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Manipulator Control with Superquadric
Artificial Potential Functions:
Theory and Experiments

RICHARD VOLPE anpo PRADEEP KHOSLA

Abstract —Previous work in artificial potentials has demonstrated the
need for an obstacle avoid potential that closely models the obsta-
cle, yet does not generate local minima in the workspace of the manipu-
lator. A potential function based on superquadrics is presented, which
closely models a large class of object shapes. This potential function also
prevents the creation of local minima when it is added to spherically
symmetric attractive wells. Two compatible forms of the superquadric
potential function are introduced: one for obstacle avoidance, and an-
other for obstacle approach. The avoidance and approach potentials are
implemented in simulations. In these simulations the end effector of the
manipulator experiences an attractive force from a global spherical well,
while the end effector and each of the links experience repulsive forces
from all of the objects. The authors have also experimentally imple-
mented the avoidance potentials on the CMU DDARM II. The results
demonstrate successful obstacle avoidance and approach, and exhibit an
improvement over existing potential schemes.

I. INTRODUCTION

HE PROBLEM OF MOVING in space while avoid-

ing collisions with the environment is known as ob-
stacle avoidance or path planning. The obstacle avoidance
problem is important for both mobile robots and manipu-
lators [10], [16], [18], [24]. For a mobile robot, the goal is
to devise a strategy that will move the robot to its desired
destination without colliding with obstacles. In addition, a
robust obstacle avoidance scheme should be capable of
dealing with moving obstacles. For a manipulator, the
problem is more complicated. Not only must the end
effector move to the desired destination without collisions
with obstacles, but the links of the arm must also avoid
collisions. Because this additional requirement is more
restrictive, a strategy that works for manipulators can be
applied to mobile robots. Therefore, we concern ourselves
here with obstacle avoidance for manipulators, and our
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review of previous work in the field is similarly limited in
scope.

Research in the area of obstacle avoidance can be
broadly divided into two classes of methodologies: global
and local. Global methodologies rely on the description of
the obstacles in the configuration space of a manipulator
[15], [22}, [26]. Local methodologies rely on the descrip-
tion of the obstacles and the manipulator in the Cartesian
workspace [1], [10], [13].

Global methodologies require that two main problems
be addressed. First, the obstacles must be mapped into
the configuration space of the manipulator [15]. Second, a
path through the configuration space must be found for
the point representing the manipulator. Two techniques
are used to generate these paths: geometric searches and
artificial potentials. The geometric search technique relies
on an exhaustive search of the unoccupied configuration
space for a continuous path from the start point to the
goal point [6], [14], [16], [24], [26]. If a path exists, it will be
found. If multiple paths are found, the best may be
chosen. The artificial potential technique surrounds the
configuration space obstacles with repulsive potential en-
ergy functions, and places the goal point at a global
energy minimum [19], [21], [22], [29]. The point in configu-
ration space representing the manipulator is acted upon
by a force equal to the negative gradient of this potential
field, and driven away from obstacles and to the mini-
mum.

Global methodologies have several disadvantages. The
algorithms necessary for global methods are computation-
ally intensive. Also, the computational costs increase
quickly as a function of the manipulator’s degrees-of-
freedom: at least exponentially for geometric search tech-
niques, and at least quadratically for potential energy
techniques [22]. Thus, they are suited only for off-line
path planning and cannot be used for real-time obstacle
avoidance. An immediate consequence is that global algo-
rithms are difficult to use for obstacle avoidance in dy-
namic environments, where the obstacles are moving in
time. Also, using global algorithms it is very difficult to
describe complicated motion planning tasks such as those
arising when two manipulators cooperate.

A viable alternative to global methodologies is provided
by local ones [1], [10], [13], [28]. Local methodologies also
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employ the use of artificial potential functions like those
discussed previously. However, unlike configuration space
potentials, local potentials are expressed in the Cartesian
workspace of the manipulator. Obstacles to be avoided
are surrounded by repulsive potential functions and the
goal point is surrounded by an attractive well. These
potentials are added to form a composite potential that
imparts forces on a model of the manipulator in Cartesian
space. Torques equivalent to these forces cause the mo-
tion of the real manipulator.

The main advantage of local techniques is that they are
less computationally demanding than global ones. Thus
they can be used in real-time control. Further, they pro-
vide the necessary framework to deal with dynamic
(changing) environments and can be used for real-time
obstacle avoidance. Also, when used with a teleoperated
manipulator, local artificial potentials provide low level
obstacle avoidance. In this case, the path planning of the
manipulator is being performed by the operator and the
global methodologies lose their value as robust path plan-
ners.

However, local methodologies have one distinct prob-
lem: the addition of attractive and repulsive potentials
can create local minima in the potential function. Any
local minimum will cause the manipulator to experience
no net artificial force, and thereby stop at an unintended
location. A robust artificial potential function model of
the environment should have no local minima [12], [27].

In this paper we propose an artificial potential scheme
based on the superquadric, a mathematical function which
is employed in computer vision and object modelling
techniques [2], [3]. This scheme provides obstacle avoid-
ance capability for manipulators in an environment of
stationary or moving objects, preventing end effector and
link collisions with these objects. This local avoidance
scheme provides obstacle avoidance capability without
creating local minima.

