For our problem, we assume that we have a fixed cost
budget b. In the Europa Lander domain, this budget represents the
non-rechargeable battery, with each task using up some amount of
that battery’s energy. We therefore aim to maximize utility by sched-
uling tasks subject to the following constraints:
1) For all tasks, all preconditions are valid.
2) For all tasks, all impacts are valid.
3) The sum of all task costs does not exceed b.
Given this context, we predict the overall utility achievement of a

plan using an estimate of utility per unit cost uavg � k�uk∕ck�. If
every task in the plan is always successful, our expected utility for a
plan under this prior would therefore be buavg, the maximum utility

achieved under that plan with cost-budget b. To factor in task failure,
we assume that tasks fail with a fixed probability P�fail� following
a Poisson distribution, so that each task fails with a fixed failure
rate,§§§ and consider three increasingly costly methods for failure
recovery: flexible execution,Replan, andGround. Generally, the cost

Fig. 3 “Subway map” sample selection strategy in Reference Surface
Mission 1 (RSM-1).

§§§Extending the analysis to more realistic plan structure, failure patterns,
and interactions with exogenous events are future work.
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of resolving failures is in the form of time and energy, which may
reduce the opportunity for future task execution andhence the potential
future reward. We describe these methods in detail in the next section,
but note here that we assume that some subset of these failures can be
resolvedwith flexible execution, a strictly larger subset can be resolved
using replanning, and the largest set of failures can be resolved via
waiting for ground input.
Consequently, ifP�FE� is the probability that a failure is resolvable

by flexible execution,P�Replan� is the probability that an event is not
resolvable by FE but is resolvable by Replan, and P�Ground� is the
probability that an event is not resolvable by either FEorReplan but is
resolvable by Ground, we find that

In practice, we assume that P�Ground� � 1.0 − P�Replan�−
P�FE�, that is, waiting for Ground can resolve any failure mode that
is not resolved by FE or Replan, which brings the probability of a
failure occurring and being unresolved to 0.0, but may be costly to
perform as Ground is only intermittently available.

III. Approach to Planning and Execution

In this section, we describe both the main planning algorithm and
the onboard autonomy methods that comprise the overall planning
and execution approach proposed.

A. Utility-Maximizing Search

Our planning algorithm uses the HTNmodel of the Europa Lander
problem to build a search graph, with nodes holding partial plans and
edges holding task decompositions. We perform a heuristic-guided
constrained-search on this graph and select the best plan explored.
The algorithm consists of four phases: preprocessing, initialization,
exploration, and plan selection.

1. Preprocessing

First, a preprocessing step flattens task decompositions into a single
layer, such that parent tasks decompose into a chain consisting only of
primitive, nonhierarchical subtasks (see, e.g., the task chains for
sampling presented in Fig. 4). This allows us to assign utility and
energy cost directly to each decomposition because its breakdown into
disparate subtasks has already been performed. Then, each decom-
position’s expected utility is the sumof each of its subtasks’ utility, and
the same is true for energy cost. This step is performed offline, one time
per domain model. While this preprocessing has exponential runtime
in the worst case, for our Europa Lander (as well as most space
applications we have seen), the majority of the search occurs in
scheduling the expanded tasks, not action selection, so this preprocess-
ing is tractable (managing this complexity is an area for future work).

2. Initialization

Our search tree consists of nodes containing partial plans and their
associated energy cost and utility.A node’s cost is the sumof the costs
of each task in the node’s partial plan; likewise, the node’s utility is

the sum of the utilities of the (sub)tasks (task utility that is dependent
on other tasks is a topic for future work). In the initialization phase,
the algorithm creates a single node containing an empty plan with
utility and cost 0. Then, it iterates through all task decompositions
created in the preprocessing phase in order to generate the set of edges
that may be followed from a given node. To finish the initialization
phase, the algorithm populates an exploration queue with (node,
edge) pairs, pairing the singular initial node with all edges in the
collection. At the end of the initialization phase, then, the exploration
queue consists of all task decompositions paired with the empty plan.

3. Exploration

In the exploration phase, the planner pops the top of the exploration
queue to get �P; T�, where P is a partial plan, and T is the list of
primitive subtasks comprising a task decomposition. It then attempts
to schedule all tasks in T given the state of the world produced by
following the planP. If the tasks cannot be scheduled, it moves on to

Fig. 4 Two possible decompositions of a single parent task; which of these can be scheduled depends on the current mission phase, which is explicitly
modeled on a timeline.

Algorithm 1: Europa Lander Planning

Input: A list of tasks to schedule T

Output: A plan of scheduled tasks P

/* initialize exploration queue */
node_collection = [];
add (plan=[], utility = 0, cost = 0) to node_collection;
edge_collection = [];
for d in task.decompositions do

new_edge = �d; d:utility; d: cos t�;
add new_edge to edge_collection;

end
explore_q = [];
for edge in edge_collection do

add (node_collection[0], edge) to explore_q;
end
/* search exploration queue */
num_explored = 0;
while num_explored below exploration bound do

num_explored++;
plan, decomp = explore_q.get_max();
if decomp tasks can be added to plan then

new_plan = plan + decomp tasks;
add new_plan to node_collection;
for edge in edge_collection do
edge.cost_total = edge.cost + compute_heuristic(edge);
if edge.task not in new_plan and new_plan.cost + edge.cost_total

below max_cost then
add (new_plan, edge) to explore_q;

else
prune(edge);

end
end

end
end
/* find best plan in node collection */
best_plan = null;

for plan in node_collection do
if plan.utility above best_plan.utility then
best_plan = plan;

end
end

return best_plan;
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the next exploration queue item. If the tasks can be scheduled (i.e.,
their preconditions are met and their impacts do not produce any
conflicts), a new graph node is created. This node contains a new plan
P 0, the resulting plan after adding the tasks in T to P.

4. Plan Selection

After creating this plan node, the planner iterates through the edge
collection again, pairing the new plan with all possible tasks. In this
iteration, it ignores tasks that have already been scheduled in the plan,
so as to avoid duplicates. The algorithm also filters these pairs to
ensure that the total cost P:cost� T:cost < M, where M is the
maximum energy cost allowed (equal to the current battery charge
of the lander). This bounds our search by pruning from our search
space the entire subtree that the edge leads to, and we further bound
the algorithm’s search by limiting the number of exploration candi-
dates examined. Note, however, that this bound maintains optimality
if we allow the algorithm to expand the entire space, as any subtree
pruned due to infeasibility must necessarily have utility no greater
than the best-found plan at the time of pruning. After filtering, these
pairs are added to the exploration queue, and the next queue item is
examined. The exploration queue is a priority queue, with (plan,
decomposition) pairs ordered by a heuristic value to improve search
results. Given a plan, decomposition pair �P; T�, we assign the
heuristic value h�P; T� � P:utility� �T:utility∕T:cost�. Finally, in
the plan selection phase, the algorithm iterates through all candidate
plan nodes, selecting the plan with the highest utility. Ties are broken
according to energy cost, where lower is preferred.
In theRSM-1 implementation, we add an outer loop that iteratively

builds the schedule in priority-ordered phases. First, fixed exogenous
uplinks are added as the highest priority. Next, prioritized batches of
tasks representing phases of the mission are taken as candidates for
scheduling; each time a best schedule is found with a given set of
tasks, that schedule is held fixed and used as the initial node in
scheduling the next lower priority batch of tasks. Scheduling inde-
pendent phases of the mission in this manner allows us to further
reduce the search space.

B. Flexible Execution

Flexible execution (FE) is a lightweight rescheduling algorithm
that runs at a much higher cadence than the planner [8,9]. FE has two
main properties: 1) it is much less computationally demanding than
replanning as it does not search, and 2) it is less capable than
replanning. FE allows the system to handle less-severe unexpected
events without incurring the cost of replanning. Previous NASA
missions have made heavy use of flexible execution, such as the
Mars 2020 Perseverance rover [10]. Our implementation differs in
focus, emphasizing responses to adverse events.
In our system, flexible execution consists of two major compo-

nents. The first is task push. If a task’s preconditions are not met,
before considering the task to have failed to execute, we allow the
system to wait for some amount of time for this inconsistency to
resolve. Such a situation might occur, for example, if the required
preceding activities are delayed or run long. The executive checks the
task’s preconditions and delays dispatch until either the conditions
have been met or the task’s wait timeout has been exceeded. The
second component of flexible execution is automated retry. If a
task completes with a failure code, FE can immediately reschedule
the task if its preconditions are still met (and update the plan with the
new predicted end time and resource usage of the task), avoiding
replanning cost and delay.
In the context of the Europa Lander domain, flexible execution

offers significant value because many robotic tasks, such as excava-
tion and sample acquisition, can vary significantly in duration and
hence resource consumption. Moreover, the algorithm handles this
variation without disrupting the execution flow.

C. Replanning with Plan Optimization

For more complex execution variations, we turn to replanning
during execution. Replanning uses search to construct the plan based
on the current state. The current state includes state and resource

values (accounting for failed activities and resource under/overruns),
as well as the current time (accounting for execution time variation).
Additionally, utility estimation, predicted duration, and predicted
resource expenditures for future tasks may be updated (e.g., imaging
may indicate that a sampling site now looks more promising and/or
may take longer/shorter to excavate or sample). Replanning enables
the incorporation of all of this new information into decision-making.

D. Planning and Execution Strategies

Using these methods, we examine four planning and execution
strategies of increasing onboard autonomy: Static, Ground,
flexible execution (FE), and Replan.¶¶¶

In Static, a plan is generated before execution time and then
executed without change. No failure responses are available, so the
first task failure results in the remainder of the plan not executing. In
Ground, we introduce a mechanism for failure resolution: waiting
for ground input. We assume that ground input is able to resolve all
failures. The plan generated on the ground, and any task failures
result in a halt to plan execution, ground fixes the problem, then
execution resumes, although incurring considerable cost. In the FE
strategy, we allow flexible execution of our plans using the FE

algorithm, which can resolve some but not all failures, with all other
failures handled by waiting for ground input. Finally, in the Replan
strategy, FE is applied first to attempt to resolve failures; if FE cannot
resolve the failure, replanning is applied; if replanning cannot resolve
the failure, the Ground strategy is applied (see Fig. 5).
We describe each of these strategies below.

1. Static Strategy

We first analyze the Static strategy. Assuming that the plan is a
linear sequence of activities and execution terminates with the first
failure, the number of tasks executed before the first failed task
follows a geometric distribution with probability P(fail). Hence, the
expected number of attempted tasks needed to observe a failure is
1/P(fail), and the expected number of successfully executed activities
is (1/P(fail)−1) (but bounded by the number of tasks n). Therefore,
the static expected utility is the lower of the “no failure case” (at left
below) or (at right) the expected utility per task uavg ⋅ cavg times the

number of expected activities executed as indicated below:

U�Ss� � min uavg ⋅ b;
uavg ⋅ cavg�1 − P�fail��

P�fail� (2)

where cavg denotes the average cost of each task.

2. Ground Strategy

In theGround strategy, the only error response for all failures is to
“go to ground” to resolve them, which always allows plan execution
to continue. If our plan hasn tasks, this occursnP�fail� times, costing
cg energy per occurrence. The utility achievement of this strategy is

therefore

U�Sg� � uavg b − P�fail�ncg (3)

3. Flexible Execution Strategy

In the FE strategy, we introduce flexible execution and assume that
a subset of task failures can be resolved with this feature. The
probability of a task failing in this way is P�FE� and note that
P�FE� is a subset of the total failure cases P�fail�. We assume that
flexible execution has a negligible cost. Then, the utility achievement
of plan execution using this strategy is

U�Sf� � uavg b − �P�fail� − P�FE��ncg (4)

¶¶¶Note that in each case, the plans are generated using the Uitility-
Maximizing Search algorithm.
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4. Replan Strategy

Finally, we consider the Replan strategy, which incorporates
flexible execution and replanning with plan optimization. Unlike
flexible execution, replanning incurs some non-negligible cost cr.
We assume that, like flexible execution, replanning is able to resolve
some subset of task failures. As noted above, we denote the proba-
bility that a given task fails in a way that can be resolved via
replanning, but not flexible execution, as P�Replan�.
Failures are resolved by the least costly resolution mechanism.

Thus, when a task fails, our system attempts to resolve it by flexible
execution, if possible, falling back to replanning and ground inter-
vention in sequence. To model plan optimization, we provide our
planning system with opportunities to discover utility at certain
points during execution.We denote the number of such opportunities
as d and the expected additional utility discovered as ud. Then,

U�Sr� � dud � uavg b − n�P�Ground�cg � P�Replan�cr� (5)

A description of the utility discovery mechanism can be found in
Sec. IV.C.2.

IV. Simulating Onboard Autonomy for
the Europa Lander

As the Europa Lander mission concept provided both the justifi-
cation and motivation for the work discussed in this paper, a critical
component of validating the effectiveness of our approach is to have a
realistic simulation of the domain. There are two main software
components that comprise the simulated setup:MEXEC, the onboard
planning-and-execution software, and ELAP, which simulates the
execution of realistic surface mission scenarios. We describe both
components and their integration below.

A. MEXEC

For our empirical evaluation and simulationwork,we useMEXEC
[4] to implement the approach to autonomy we have presented here.
MEXEC is onboard planning and execution software that uses task
networks to generate and execute conflict-free schedules to achieve
goals. It consists of three modules: a planner, an executive (also
sometimes referred to as a controller), and a timeline library, the
latter of which is used by the planner to search for valid intervals to
place tasks. MEXEC was designed specifically to be used for flight
software and to have a consistent, cooperative design between the
planner and executive.
Figure 6 illustrates the MEXEC modules and their interactions

with the ground and other flight components. MEXEC assumes that
there is a state database that reports system state and a command

dispatcher that dispatches commands. The ground sends a task net-

work to the spacecraft, which is read by the planner. The planner

schedules the tasks with the help of the timeline library and the

system state from the state database. Once sufficiently close to the

start time of a task, the planner passes it on to the executive, which

performs real-time constraint checking to ensure safe execution of the

task. Task execution updates are sent from the executive to the

planner to keep the planner informed in case replanning is necessary.