The superquadric is a deformable parametric surface
and is used in our scheme as the isopotential surface for
our potential function. Since it is deformable, isopotential
surfaces near the object may closely model the object,
while surfaces further away can be spherical. These spher-
ical surfaces prevent the formation of local minima when
this function is added to a larger spherical attractive
potential well.

The assignment of potential energy values to the isopo-
tential surfaces determines the repulsive nature of the
function. Two possibilities exist: the avoidance potential
function, or the approach potential function. The avoid-
ance potential function has a potential energy value at the
surface of the object which is larger than the initial
kinetic energy of the manipulator. Thus, an energy barrier
is established which cannot be surmounted. The easiest
way to ensure that the potential energy barrier is large
enough is to force the potential function to go to infinity
at the object surface.

We also propose a second type of artificial potential
energy function—the approach potential [11], [27). In-
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stead of having a potential function go to infinity at the
object surface (as with the avoidance potential), the po-
tential energy can go smoothly to a finite value less than
the kinetic energy of the manipulator. As the manipulator
moves toward the object, it gains potential energy, loses
kinetic energy, and slows down. But it always has enough
kinetic energy to reach the surface. Thus the approach
potential provides deceleration forces that ensure a safe
contact velocity at the surface. Once stable contact has
been established, force control of the manipulator may
begin.

This paper is organized as follows: In Section II we
outline the attributes of artificial potentials by reviewing
the work of other researchers. In the course of this
review, we indicate those aspects of previous schemes
which are valuable, and those aspects that should not be
retained. In Section II1 we describe in detail the proposed
superquadric potential scheme, and highlight its advan-
tages. In Section IV we mathematically describe the addi-
tion of the superquadric avoidance potential with global
attractive potentials, determine the criterion for the elimi-
nation of local minima, and discuss dynamically changing
potentials. In Section V we evaluate the efficacy of the
superquadric potential formulation by simulating both
obstacle avoidance and approach. Finally, in Section VI
we present some experimental results of the implementa-
tion of the obstacle avoidance potential on the CMU
DDARM I1I.

II.  ATTRIBUTES OF ARTIFICIAL POTENTIALS

The major interest in artificial potential models has
been in realizing obstacle avoidance schemes [9], [12],
[13], [20], [27). These schemes require the addition of
attractive and repulsive potentials. An attractive potential
well is generally a bowl shaped energy well which drives
the manipulator to its center if the environment is unob-
structed. However, in an obstructed environment, repul-
sive potential energy hills are added to the attractive
potential well at the locations of the obstacles, as in Fig.
1. The addition of attractive and repulsive potentials
provides obstacle avoidance capability.

In this section, we review the attributes of the attractive
and repulsive potential functions that have been pro-
posed. First, we describe the two types of attractive wells:
quadratic and conical. Then, we discuss the proposed
repulsive potentials and describe the desirable and unde-
sirable properties that each exhibits.

The first type of attractive potential function, the
quadratic well, is the most widely used [8], [10], [12]. The
reason for this is twofold. First, a quadratic potential well
provides a linear control law with constant gain. Consider
the quadratic well, U, described by

k
U(x)=5x‘x, (1)

where k is constant and x is a position vector. The force,
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Fig. 1.

Repulsive potential added to an attractive well.

F, from this potential may be obtained by the gradient:
F=-VU=—-kx (2)

which is a linear control law (Hooke’s Law). Second, all
potentials are quadratic for small displacements. This
may be seen from the Taylor series expansion in one
dimension:

dU(x)

U(xy+Ax)=U(x,)+ AxT

Ax? d*U(x)

2 dx? ()

x = xg

For small displacements, Ax, the higher order terms may
be neglected. The force experienced is:

dU( x) d2U(x)

F(x(,+Ax)=— dx XT

X =Xq X =Xg

(4)

which reduces to Hooke’s Law since the first derivative is
zero and the second derivative is k. Potentials with posi-
tive second derivatives are stabilizing, preventing large
displacements from being achieved and keeping the ap-
proximation valid. Thus the quadratic well is a good
attractive potential because of its simple form and be-
cause other potentials reduce to it for small displace-
ments. )

A second type of attractive potential function, the coni-
cal well, has also been proposed [1]. This function is
quadratic within a given range and then increases linearly:

kx-x
U(x) = ’
(x) {stlxl—ksz,

The conical well provides a constant magnitude, centrally
attractive, force field for distances larger than s. While,
for smaller distances, the previously described advantages
of the quadratic well are utilized.

The second category of potentials, repulsive potentials,
are necessary to repel the manipulator away from obsta-

x| <s

[x|>s.

(5)
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Fig. 2. FIRAS potential.

cles that obstruct its path of motion in the global attrac-
tive well. It has generally been recognized that a repulsive
potential should have a limited range of influence [1],
[10]. This prevents an object from affecting the motion of
the manipulator when it is far away from the object. Also,
the potential function and its derivative must change
smoothly and never become discontinuous [1].

Many proposed repulsive potentials have spherical sym-
metry. One increases cubically with radial distance inside
of a circular threshold range [1]. Another has a Gaussian
shape [12]. These potentials are useful for surrounding
objects with spherical symmetry and singularities in the
workspace. Also, when added to a spherically symmetric
attractive well they will not create a local minimum (as
will be demonstrated subsequently). But a spherically
symmetric repulsive potential does not follow the contour
of polyhedral objects. For instance, an oblong object
surrounded by a sphere effectively eliminates much more
volume from the workspace than is necessary or desirable.

Potentials that follow the object shape were proposed
to address the insufficiency of radially symmetric poten-
tials. Examples are the GPF and FIRAS functions [10],
[13]. The potential energy, U(r), of the FIRAS function is
described by:

(6)

A1 1\
U(r)=5 ——— 0<r<r,
r Ty

where r is the closest distance to the object surface, r, is
the effective range, and A is a scaling factor. Fig. 2 shows
this potential for 4 =2 and r, = 6. The isopotential con-
tours of this potential function are depicted in Fig. 3. The
GPF function has a similar shape. We shall refer to these
as “flat-sided” potentials because of the shape of their
isopotential contours.

By itself, a flat-sided potential works well. But when
this potential is added to an attractive well, local minima
appear on the side of the object away from the center of
the well. Consider the case depicted in Fig. 4, where the
side of the object away from the attractive well center is
tangent to the isopotential contours of the well. Motion
along the linear section of the object contour, from point
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Fig. 3. [Isopotential contours of FIRAS potential in Fig. 2.

C |object + Well Center

Fig. 4. Local minimum creation by FIRAS potential.

A to point B, passes through changing potential values of
the attractive well. At points 4 and B the attractive well
potential is higher than at point C. Since the object
potential is the same at A4, B, and C, the sum of the
object potential and the attractive well potential has a
local minimum at point C. It can be seen that any section
of an object contour that has a radius of curvature greater
than the contour of the attractive well will generate a
local minimum “uphill” from the object. The contour of a
circular repulsive potential always has a smaller radius of
curvature than the contour of the attractive well in which
it is inscribed. Therefore, a circular repulsive potential
will not generate local minima in this way.

In summary, a repulsive potential function that is useful
for modelling objects in the environment should have the
following attributes:

1) The potential should have spherical symmetry for
large distances to avoid the creation of local minima
when this potential is added to an attractive well.

2) The potential contours near the surface should fol-
low the surface contour so that large portions of the
workspace are not effectively eliminated.

3) The potential of an obstacle should have a limited
range of influence.

4) The potential and the gradient of the potential must
be continuous.

We have proposed a novel formulation of a repulsive
potential function, based on superquadrics, that satisfies
all of the above criteria. Not only is this scheme useful for
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obstacle avoidance, but it can also be used for obstacle
approach. We present this formulation in the next sec-
tion.

III. SUPERQUADRIC POTENTIALS

The superquadric potential is a function that has isopo-
tential surfaces shaped like superquadrics. The value of
the potential energy at each surface is determined by the
potential energy function. We propose two repulsive po-
tential energy functions: the avoidance potential function,
and the approach potential function. In this section, we
present the superquadric formulation for isopotential
contours, and then describe the two types of repulsive
potential energy functions.

A. Superquadric Isopotential Contours

As is dictated by attributes one and two above, the
isopotential contours of an artificial potential function
must change from spherical at large distances, to the
object shape near the surface.

To obtain isopotential contours that follow the object
shape near the surface an object may be surrounded with
a superquadric [2], [3]:

X 2n 2n)2m/2n
[(fl(x,y,n) +(fz(x,yy,2)) }

z
+(f3(x,y,z)

where f,, f,, and f; are scaling functions, and m and n
are exponential parameters. Previously we have employed
this function in two dimensions (z =0) with constant
scaling functions [27]:

CFepfee

This form is called an n-ellipse where a is the semi-major
axis and b is the semi-minor axis [7], [10]). We first review
the use of this simpler form in potential functions and
then show how it may be generalized to the superquadric
potential form.

In order for the aforementioned n-ellipse to be useful
as a potential function, two constraints should be imposed
at the surface of the object: first, the ellipse must touch
the corners of the surrounded object (which is rectangular
for this case); and second, the area between the object
and the ellipse must be minimal. These constraints yield:

)2m=1 (7)

9

where w is the x dimension of the rectangle, and # is the
y dimension.

At the surface of the object, the isopotential contours
should match the shape of the surface. This requires that
n go to infinity at the surface. However, away from the
surface the contours must become spherical in accor-

a:K(zl/Zn) b=ﬁ(2]/ln)
2 2
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Fig. 5. Superquadric isopotential contours for rectangle.

dance with the first attribute. Letting n go to one will
make the contours elliptical. This ellipse may be further
modified by a coefficient that multiplies the y term. The
contour function thus becomes:

(g)ﬁ(g)z(gyul ns1. (10)

It is also necessary to have a variable that specifies each
contour. The variable acts as a pseudodistance fromi the
object, being zero at the surface and increasing with
successive contours away from the surface. Along the x
axis this variable can be made to change linearly. Thus,

X 2n b 2 y 2n 1720

S ERCEN
a - \a b/

Fig. 5 shows a plot of K at regular intervals with n

varying from a very large value to a value near unity.
Since the parameter n must vary from infinity to one
while K varies from zero to infinity, n is defined as:

1
n= 1— e Bk

(11)

(12)

where a and B, are adjustable parameters. Unless other-
wise noted, B, will be unity. Other definitions of » are
possible, but this form is useful because it is related to the
magnitude of the potential, as will be shown in Section
I11-B-1).