1. Task Network

In the context of MEXEC, a task network is an abstract represen-

tation of the behaviors that the executive has authority to command,

the constraints on timing, precedence, and resource availability that

must be obeyed when executing those behaviors, and the expected

resource use of those behaviors, grouped to achieve some goal or to

cover some temporal extent.
Tasks represent a desired change to the system. Besides a unique

ID and a name to identify them and a ground-specified priority to

inform scheduling, tasks include a command to execute (which may

be NO-OP or even a sequence) as well as the expected effects of

executing the task based on spacecraft behavior (impacts) and the

conditions required for execution (constraints). Impacts and con-

straints can be defined at the beginning (pre), during (maintenance),

or at the end (post) of a task. Conditions to set limits on task deviation

at execution time, such as timeouts for waiting on constraints to be

met or when to skip tasks, can be defined as control conditions. In the

case of execution failure, tasks can also specify contingencies, which

are actions to take on the task network by the planner, such as adding

new tasks from templates. Templates are tasks that are available to the

planner but that are not explicitly requested to be included in the

schedule. An immediate response by the executive in the case of task

failure can also be defined in the form of a command to execute.

2. Timelines

MEXEC uses timelines to model its predictions of the values that

system resources and states will take as a function time. These time-

lines are used by the planner to reason about task feasibility and

timing, as illustrated in Fig. 7. Timeline definitions include a type

(which allows for modeling continuous vs discrete resources), an

initial value, and a specification of the range of possible values that

the timeline can take.When a task that includes one or more timeline

impacts is placed by the planner, its impacts are applied to the relevant

timelines at the relevant times, and in that way the timeline comes to

represent the expected value of a given resource at any point in time

during the mission as a function of the behaviors that MEXEC plans

to command.

a) Original Plan b) Static Strategy: task failure leads to early termination

c) Flexible execution: task extended to continue execution d) Replanning: task replaced after brief replanning
period

1. Black text indicates planned future tasks.

2. Red text indicates failed tasks.

3. Green text indicates successfully executed tasks.
e) Ground intervention: task replaced after longer
ground communication period

Fig. 5 Execution strategies.
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The timeline library supports planning by calculating valid inter-

vals for tasks. Many of the concepts outlined in [11] for common

capabilities for different timeline representations are supported by

this timeline library, including support for analyzing schedules and

constraints for state and resource timelines, which we separate into
atomic, state, claimable, cumulative, and cumulative rate timelines.

Each resource or state that is referred to in a constraint or impact is

represented as its own timeline and can either portray values reported

by the spacecraft system or values managed internally by MEXEC,

also known as internal states. Impacts from tasks are placed on the
timelines to change the timeline value and are projected into the

future to predict future states to compare to constraints and determine

conflicts. Impacts can assign a value, a change invalue, or a change in

rate to a timeline. The aggregation of impacts and their projections

provide a timeline result, or expected value, at any given time. A
constraint is in conflict if the result during the constraint is not within

the prescribed values. System state updates from the state database

are also applied to the timelines to keep the latest spacecraft values

synchronized. This allows the planner to perform its periodic con-

straint checking on all states with up-to-date values.
During scheduling, the planner uses the timeline library to look for

valid intervals inwhich to place a task. Avalid interval is one inwhich

a task can be placed without creating conflicts. Any previously

scheduled tasks have their impacts and constraints placed and pro-

jected on the relevant timelines. To find valid intervals for a task, the
timeline library systematically places the task at times within its

commit window and checks for conflicts. Timeline results are also

adjusted when feedback from the executive notifies the planner that

task execution has deviated from its originally scheduled time. In this

case, the task’s impacts and constraints aremoved to reflect the actual

execution of the task.
Additional information about the timeline library can be found

in [9].

3. Planner

The MEXEC planner is a component that takes as its input a task
network and, using the valid interval calculations provided by the
timeline library, generates a conflict-free schedule of tasks to per-

form. It then commits tasks at the appropriate time to the controller to
be commanded. Figure 8 shows an example visualization of a sched-
ule output by the MEXEC planner.
The planner, with the valid interval calculations provided by the

timeline library, generates and maintains conflict-free schedules
given an input task network. In every planning cycle, the planner
takes the following actions in order:
1) Commit tasks to the executive
2) Consolidate impacts
3) Schedule tasks (configurable)
4) Repair conflicts (optional)
5) Optimize the schedule (optional)
The planner makes use of various timing windows to inform

decisions. The first is the plan process interval, which defines the
frequency at which the planner cycle is run. This interval must be
longer than the worst-case duration of the planner cycle. The plan
process interval also influences the duration of the commit window,

which is used to determine which tasks should be passed on, or
committed, to the executive, as first defined in [12]. Any scheduled
taskwith a start time before the end of the commit window should be

Fig. 7 Both past measured values and future projected values of a resource are captured on a timeline. Constraints on the timeline value are used to
determine valid intervals for scheduling a task. Image credit [4].

Fig. 6 Diagram of the interactions between components in MEXEC.
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committed. Since tasks are only committed at the beginning of the

planning cycle and tasks should be committed before their start

time, the commit window must at a minimum be as long as the plan

process interval.

Another important window is the scheduling window. Unsched-

uled tasks with a preferred start time before the end of the sched-

uling window are considered for scheduling by the planner during

the planning cycle, allowing the planner to work on a subset of the

problem at a time. The planner then schedules the tasks within the

plan horizon, which starts after the commit window, to prevent tasks

from being scheduled before they can be committed, and extends to

the plan end time, which defines the time before which all tasks in

the task network should be scheduled. During scheduling, the

planner checks for conflicts during the conflict checking window,

which starts after the commit window and goes until the maximum

time allowed on timelines. The conflict checking window starts

after the commit window since any tasks already committed to the

executive should not be changed by the planner since theymay have

started executing already, and any conflicts that occur at execution

time will be handled by the executive.

After committing tasks, the planner consolidates impacts on the

timelines, combining the past impact results into a single result to

reduce the memory necessary to represent a timeline. The memory

footprint of MEXEC in general is adjustable based on various con-

figuration values. Next, the planner schedules any tasks in the sched-

uling window. One feature of MEXEC is that it is easy to plug in

different scheduling algorithms that are most appropriate for the

application in which it is being used.

The planner also handles incoming information when it is not

executing its repeated cycle. This includes reading task network files,

handling state updates from the state database to be placed on time-

lines (as mentioned in the Timelines section), and interpreting task

execution updates from the executive. Task networks are uploaded to

the spacecraft from the ground in the form of a binary file. The

planner reads the file and performs input validation before storing
the information to ensure that the incoming timelines and taskswill fit
within the availablememory and satisfy anyassumptionsmade by the
tasks. Both state database updates and task updates are used by the
planner to update timelines, which provide information to the planner

in the case that replanning is required. Task updates also notify the
planner of task completion status, including if and why a task failed.
This information is used to determine if any contingency actions need
to be taken.

4. Executive

The executive is the component responsible for task execution and
handles adjustments needed for execution deviation (i.e., flexible
execution). The MEXEC executive converts constraints and control

conditions into Boolean expression trees to be evaluated at each stage
of task execution on a per-task basis. The evaluation is based on the
system state reported from the state database or from internal state
propagation. Each transition to a new stage, and any faults, are
reported to the planner.
In the executive, all constraints are monitored separately for each

task. Preconstraints, including the start time of the task, must be

achieved before the task will start. If the constraints are not achieved
within a defined timeout interval, the task is considered failed. Once
the constraints are achieved, the executive dispatches the command
associated with the task and starts monitoring any maintenance
constraints in the task. The executive expects a command response
to indicate that the commandwas dispatched and completed success-

fully. If the command response comes back with an error, or the
command response does not come back within a defined timeout
interval, the task fails. Additionally, if any of the maintenance con-
straints do not hold true before the end of the task, the task fails. If the
command response returns with success and the maintenance con-

straints hold, the task completes with success after the duration of the
task has been reached.

Fig. 8 Sample of a full mission schedule: 3 sites excavated, 9 samples collected overmultiple sols, plus episodic imagery, fixed exogenous uplinkwindows,

and downlinks. Mission ends when battery depleted.
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B. Europa Lander Autonomy Prototype

To demonstrate the effectiveness of our proposed approach to

system-level autonomy, we implemented a Planning & Execution

module in the context of the Europa Lander Autonomy Prototype

(ELAP), a suite of software developed to simulate the execution of

realistic surface mission scenarios [13]. The purpose of ELAP is to

provide a platform for rapid scenario experimentation to investigate

different surfacemission autonomy operations concepts, technologies,

and architectures for a Europa Lander mission. A major focus of the

prototype was to provide a platform for testing the ability of planners

and executives to successfully carry out mission scenarios, including

responding to variations in the state and behavior of the system and its

environment and transmitting data back to the Earth.****

ELAP consists of a modular set of components, which can be

broadly categorized into: simulations of the environment external to

the lander, simulations of the lander itself (e.g., hardware and instru-

ments), prototype implementations of onboard flight software, proto-

type implementations of ground systems, and user interface elements.

The relationships between these modules are illustrated in Fig. 9.

1. Lander and Environment Simulations

The simulation part of ELAP includes components representing

the behavior of the sampling subsystem, onboard instruments, heat-

ing, battery and power management, and a communication subsys-

tem. Each of these subsystems represents an interface between the

lander itself and the outside environment and, as such, includes

components simulating the lander’s state and behavior as well as

components thatmodel the state and behavior of the environment that

the lander is interacting with. The Sampling Subsystem is imple-

mented by Sampling Autonomy for Europa Lander (SAEL), a func-

tional autonomy software stack developed in parallel to ELAP to

perform realistic simulations of robotic sampling behaviors, includ-

ing estimations of the time and resource consumption of those

behaviors. On the environment simulation side, SAEL uses the

Dynamics Algorithms for Real-Time Simulation (DARTS), which

included a lander model with mast, legs, a 5-DOF arm, plus tools, as

well as a model of surface material properties [15].

The Energy and Thermal Autonomics subsystem models the state

of the lander’s batteries and simulates the power draw of all com-

manded and automatic lander activities. It also models the thermal

state and simulates the heating of the lander’s thermal zones, both

directly (from explicitly commanded preheat and maintenance heat

activities) and indirectly (via the waste heat generated from robotic

activities). The environmental simulation for this subsystem consists

of a thermal model of the Europan atmosphere, which exerts a

significant cooling effect on the lander’s components. The following

instruments are simulated as part of ELAP: a gas chromatography

mass spectrometer, microscope, and Raman spectrometer to perform

analysis on collected samples, as well as a seismometer and science

camera to collect episodic data throughout the mission. Instrument

simulation software is used to generate representative data at varying

data volumes and science values, including biosignature levels (for

sampling), quakes (for seismometry), or image changes (for science

cameras), as well as content-based data reduction and summariza-

tion, to provide the system with choices of data to downlink that

varied in both size and degree of scientific value.
The Communications subsystem includes models of the lander’s

radios, the light-time transmission delay between Earth and Europa,

and the Deep Space Network to provide realistic simulations of the

transmission delay, bandwidth, and power draw for downlink and

uplink activities. As work done by the lander only has value if the

resulting data is communicated successfully back to Earth, commu-

nication scheduling was an important focus in the prototyping effort

but falls outside the scope of this paper; instead, a complete descrip-

tion can be found in the Appendix.

C. Prototype Integration

A major part of our work on this project involved integrating

MEXEC into ELAP to attempt to simulate full realistic surface

missions. This integration and simulation effort shed light on a

number of challenges that would be present in a real surface mission.

One of the chief themes that we uncovered as part of this effort is that

framing the scheduling of a hypothetical surface mission as a utility

maximization problem requires thatwe have accurate estimates of the

utilities of the tasks under consideration, as well as accurate estimates

of the task parameter models (e.g., duration, energy use). In addition,

in many realistic scenarios, these values may be context-dependent.

In this section, we describe our approach to these challenges and how

they were implemented in the prototype.

1. Utility Estimation: Ranked Scores

Due to its short life expectancy, it is crucial that the Europa Lander

minimize its time sitting idle. With long communication delays to

Europa, the lander must often make the decision on what is best to do

Fig. 9 Planning & Execution subsystem in the context of the ELAP architecture.

****The prototype onboard software components include the SAEL sam-
pling software, instrument analysis implementations, energy and thermal
management, the communications subsystem, high-level behavior manage-
ment, state management, and the planning and execution subsystem. In the
case of this work, the planning and execution subsystem is implemented by
MEXEC. It should be noted, however, that ELAP’s modularity extends to
supporting integration with other planning and execution platforms. For
example, as part of the larger Europa Lander Autonomy Prototyping effort,
the TRACEonboard executive [14]was also used extensively during develop-
ment and evaluation.
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next with limited input from the ground team. Doing this requires an
onboard estimation of the relative utility of the options presented to it.
The utility of a task is defined by the utility of the data product it
generates. The utility of a plan is the sum of the utility of the tasks in
that plan. These utilities are used to evaluatewhat has been done so far
and what is planned to be done next.
Specifically, we estimate the utility of data products, tasks, and

plans using a ranked set of science scores. Each ranked score is a
value from 0 to 1 and represents an independent measure of utility.
The set of scores is ranked to allow somemeasures to dominate others
when comparing utilities. For example, the ultimate goal is to down-
link a data product that contains the results of an onboard science
analysis used to detect biosignatures (i.e., signs of life). The score for
a data product with this analysis is given the highest rank. But there
are other tasks that lead up to this analysis, each producing its own
data product. The scores for these data products are included in the
utility estimation but are given lower ranks. Therefore, a data product
or task with a higher score for the final analysis will always be
considered to have higher utility, regardless of the other scores. Only
when the scores are equal at one rankwill the scores at a lower rank be
compared.
Every utility measure, whether computed from actual data or