The previous description, expanded to three dimen-
sions, yields an ellipsoid instead of an ellipse. For the
three dimensional case, f; in (7) is a third constant
semi-axis, ¢, and the parameter m can be given the form:

1

Y

(13)
If the parameter B,, is set equal to B,, then m equals n
and (7) describes an n-ellipsoid.

The elliptical (ellipsoidal) description may be general-
ized to the superquadric formulation by using noncon-
stant scaling functions, f;, in (7). This provides a method
of deforming the n-ellipse (ellipsoid) to other shapes. This
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Fig. 6. Superquadric isopotential contours for trapezoid.

10.00

-10.00
Fig. 7. Superquadric isopotential contours for triangle.

effect can be interpreted as changing the semi-axes of the
ellipse (ellipsoid). We demonstrate this by an example in
two dimensions for a superquadric contour that snugly
surrounds a trapezoid as shown in Fig. 6. In this case, the
semi-minor axis b varies from b, to b, as the height of
the object varies from h, to h, over its total width, 2w.
Therefore, at the object surface (K = 0),

b(x)=mx+d (14)
hy~hy by—b,
= = 15
" 2w 2a (15)
b, +b
d— 12 0 (16)

This value of b provides a superquadric that touches the
corners of the trapezoid, with K = 0. Superquadric isopo-
tential contours away from the object are obtained by
scaling x:

+d.

(17)

=m
f2 K+1
Reducing 4, to a very small value gives a superquadric
model of a triangle, as shown in Fig. 7.

Finally, this example can be extended into three dimen-
sions for superquadric models of wedges, pyramids, and
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cones. For a wedge,

fi=a (18)
X
> "M +d (19)
fa=c (20)
For a pyramid,
fi=a (21)
X
fz=mzm+dz (22)
f3=m3m+d3. (23)
And for a cone oriented along the z-axis,
n=1 (24)
fi me +d (25)
z
> me +d (26)
fa=c (27)

Thus we have developed a formulation for isopotential
contours that are described by superquadrics. With the
form of the isopotential contours established, it is neces-
sary to assign potential energy values to them. This is
done in the next section.

B. Repulsive Potential Energy Functions

The potential energy function must assign potential
energy values to the isopotential contours defined previ-
ously. We have utilized two types of repulsive energy
functions: the avoidance potential, and the approach po-
tential.

1) The Avoidance Potential: The avoidance potential is
a function which surrounds an object and prevents a
manipulator from touching the object. This must be true,
independent of the manipulator’s kinetic energy. The
easiest way to ensure this is to set the magnitude of the
potential at the surface to infinity. Away from the surface,
the energy values must be in accordance with the third
and fourth attributes outlined in Section II, and in accor-
dance with natural potentials (e.g. electrostatic, gravita-
tional, etc.) exhibit an inverse dependence on distance.
Therefore, the potential function must have a K™! de-
pendence for short distance repulsion, but drop to zero
faster than K~' for large distances. Also, the function
and its derivative must be continuous. A function that has
these attributes is the Yukawa potential [5]:

—-aK
U(K)=A

28
= (28)
Figs. 8 and 9 show this function with e =1 and A =1 for
a rectangle and a triangle.

The parameter « determines how rapidly the potential
rises near the object and falls off away from the object.
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Fig. 8. Superquadric avoidance potential for rectangle.

Fig. 9.

Superquadric avoidance potential for triangle.

This rate must be related to the rate at which the “n-ness”
of the ellipse changes as expressed in (12). We have
chosen these rates to be proportional, with the constant
of proportionality being 8, in (12). Usually, 8, =1 and
both rates are equal to the value of a.

The parameter A acts as an overall scale factor for the
potential. Large values of A4 will make the object have a
spherical field of repulsive force at large distances. Small
values of A will allow the object to be approached much
more closely. At this closer range, the isopotential con-
tours will have large values of n and will approximate the
shape of the object. For the rest of this discussion A4 will
be assumed to be unity unless otherwise noted.

2) The Approach Potential: The approach potential isa
function which surrounds an object and decreases the
approach speed of the manipulator as it moves toward the
object. This is achieved by setting the value of the poten-
tial energy at the surface of the object to be slightly less
than the initial kinetic energy of the manipulator. As the
manipulator moves toward the object its kinetic energy is
transformed to potential energy, and its velocity de-
creases. Setting the magnitude of the potential function at
the surface less than the initial kinetic energy ensures that
the manipulator will always reach the surface.
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Fig. 11.

Superquadric approach potential for triangle.

 An appropriate approach potential should have all of
the attributes of the avoidance potential, but should go to
a finite maximum value at the surface of the object.
Therefore, far from the object, the form of the avoidance
potential may be used. However, closer to the surface the
potential should be Gaussian in nature, the slope smoothly
changing to zero at the surface so that no artificial force
is experienced when real comntact with the environment is
established. Because this general form must remain valid
for all values of «, a simple polynomial fit is not pos-
sible. We propose a function, U(K), which satisfies these
criteria: :

A
EPEY-7 .4 K/l

uk)y={ k% > (29)
Aexp(—aK'*V*), 1>K=0.