predicted for future data, contains the same set of science scores.
This set corresponds to the different types of data collected by the
primary subtasks of the lander and is ranked in the order in which
these subtasks are performed. Specifically, the ranks from highest to
lowest are as follows:
1) Mission
2) Analysis
3) Postcollection
4) Precollection
5) Postexcavation
6) Pre-excavation
7) Default
The default rank is the lowest rank and allows some value to be

given to a data product or task just for existing (when all other scores
are 0). The cost of including the data or task will be considered
separately. The pre- and postexcavation ranks are used for scores
given to the data collected (e.g., images) before and after excavating a
site. The pre- and postcollection ranks are used for scores given to the
data collected before and after collecting a sample at a site. The
analysis rank is used for scores computed from the final onboard
analysis of the data. Themission score is given the highest rank and is
used to bias the planner toward performing certain actions according
to themission rules. For example, themission score is used to enforce
the rules of the subway map, which ensure that no more than three
samples are collected at a site, and the first negative biosignature at a
site directs the lander to collect samples at a different site. The basic
idea is that when two data products have the same score for a step later
in the process, the scores for the intermediate data leading up to that
step are considered.
Oncewe have calculated (or predicted) the utility of a data product,

this same utility can be assigned to the task that produces that data
product. And when all tasks have been assigned a utility, we can
estimate the utility of a partial plan by adding up the utility of all tasks
in that partial plan. To do this, we add utilities by independently
adding the scores at each rank. This maintains the dominance prop-
erty, where a higher score at a higher rank is always considered better
than any score at a lower rank. The resulting utility can then be used
by the scheduler to compare or sort tasks and partial plans in amanner
similar to lexicographical order. This ensures that the best possible
tasks are considered and that the search will consider higher utility
plans before lower ones.

2. Utility Prediction: The Assessor

As part of the scheduling process, the MEXEC planner needs to
predict utility values for hypothetical future science tasks. The pre-
dicted utility is different from an executed utility, which is a utility
calculated from data products that have actually been generated. We
specifically care about the utility value for the data that could be
produced by a planned task, assuming that there is available time and

resources to downlink that data. In addition, the utility of a planned
task may be context-dependent, as it will depend on the history of
prior observations. For example, if the lander has already excavated a
site, we can calculate scores for the pre- and post-excavation imagery
data that was collected. If multiple sites have been excavated, then
each site will have these scores assigned. Because it plans into the
future, MEXEC will consider collecting and analyzing hypothetical
sample targets at each of these sites. As no information is known yet
about these samples or the utility of imaging or analyzing them, until
these tasks are executed, their utility will need to be predicted. To
address this, we developed the Assessor module, a software compo-
nent that takes as input a task and its context and outputs a predicted
utility value. The Assessor module evaluates the combined task and
context against mission rules and constraints to compute an expected
utility value for that task in that specific context. The context includes
both existing data products relevant to the new task as well as data
products we would expect to receive from tasks that have been
planned to support the new task. For example, when considering a
new sampling task at a site that has already been excavated, the
context includes the existing excavation data and any planned pre-
collection imaging of the specific sampling target. The planner then
sends the task and context combination to the Assessor, and uses the
resulting utility to evaluate the search branch that adds this task.

3. Model Parameter Updates

Tasks in our system represent behaviors commanded by the plan-
ning and execution system and model the values of impacts that we
expect those behaviors to have on system states and resources. The
high level of uncertainty inherent in a mission to Europa means that
our system must be robust to inaccuracies in the prior estimates for
these impact values. One way of ensuring such robustness is to
generate planning and execution policies that can result in productive
missions in spite of such inaccuracies [16]. We identified the follow-
ing as potential sources of uncertainty in a Europa Lander mission:
1) Energy
a) Tasks take more/less energy than expected
b) Battery level drops unexpectedly (exogenous event)
c) Battery level at mission end is unreliable

2) Excavation Depth
a) Excavation rate slower than expected
b) Unable to dig past threshold in one site
c) Unable to dig past threshold in all sites
d) Excavated trench collapses (i.e., reversed progress)

3) Heat
a) System generates more/less heat than expected
b) System cools more/less quickly than expected
c) Sudden generation of heat/cooling (exogenous event)

4) Data & Communication
a) Data rate higher/lower than expected
b) Data buffers full
c) Earth rise/set delayed (e.g., object blocking antenna)

5) Task Performance
a) Any task fails
b) Task succeeds, but does not have the expected impact (suc-

ceeds erroneously)
c) Tasks take longer/shorter than expected

Additionally, as part of the ELAP, we used feedback from the
sampling subsystem to demonstrate in situ updates to a subset of
these values: task durations and energy impacts. The lander began its
mission with uniform prior estimates for these task model parame-
ters. After performing an initial sample collection task, the sampling
subsystem provided actual measured values for the power draw and
duration required for the activity. MEXEC used these values to
update its modeled impact values for sampling tasks at the same site
by replacing them with the newly measured values.

D. Facilitating Ground Interactions

With substantial levels of onboard autonomy,we envision the need
for a mission paradigm in which ground operators increasingly
communicate intent (rules, constraints, and incentives that guide
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system behavior) rather than specific commands or sequences of
commands. In this paradigm, the onboard system uses a mission
model as its input, and the outcome is determined by the combination
of model, system state, and execution state. Unlike with a plan or
sequence, the model implies closed-loop execution with many pos-
sible outcomes. For this reason, we expect to need to develop new
operation processes and tools with a focus on building confidence
that the model will result in outcomes that operators prefer. These
tools would enable us to engage in probabilistic reasoning about the
expected behavior of the onboard system as we seek to maximize the
likelihood of preferred outcomes and/or minimize the likelihood of
undesirable outcomes across a wide variety of potential situations.
We envision an iterative process for authoring the onboard

mission model: 1) generate the initial model, 2) use predictive tools
to characterize expected outcomes (simulations/statistics), 3) use
explanatory tools to understand the causes of unexpected and/or
undesirable outcomes, 4) use advisory tools to make targeted
updates to the model to result in more desirable outcomes, and
5) repeat until satisfied (or until time is up). This would require a
modeling technology to facilitate the construction of plans with
science intent and the iterative design process, as well as techniques
for outcome/execution prediction, visualization, explanation, and
advisory techniques (e.g., to fix undesirable behavior, add/change
this constraint), to facilitate the operators learning process while
helping them reassure that the spacecraft will complete the plan
successfully. A similar process would be used for both the initial
model generation and mid-mission model updates.
In the context of the ELAP prototype, we identified three classes of

interactions through which the ground team could influence the land-
er’s behavior at runtime: 1) changing onboard state values, 2) changing
task parameters, and 3) altering the task network directly. Onboard
states thatwould impact lander behavior included a flag indicating that
a “ground hold” was present, preventing certain activities from being
scheduled until it was lifted, aswell as sampling-related information in
the onboard database that could influence the ordering of activities
(e.g., astrobiology signature results). Task parameters exposed to
ground control include task model priors, such as the expected dura-
tions of robotic excavation and sampling tasks.

V. Empirical Evaluations

A. BSM-1 Simulation and Evaluation

To test our approach, we ran simulations of our planning and
execution system commanding three variants of the BSM-1 reference
mission described in Fig. 1. The first is the base scenario, in which
each task consumes an amount of energy drawn from a normal
distribution centered around its a priori expectation in the task net-
workwith a standard deviation of 10%. In the second variant, we bias
this noise such that tasks are expected to consume 10% more energy
than modeled. Finally, the third variant biases noise in the opposite
direction, such that tasks are expected to consume 10% less energy.
For each variant, we simulated each of the four planning/execution
strategies discussed in our theoretical framework and measured the
utility achieved. In simulation, the failure probability of each task is
uniform and independent. Each failure resolution mechanism is
assumed to have a fixed cost and always succeed in resolving the
issue. The data for each figure shows themean utility achieved across
50 simulations of the scenario.
For our model calculations, we use Eqs. (1–5). We estimate our

average utility per cost (uavg) by analyzing plans generated by a
prescient planner. This planner has perfect execution information a
priori, so plan execution exactly matches the planner’s predictions.
Task failure probability is assumed to be P�fail� � 0.1, and we
assume flexible execution is able to handle 30% of such failures
for P�FE� � 0.03, while replanning is able to handle an additional
60% of remaining failures for P�replan� � 0.042 and ground can
solve the rest for P�ground� � 0.028.
Ourmodel predicts theStatic strategy to perform poorly since it

has no failure resolution mechanisms and is thus likely to terminate
quickly. By introducing a failure recovery mechanism, our model
predicts the Ground strategy to improve performance considerably.

However, this failure recoverymechanism is still fairly costly. TheFE
strategy introduces flexible execution to mitigate this. As such, our
model predicts a higher utility achievement since some set of failures
are now resolved by a less costly mechanism. Finally, the Replan
strategy is predicted to perform the best of all the strategies. Like the
FE strategy, it introduces another failure resolution mechanism and
also introduces additional utility through plan optimization. When
utility is discovered at execution time, the Replan strategy is able to
exploit that discovery, where the other strategies are not.
In Fig. 10, we compare the predictions of our model to the

measured utility achievement of our system in simulation. We see
that the four strategies qualitatively follow the model’s predictions.
Themodel usesuavg as away to estimate utility achievement based on
power, smoothing performance across the entire execution into a
linear model. However, in the Europa Lander domain, utility is
primarily achieved only during communication events. Because the
model views utility gain as purely linear, it is unable to capture the
spikes in utility inherent in the domain.
In the Europa Lander domain, a site only needs to be excavated

once, butmultiple samples can be taken from a single excavation site.
This means that the first sample taken at a site is much more costly
than future samples. Because of this, if the system tends to run out of
energywhile attempting to sample a site for the first time, themodel is
likely to overestimate utility gain since a significant portion of energy
is used while no utility is gained. On the other hand, when the system
can repeatedly sample from an existing site, the model underesti-
mates its utility. This behavior is prominently seen in the ground and
FE strategies in Fig. 10. Both strategies spend a significant portion of
their execution repeatedly sampling from an excavation site, leading
to higher utility gains than expected during these portions of the plan
execution.
Another issue is the simplistic plan structure presumed by our

model. In general, plan dependencies can be considered a set of
graphs. For the Europa Lander domain, there are no merges (except
for activities shared for efficiency, such as downlinks); therefore, plan
structures look like forests or sets of trees. In our analysis model, we
presume that all activities in the plan form a single linear sequence.
Because a plan is a set of trees, a failure in one tree would not stop
execution in another tree—reducing the failure cost. Additionally,
exogenous conditions such as Earth-in-view are required for down-
link so that failure costs are nonlinear (a 1 h delay could push a
downlink to the next Earth-in-view 42 h later, or conversely a delay
might not delay downlink at all as the downlinkwaswaiting for a later
Earth-in-view).
For the Replan strategy, we also consider the effects of utility

discovery and plan optimization in replanning. To determine a value
for d, the number of times that utility discovery can be exploited, we
calculate an upper bound for this value based on the total energy

Fig. 10 Average utility achieved in simulation of the base Europa
Lander domain for four planning strategies, compared to theoretical
model predictions.
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available to the system. However, the system may not be able to take
advantage of utility discovery this number of times since it may run
into too many task failures, or the planner may simply choose to
complete other tasks. Thus, the calculations for our model tend to
overestimate the value of utility discovery in the replanning strategy.
Next, we consider the effects of biased noise on the utility achieved

by our system. First, we examine the scenariowhere all tasks use 10%
more energy on average than expected. A comparison of this scenario
and the base scenario is shown in Fig. 11a. Naively, we might expect
utility in each scenario to decrease by about 10%. However, because
utility is achieved in spikes through the completion of fairly lengthy
chains of tasks, events have an impact on utility only if they increase or
decrease the probability of successfully completing a chain of tasks. In
the “more energy” scenario, the ground strategy is largely unaffected.
The Replan strategy is affected more heavily, since a lower pool

of energy available limits the strategy’s ability to take advantage of
the discovered utility. On the other hand, because it is able to replan, it
can make use of lower-cost actions such as Seismograph/Panorama
tasks to gain utility despite lacking the energy to complete a sample.
Finally, we consider the scenariowhere tasks take 10% less energy

than expected (Fig. 11b). Here, the ground strategy improves con-
siderably in performance, while FE improves at a lower clip. This is
consistent with what we saw in the previous scenario. The Ground
strategy is able to benefit significantly from the extra energy and
complete an extra sample cycle, while FE is not as close to this
boundary and thus is not affected as strongly.
The Replan strategy also sees significant benefits from extra

energy. Extra energy enables additional samples, whose benefit is
amplified by the potential for utility discovery. In addition, the
Replan strategy is able to integrate knowledge of the additional
energy during execution time as it updates state predictions with
reality on the ground. Thus, instead of settling for a Seismograph/
Panorama task, as might occur in the base or high energy use
scenarios, the replan strategy is more often able to process a sample.

B. ELAP Simulation and Evaluation

1. Simulated Scenarios

We designed and executed a set of scenarios intended to represent
variations in conditions and behavior that a Europa Lander mission
might plausibly encounter. These scenarios were selected as being
representative of important classes of variation in mission conditions
and lander performance that the system must be capable of respond-
ing to in a robust manner. They cover such areas as maximizing the
utility of data returned to Earth under a wide variety of sampling
outcomes, incorporating state feedback during execution, and chang-
ing task model parameters (both impacts and constraints) during

execution. These scenarios, and many others, are being studied to
better understand the challenges in deploying an operational onboard
autonomy system for the Europa Lander Mission Concept. In each
scenario, the onboard autonomy would be expected to carry out the
mission to completion with as little loss to overall achieved utility as
possible:
1) All samples positive: This scenario is the “baseline” against

which performance on all other scenarios could be compared. In this
case, all aspects of the lander’s state and resource use closely match
their modeled values, and all samples produce positive biosignature
results.
2) All samples negative: Similar to the baseline case, the initial

state and lander performance match expectations, but in this case all
samples produce negative biosignature results.
3) Low starting battery state-of-charge: In this case, the state-of-

charge at the start of the mission is 50.
4) Ground input changes excavation order: In this case, ground