Figs. 10 and 11 show this function with a=1 for a
rectangle and a triangle.

In this section, we have presented a superquadric
isopotential contour formulation and the two types of
repulsive potential energy functions. The developed su-
perquadric potentials have the attributes outlined in Sec-
tion II, but only asymptotically. The major concern raised
by this fact is the avoidance potential is never exactly
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circular (because K is never infinite in practice). Thus,
attribute number one may be violated when the avoidance
potential is added to a spherical attractive well. This issue
is explored analytically in Section IV.

IV. ADDITION OF SUPERQUADRIC AVOIDANCE
POTENTIALS AND AN ATTRACTIVE WELL

When adding superquadric avoidance potentials to a
global attractive well, several situations must be consid-
ered. These may be divided into single object and multi-
object scenarios.

For a single obstacle (only one avoidance potential), the
relation between the positions of the avoidance potential
and the global well center is important. Three distinct
situations arise. First, the global well center is far from
the object and is not effected by the object potential.
Second, the global well center is inside the object to be
avoided. Or third, the situation which is between the
above two extremes, the global well center is within the
range of influence of the avoidance potential. The second
case will not be considered any further since it precludes
the possibility of having the manipulator obtain the goal
position. The remaining two situations, will be discussed
in Sections IV-A and IV-B.

If multiple objects are to be added to a global attractive
well, the relation of these objects to each other is of
primary importance. (The effect of the position of each to
the global well center is covered by the single object
analysis.) If multiple objects are placed at distances from
each other such that the addition of their potential energy
is nonzero, then the single object analysis breaks down.
For example, multiple objects may be placed in a cluster
in such a way that they effectively form a larger object
with a concavity that faces away from the global well
center. This concavity may cause a local minimum that
can trap the manipulator. To avoid this problem, the
object cluster and its concave regions may be treated as
one large object and surrounded with one potential. How-
ever, this solution will obviously not work as the workspace
become heavily populated with obstacies. We believe that
in this case a higher level trajectory planner will become
necessary, and we do not address the scenario any fur-
ther. Therefore, the following analysis is restricted to a
single obstacle in a global well.

A. Addition of a Superquadric Avoidance Potential
to a Distant Attractive Well

The concern when adding an avoidance potential to a
distant attractive well, is that an undesirable minimum
may be created “uphill” from the object. Because the
superquadric avoidance potential only becomes a cir-
cle asymptotically, a spurious minimum may be present.
However, this minimum can effectively be removed by
making the depression associated with it smaller than the
resolution of the system.

For a rectangular object, the minimum value of a is
determined for its worst case orientation. This is when
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the longest dimension of the object is normal to the
shortest distance between the starting position and the
attractive well center. In other words, the object is placed
“across” the desired path. In this configuration, the
isopotential contours of the object to be avoided are
tangent to the isopotential contours of the attractive well.
Using a coordinate system centered on the object, and the
x-axis along its longest dimension, the isopotential con-
tours have a slope of zero and an infinite radius of
curvature along the y-axis. This can be seen by rearrang-
ing (11) as y = f(x), taking the first and second deriva-
tives, and setting x = 0. Mathematically, the superquadric
is linear at the axes when n # 1. Thus, mathematically we
have the same problem that was described earlier—an
isopotential object contour with a radius of curvature
larger than the spherical well in which it is placed will
definitely cause minima if it is placed tangent to the well.
However, this problem can be effectively eliminated for
the superquadric potential function by adjusting the pa-
rameter alpha. The adjustment makes the depression
from local minimum smaller than the resolution of the
system. This solution is presented in detail below.

Consider again a coordinate system centered on the
object, oriented as described above. The potential energy,
U, has the following form:

U=U,(K)+U,(x) (30)

where the object and well potentials are obtained from
(28) and (1) as:

[4

U,=—% (1)
with / constant and x={(x,y—y,), where y, is the
location of the attractive well center.

First it is necessary to find the local minimum along the
y-axis that is on the oposite side of the object from the
attractive well center. At this point the total force is zero.

and U,=lx-x

ad d
0=VU==—[U,+U,Je+-[U,+U,]5  (32)
y

ax
or
aU [/ x 2 (b2 y\2n EEERe
- _ _ o __ 2/1—l+21x
0 oK (a) +(a)(b ] (a) *
(33)
U x\2n 1 b\2 y 2o 12n=b 2,y 2n -
-l T
K [\a a b a b
+20(y—y,) (34)
where
aU ekl @ 1
ﬁ:—e E+P . (35)

Considering only the y direction at the y-axis (x = 0),

au b\ y\ ] T e,
RGN GG

+21(y— Y()) (36)

aU
ay
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is a cubic equation of the form:
0=—e (o +1)c+2l(y —y)(ey—1)° (37)
with

K(x=0)=cy—1, ci(gyw(;} o=ak. (38)

Solving for the one real root of this equation yields:

1 1
y=;(M+N+3—(2+cyn)) (39)
where
1/3
h2 g?
M={-=+1 —+=—
e
h ht gt i
N=— §+ I*FE (40)
1 2
g=—§(y(,—1) (41)

o+ly (42)
e 7.

21 )

Having solved for the y coordinate of the minimum, it
is necessary to determine the size of the local depression.
This is done by finding the first maximum in the x
direction for the y value obtained. The value of x is
obtained from (33) and (34) as:

a yz,,_l 1/(2n -2}
xX=— .
bly—y,

Given that the resolution of the system being modelled
must be less than 2x, it is only necessary to satisfy the
above equation. Because y and n are both functions of o,
this equation can be used for an iterative solution of o.
With a value of o determined, y and n may be obtained
from (12), (37), and (38). Then K and « may be obtained
from (38). In this way, a minimum value of a may be
calculated which permits the addition of attractive and
repulsive potentials without the creation of a local mini-
mum.

For a rectangular object in the conical well, a similar
analysis may be performed. In this case U, in (30) is
obtained from (2) as

U, = 2Isix|— Is?.
Therefore, (32) yields:

1
h= 5[2—6)’06)75 _2y(3,—27c(

(43)

(44)

U [ x\2 (b2 v\ Al oy 2Usx
- - _ - _ n=ly
0 K (a) +(a) (b) (a) * x|
(45)

2

AU [ x\2n (b7 y\>" 2ty
 ERECN
oK |\ a a b a’

2s(y — yy)
+ .
x|

(46)
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Again, considering only the y direction at the y-axis,

U U [16\2 y 2] b2 12
o =—||- (—) —| =] y* '+2Is
| _, 9K (a) b a)\b
(47)
is a quadratic equation of the form:
0=—e""(o+1)c+2Is(cy —1)% (48)

Solving for the meaningful root of this equation yields:

1 [e (o +1)
=—+y —
Y c 2Is¢

As before, the y coordinate of the minimum is used to
determine the size of the local depression. This is done by
finding the first maximum in the x direction for the y
value obtained. The value of x is obtained from (45) and
(46), and is equivalent to (43). As was outlined before, a
solution for « may then be obtained.

For nonrectangular objects in quadratic and conical
wells, the same analyses may be used as worst case
scenarios. The rectangle considered will have the dimen-
sions of the maximum height and width of the non-rectan-
gular object. A valid bound for « is determined since the
rectangle is more likely to form a local minima. As was
described previously, this is because the superquadric
isopotential contours that intersect the object axes at right
angles have an infinite radius of curvature at the points of
intersection. The parameter « eliminates the local mini-
mum by forcing the depression associated with it to
become smaller than the resolution of the system. This is
equivalent to saying that the parameter « forces the
isopotential contours to circles (within the resolution of
the system) at the range of the former minimum. For a
non-rectangular object the same value of « will also
provide circular isopotential contours at the necessary
range, ensuring that these objects will not cause local
minima.

(49)

B. Addition of a Superquadric Avoidance Potential
to a Close Attractive Well: Dynamic Potentials

The previous analysis determines a value of the param-
eter a that prevents the formation of a local minimum
“uphill” from the obstacle. However, it is assumed that
independent of the value of «, the object potential will be
zero at the center of the global attractive well. If this is
not the case, the addition of the global well and the object
potential will displace the global minimum from the cen-
ter of the global well. In Fig. 12(a) the global minimum
will move from point C to point D. This implies that the
manipulator will not achieve the goal point even though
no local minima are present in the environment. Increas-
ing @ may eliminate this problem by reducing the range
of the object potential. However, if the global well center
is within the smallest sphere (circle) that can enclose the
object, then increasing @ will not help. Since there is no
way for the isopotential contours to become circular in-
side this range, the value of the object’s avoidance poten-

C\D
A object | + A || object ||+
B B
(a) (b)

Fig. 12. Dynamic superquadric avoidance potential.

tial cannot go to zero, by design. If the parameters A or
B, are modified to force the obstacle potential to zero at
the global well center, they will also cause the obstacle
potential to become nonspherical, as in Fig. 12(b). This
nonspherical shape will cause the formation of a local
minimum on the other side of the obstacle at point A, as
discussed in Section II.
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- Thus a dilemma exists: to avoid the creation of a local

minimum, the position of the global minimum must be
shifted; and to remove this shift, a local minimum must be
created. The only solution to this problem is to dynami-
cally change the potential shape. Thus, if the manipulator
is “uphill” from the object, the parameters must be set to
climinate the formation of the local minimum. As the
manipulator moves to the “downhill” side of the obstacle,
near point B in Figs. 12(a) and (b), the potential parame-
ters may be changed to shrink the object potential. ‘This
will move the global minimum back to the center of the
global attractive well at point C in Fig. 12(b). There will
then be the formation of a local minimum “uphill” from
the object at point A in Fig. 12(b), but this is of no
concern since that region of the workspace has already
been traversed.

This process of dynamically altering the shape of the
avoidance potential is not possible with the potentials that
have been previously reviewed, and is presented here as
another advantage intrinsic to the superquadric potential
formulation.