operators update the relative science values of the excavation sites
after they have been assigned an initial science value via onboard
algorithms.
5) First sample negative: In this case, the first sample results in a

negative biosignature; all following samples are positive.
6) Ground input changes mission model: In this scenario, ground

operators uplink a newonboard planningmodel that specifies that the
lander should sample from a single target at each site, regardless of
science value.
7) Increased decisional data volume: In this case, the seismometer,

science camera, and sampling instrument analysis data product gen-
eration are all updated to produce significantly more decisional data.
8) Sudden low battery: In this scenario, the available state-of-

charge is reduced to 10.
9) Higher comm energy allocation: In this case, limits on per-sol

energy that can be spent on communication drastically increased
(35×) from baseline, representing a case where there are essentially
nomission-level constraints on comms energy allocation, driving the
relative effort spent on communication versus science activities.
10) Slower heating: In this case, the simulated ambient temper-

ature is dropped to 85 K (from 100 K at baseline), resulting in
additional time and resources needing to be spent on heating.
11) Sudden downlink slowdown: In this case, the downlink rate is

reduced from50 to5kbps after the third sample is collected, simulating
a scenario in which the lander is instructed by ground operators to
communicate at a slower rate due to poor Earth/DSN conditions.
12) Increased mandatory data volume: In this case, the seismom-

eter, science camera, and sampling instrument analysis data product
generation are all updated to produce significantly more raw man-
datory data.

a) Average utility achieved in simulation of the Europa
Lander domain where all tasks take 10%more energy than
expected, compared to empirical results in the base domain.

b) Average utility achieved in simulation of the Europa
Lander domain where all tasks take 10% less energy than
expected, compared to empirical results in the base domain.

Fig. 11 Results from the BSM-1 experiment.
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2. Findings/Lessons Learned

Our results for the prototype integration and scenario demonstra-
tions confirm that a system-level autonomy approach like the one we
developed here is capable of successfully commanding a complex
surface mission. The MEXEC-based Planning & Execution compo-
nent was able to dispatch commands for sampling, analysis, periodic
imaging, ongoing seismometry, and communications in a dynamic
way while managing onboard resources such as time, energy, and
data volume to ensure ameasure of productivity under awide range of
execution circumstances, successfully handling each of the scenarios
listed above. Overall, the planner was able to meet a majority of the
scenario success criteria and successfully achieve the system design
objectives. This effort also highlighted the value of having the ability
to perform high-fidelity mission simulations with a system like
ELAP. The scenario execution and evaluation process provided a
concrete way of evaluating our approach to autonomy and its imple-
mentation, as well as our hypothetical mission design and the inter-
action between the two.
This experimentation process revealed a number of cases in which

the implementation of our Planning & Execution module diverged
from our design intent, including in the modeling of task utilities and
in the constraints onwhat data can be downlinked at various stages of
the mission; future efforts should first focus on repairing these
inconsistencies. The simulations then become a valuable tool to
evaluate performance across multiple dimensions: mission design,
degree and nature of autonomy, and degree and nature of ground
interaction.
An approach to onboard autonomy that centers around a utility-

maximizing search for scheduling tasks, like the one we developed
for this project, requires new ways of thinking about mission design
and operations. Teams that are used to specifying agent behavior in a
rule-based manner or via flowchart state diagrams will need to be
made aware of the new paradigm for influencing the autonomous
agent’s behavior (using utility values, task, and resource constraints),
the potential drawbacks (less visibility into the decision-making
process, less influence on specific behaviors), and the potential
benefits (ultimately, higher overall science return). Autonomy devel-
opers will need to work to increase users’ confidence in such systems
through proof and demonstration, and they will also need to work to
provide tools to support the types of control thatmission designers and
ground operators findmost valuable, as well as tools for explainability
to help operators and scientists understand the agent’s decisions during
and after mission operations.

VI. Future Work

The above approaches to uncertainty are reactive in that they adjust
execution (or reschedule) in response to execution variations. An
alternative approach is to proactively plan/or execute in ways that are
known to be resilient to environmental and execution variation. The
approach outlined byBasich and others [17] utilizes this approach. In
this approach, plans are explicitly evaluated against resource-varying
contingencies (specifically variations in available energy from pre-
dicted levels) and search bias it toward plans that perform best across
the possible outcomes of more, less, or predicted energy consump-
tion/availability. One would expect such approaches to have the
potential to outperform reactive approaches to execution variation.
It is also worth noting that the validation and verification of

autonomous systems is a tremendous challenge. To date, spaceflight
with significant autonomy [18] has involved extensive validation and
verification efforts relying on the full suite of formal methods,
informal methods, and testing.

VII. Related Work

Thework proposed in this paper comprises only a part of the effort
made for the overall Europa Lander mission concept. Other efforts
include the autonomous sampling effort [15], theBlackbird simulator
[19], the ground operation designs, and the larger autonomy proto-
typing effort, for details onwhichwe direct the reader toWagner et al.
[13]. The work proposed here focuses on the system-level autonomy

aspect of the proposed Europa Lander preproject effort, in particular
the planning and execution framework.
There have been very few flights of system-level autonomy on

space missions. This system-level autonomy is typically imple-
mented as a planner/scheduler and executive or, in some cases, as
an executive alone. The scarcity of flights is because system-level
autonomy implies control over most, if not all, mission activities and
therefore requires a very high degree of confidence in the autonomy/
scheduling system (see prior note on the importance of validation and
verification of space autonomous systems [18]).
TheRemoteAgent Experiment flew an onboard planner/scheduler

as an experiment for two periods totaling approximately 48 h in 1999
onboard the Deep Space One spacecraft [20]. The Remote Agent
used a batch planner to generate a temporally flexible plan that was
used by a reactive executive controller [21] to provide robust plan
execution but did not consider utility in plan generation and did not
perform continuous replanning due to the computational expense and
long planning time. The CASPER planner flew as the primary
operations system onboard the Earth Observing One (EO-1) mission
for over a dozen years from2004 to 2017 [22], successfully executing
tens of thousands of observations and dramatically enhancing the
EO-1 sciencemission. This onboard planner was also integrated with
other data feeds (ground and space) as part of multiple sensorwebs,
most notably to track flooding [23] and volcanic activity worldwide
[24]. However, the EO-1missionwas significantly less complex than
the proposed Europa Lander mission, and also as an orbiter, it did not
involve significant physical interaction with the environment. The
Intelligent Payload Experiment (IPEX) Technology demonstration
CubeSat also flew the CASPER planner for over a year [25]. More
recently, the Mexec planner flew in a limited capacity onboard the
ASTERIA CubeSat [4]. However, all of these were relatively simple
spacecraft and/or limited scope and duration. Both the Spitzer Infra-
red Telescope Facility (SIRTF) and the JamesWebb Space Telescope
(JWST) [26] operationally utilize a form of flexible execution that
handles timing variations (such as in the acquisition of guide stars)
and therefore improves the efficiency of operations.
A notable exception to the above is the M2020 onboard planner

[27]. The M2020 onboard planner targets a surface robotic mission
that has amuchmore intimate interactionwith their environment, and
thermal and energy management considerations for the Perseverance
rover are amajor part of rover operations and therefore require special
treatment for the onboard scheduler. As such, this planner must
handle similar robotic considerations as for the Europa Lander Mis-
sion Concept.