V. SIMULATION

To test these concepts the performance of two link and
three link (redundant) planar manipulators interacting
with an - artificial potential have been simulated. The
motion of these arms is caused by the artificial forces
acting on the end effector and the individual links. The
end effector is attracted by a goal point and repelled by
the obstacle, while the links are repelled by the obstacle if
the link interaction is “on.” Our results indicate that the
superquadric potentials provide a valid method of obsta-
cle avoidance for a manipulator, and an.improvement
over existing potential functions.

A. End Effector Interaction

There are two ways for the arm to react to the artificial
forces applied to the end effector. The first method
transforms the forces into the corresponding joint torques
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through the transpose of the Jacobian: r = J'F. The joint
accelerations can then be derived from the Lagrangian
[4]. The second method obtains joint accelerations by
directly transforming the Cartesian accelerations that
would be experienced by a unit mass in the potential well:
6 =J" (& — J@). The first method is desirable because it
does not involve the inverse of the Jacobian, which may
become singular. For avoidance potentials, the first
method is used. But the second method must be used
when employing an approach potential.

The approach potential concept requires that the final
potential energy of the manipulator be less than or equal
to the initial sum of the kinetic and potential energy.
Thus, as the arm approaches the object, all of its kinetic
energy is converted to potential energy and the arm stops
at the surface. While the kinetic energy of the arm may be
obtained from the Lagrangian, the artificial potential en-
ergy of the arm cannot [4]. (In fact, the potential energy in
the Lagrangian is zero because the manipulator used in
these simulations is assumed to be operating in a plane
perpendicular to the force of gravity.) Instead, the poten-
tial energy must be obtained from the position of the
manipulator links in the potential well. Even for a two
link arm with one-dimensional links and uniform density,
A, this potential energy has the form:

K(elbow) K=1

AA
K(base) K
K{(end effector)
«
K=1
+ PE(potential well) (50)
assuming that the end effector is at a distance of K <1
away from the object. Obviously, this form of the poten-
tial energy is intractable. Hence it is not used in the
Lagrangian and cannot be used in this approach potential
scheme.

Instead, the kinetic and potential energy is obtained
from the motion of a unit point mass located at the end of
the arm. Therefore, the second method of end effector
interaction must be used to determine this motion.

—-akK —akK

e
dK + AN——dK
K(elbow) K

PE =

Arexp(—aK'*V/*) dK

B. Link Interaction

While there are two methods for determining the end
effector interaction that will guide it around obstacles,
neither method alone will prevent collisions of the links
with the obstacles. To prevent these collisions, there must
be an interaction of the links with the artificial force field.
But a link occupies a region near the obstacles, not just a
point. How then should the interaction be calculated? It
would be too costly to integrate the total interaction of
the link with the field. Also, it is the avoidance of collision
that is of primary importance. Therefore, the point on the
link which is closest to the obstacle should determine the
amount of repulsion experienced. The following is an
algorithm which determines the point on a link that is
closest to an obstacle.
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1) Consider the obstacle corner points with respect to
the link sides.

a) Consider the line determined by two successive
corners of the link. This line defines two half
planes, one of which doesn’t contain the link.

b) If all four of the obstacle corner points are in the
halfplane without the link, proceed. Consider only
the point that is closest to the halfplane edge.

¢) Project this obstacle corner point onto the half-
plane edge.

i) If the perpendicular projection is within the
side of the link then the obstacle-corner-
point /link-side distance is returned as well as
the point of projection on the link side.

ii) Otherwise, the distance from the obstacle cor-
ner point to the closer corner of the link side is
saved, as well as this link corner’s coordinates.

d) After considering ‘all four link sides, save the
closest distance obtained and the corresponding
link corner point.

2) Consider the link corner points with respect to the
obstacle sides. Repeat steps 1-a) through 1-d), inter-
changing the roles of the link an obstacle.

3) If steps 1-¢)-i) or 2-¢)-i) have not caused a return,
determine the closer of the distances saved in steps
1-d) and 2-d), and return this value with the corre-
sponding link corner point.

Once the closest point of the link to the object has been
determined, the artificial force is calculated. This force
vector and the closest point determine the line of force.
The line segment which runs through the axis of rotation
of the link, along its length, acts as the leverarm. The
point of intersection of the line of force with the line that
contains the leverarm determines the length of the lever-
arm. If the leverarm is longer than the link length then it
is set to the link length. If the leverarm is less than zero
(that is, it extends from the axis in the direction opposite
of the link) then it is set to zero. The length of this
leverarm for link N is denoted ay.

The torque exerted on the joints is determined by a
Jacobian for each link. Thus, for force on the Nth link
the torque is 7y =JJFy, where the transposes of the
Jacobians for a three link manipulator are:

0 a,C,
J=|-a8 0 (51)
L O 0
-“1151—‘12512 LCy—a,Cy,
JzT= —a,S, a,Cyy (52)
L 0 0
[ = 1,8, = 1,8, —a38 153 LG, —1L,Cp+a3C 5
JI= — 1,8, — 43812 a,Cpp,+a;C 53
L — 4381 a3Cy

(53)
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Fig. 13. Successful avoidance of obstacle using FIRAS potential.
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Fig. 14. Unsuccessful avoidance of obstacle using FIRAS potential.
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where § and C denote sine and cosine, and the subscripts
indicate their arguments which are the sum of the corre-
sponding angles. For a two link manipulator, J/ and JJ
may be used, ignoring the third row.