VIII. Conclusions

In this paper, we have presented a utility-based HTN planning
approach to autonomy targeted at a Europa Landermission concept.
In this approach, the system uses flexible execution and utility
optimization-based planning to respond to robotic execution varia-
tions and variable science outcomes. We empirically validated that
the proposed approach outperforms standard baseline approaches
used in space domains. Additionally, we have developed an ana-
lytical model to characterize the benefits of autonomous response
for the general case and studied this in the Europa Lander Mission
Concept. We tested the proposed system in a series of extensive
software simulations as part of the larger Europa Lander Mission
Concept Autonomy Prototyping effort. These tests confirm that
such an autonomous system appears feasible and would signifi-
cantly enhance a potential Europa Lander mission.

Appendix: Communication Scheduling: The Downlink
Manager

Recall that ultimately thework done by the lander only has value if
the resulting data is communicated successfully back to Earth. In
other words, a data-generating task should only be performed if the
resulting data can be downlinked before the end of the mission.
Otherwise, time and resources will be wasted performing the task
with no benefit. Therefore, each time a new task is considered to be
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included in the plan, the resulting partial plan must be evaluated to

determine if there will be enough time and resources not only to

perform the task but also to downlink all data products, including any

from the new task. Only then is the new partial plan included as a

candidate for further expansion by the planner.

To solve the subproblem of downlink allocation as a service to

planning, we developed an independent software component

referred to as the Downlink Manager. In addition to determining

the feasibility of downlinking a set of data products, the Downlink

Manager also assigns data products to downlink opportunities

according to a set of constraints and preferences. Downlink oppor-

tunities occur at fixed communication windows, which at a mini-

mum include time for uplink to the lander. The assignment of a data

product to a downlink opportunity is limited by the following set of

constraints and properties:
1) Earth in-view: opportunities for communication only existwhen

the lander is in view of a ground station on Earth.
2) Energy allocation: each sol is assigned an energy allocation for

performing downlink tasks as a way of strategically controlling the
energy used by downlinks.
3) Thermal limits: communication hardware heats up when used

and cannot be used over a specified temperature.
4) Downlink rate: the duration and capacity of the downlink

depend on the downlink rate.
5) Data product size: the number of bytes that need to be down-

linked for the data product.
6) Data product creation time: the downlink opportunitymust exist

after the data product is created.
7) Data product downlink priority: the urgency for downlinking

the data product (downlink now, ASAP, or before mission end).

In addition, a set of preferences dictate which assignments are

better than others. Specifically, the following preferences were

defined for downlinking data products from the lander:
1) Science utility: prefer to downlink data products with higher

utility values assigned or predicted by the Assessor.
2) Earliest downlink: all else being equal, prefer to downlink at the

earliest possible opportunity.

Note that, because replanning is occurring continuously through-

out the mission, executed tasks and existing data products must be

considered along with any candidate new tasks and data products.

This involves knowing the actual properties of existing data products

(e.g., size, utility) as well as predicting the same properties for those

that we expect to generate. These properties are used to predict the

duration and energy costs for hypothetical future downlink tasks. As

with science task utility, downlink task duration and energy costs are

context-dependent; in particular, they depend on the size and type of

onboard data that are expected to be available for transmission at the

start time of the proposed downlink. The DownlinkManager takes as

input a set of downlink opportunities and a set of data products and

outputs a list of downlinks with the individual data products assigned

to them. When the planner considers a new task, the Downlink

Manager is used to solve the new problem. If the data product

generated by the new task is not assigned to a downlink, then that

task is not scheduled (i.e., that branch is pruned from plan search). By

rejecting candidate tasks whose data products cannot be downlinked,

we ensure that the spacecraft will cease data-generating activities

with enough energy remaining to communicate all required data to

the ground.

The problem addressed by the Downlink Manager is largely a

packing problem: data products of different sizes need to be packed

into downlinks with different capacities. Many of the data products

can be “packed” into any downlink opportunity “bin,”where each bin

size is defined by the maximum downlink capacity imposed by the

constraints. Thus, maximizing the fit of items into bins is the primary

objective. Specifically, we transform our problem into the Multiple

Knapsack Problem and solve it using Constraint Integer Program-

ming (CIP) using a library from Google’s OR Tools. The library’s

open source license, use of the C programming language (preferred

for flight systems), and large user base made it an ideal choice for our

prototype implementation. TheCIP problem can be stated as follows:

Given a set of values (V) and sizes (S) for data products, a set of
capacities (C) for downlinks, and a set of unavailability indicators (U)

for data products and downlink pairs:

Vi ∈ Z; i � 1; : : : ; k (A1)

Si ∈ Z; i � 1; : : : ; k (A2)

Cj ∈ Z; j � 1; : : : ; l (A3)

Uij ∈ f0; 1g; i � 1; : : : ; k; j � 1; : : : ; l (A4)

Compute downlink assignments (X):

Xij ∈ f0; 1g; i � 1; : : : ; k; j � 1; : : : ; l (A5)

Maximize the values of assigned data products:

k

i�1

l

j�1

ViXij (A6)

Subject to the constraints,

l

j�1

Xij ≤ 1; i � 1; : : : ; k (A7)

l

j�1

UijXij � 0; i � 1; : : : ; k (A8)

l

j�1

SiXij ≤ Cj; i � 1; : : : ; k (A9)

The input variable Vi is the integer value of the data product i
assigned based on the preferences mentioned earlier (science utility

and downlink earlier time). The input variable Si is the integer size
(in bytes) of data product i. The input variable Cj is the capacity (in

bytes) of downlink opportunity j. And the input variableUij is either

0 or 1, where 1 indicates the unavailability to downlink data product i
during opportunity j (e.g., because the data product will not be

created by the time of the downlink).
The output variable Xij is a 0 or 1 representing whether or not data

product i was assigned to downlink j. The objective function is

simply to maximize the sum of the value of each data product that

was assigned. The first constraint states that each data product can be

assigned to at most one downlink. The second constraint ensures that

each data product, if assigned, is not assigned to a downlink that is

unavailable for that data product. Availability is determined based on

the creation time of the data product and the time of the downlink

opportunity. The third constraint prevents data products from over-

flowing the capacity of the downlink opportunity. Capacities are

assigned based on the constraints mentioned earlier (e.g., energy

allocation). The constraint imposed by downlink priority is handled

as a special case. High-priority data products, those indicating the

need to downlink immediately or at the next opportunity, do not have

a choice for downlink assignment, so the CIP solver was only used to

assign the lower-priority data products.
With a new set of assignments of data products to downlinks, the

planner can continue the evaluation of the candidate task. If the data

product for the task is not assigned to a downlink, the specific partial

plan under consideration is rejected. Otherwise, the downlinks in the

partial plan are updated to reflect new predictions for durations and

energy use. This updated partial plan is then included in the list of

partial plans that will be considered for further expansion.
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