The total torque caused by the interaction of the links
with the repulsive field of the obstacle is simply: 7 = Xr,.

C. Simulation Experiments

Three main situations were examined: 1) Motion to a
goal point while avoiding an object surrounded by a
flat-sided potential potential, 2) Movement to a goal point
while avoiding an object surrounded by the proposed
superquadric avoidance potential, 3) and approach of an
object surrounded by the proposed superquadric ap-
proach potential. In the first two situations the end effec-
tor experiences an attractive force from a goal point and a
repulsive force from the obstacle, and the links of the arm
experience a repulsive force from the obstacle. For the
third situation, the use of a goal point is optional and
there is no link interaction.

1) Flat-Sided Potential: Fig. 13 shows the simulated
manipulator moving from the initial position to the goal
position, successfully avoiding the obstacle. In this simula-
tion the FIRAS potential was used as the avoidance
potential around the obstacle. For this initial configura-
tion of the manipulator the FIRAS potential works well.
However, the repulsive force experienced by the links
substantially aids the end effector’s motion around the
obstacle. To minimize this help, the end effector can be
made to approach the obstacle while normal to its sur-
face. This configuration, shown in Fig. 14 accentuates the
effect of the local minimum on the “uphill” side of the
obstacle. With the link interaction reduced, the end effec-
tor settles into this local depression in the potential and
stops.
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Successful avoidance by two-link manipulator of obstacle sur-
rounded by superquadric potential.

Fig. 15.

-8.00

200 400 600 8.00

10.00

Fig. 16. Geometrically limited motion of two-link manipulator avoid-

ing obstacle surrounded by superquadric potential.

10.00

. L
6.00 8.00

Fig. 17. Successful avoidance by three-link, redundant manipulator of

obstacle surrounded by superquadric potential.

2) Superquadric Avoidance Potential: The same arm
trajectories have been initiated with thé superquadric
potential in the circular attractive well. Figs. 15 and 16
show the end effector of a two link manipulator success-
fully navigating around the obstacle. This confirms the
absence of a local minimum “uphill” from the object.
However, with only two degrees of freedom, the arm
cannot move completely around the obstacle when config-
ured as in the second example—it becomes stuck when
the repulsive torque of the obstacle on the second link
equals the attractive torque of the goal point on the end
effector. This is not a deficiency in the form of the
potential, but a deficiency in the two link manipulator.

* Fig. 17 shows that a three link design does not have this
same problem. The arm is able to “snake” around the
obstacle, and the end effector is able to achieve the goal
point.

A third situation was also examined. Four obstacles
surrounded by superquadric avoidance potentials were
placed in a conical attractive well. Figs. 18 and 19 show
the manipulator successfully navigating between them to
achieve the specified goal point. The start and finish
points were interchanged for the two simulations. Differ-
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8.00 -

-4.00 L
Successfully navigation around four obstacles (a).

Fig. 18.
8.00 -

6.00

1 — |
6.00 8.00

ool
Fig. 19. Successfully navigation around four obstacles (b).

ent trajectories were created, but the traversal time was
about the same.

3) Approach Potential: Finally, the motion of the end
effector approaching the surface of a rectangle and a
triangle has been simulated in Figs. 20 and 21. For these
simulations, no attractive point was used. Instead, the
arm was given an initial end effector velocity with its
corresponding kinetic energy. The height of the potential
at the surface was set to ninety percent of the initial
kinetic and potential energy. To eliminate any computa-
tional errors due to the discrete time nature of the
calculations, the height of the potential was continually
modified to ninety percent of the kinetic and potential
energy. Also, the end effector was position controlled in
the direction parallel to the surface.

V1. EXPERIMENTS

We have implemented the proposed avoidance strategy
as a controller on the CMU DDARM 1I system. The
current implementation prevents collisions of the end
effector with obstacles in a two dimensional horizontal
plane. Since the CMU DDARM 11 is a SCARA configu-
ration arm the end effector hangs down into the plane,
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Flg 20. Smooth approach and contact of rectangle surrounded by a
superquadric approach potential.

g

1
-600 -60 2.00 4.00 600 8.00
_m[
Fig. 21. Smooth approach and contact of a triangle surrounded by a

superquadric approach potential.
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Fig. 22. Experimental data from one obstacle avoidance.

L
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climinating the need for the calculation of link interaction
forces.

Fig. 22 shows multiple paths taken by the end effector
in successive experiments from different starting positions
in a conical well. The end effector always reaches the goal
point even though different directions may be taken
around the obstacle. Notice that no local minimum is
encountered.

Fig. 23 shows a path taken to successfully navigate
between two obstacles in a conical well. The potential
around the rectangle, as evidenced by the path taken, is
essentially spherical. This is necessary to prevent the
creation of a local minimum in front of it. The path
around the triangle, however, follows its shape more
closely. This was accomplished by reducing the parameter
A. No minimum is created due to the triangle’s orienta-
tion.

The superquadric avoidance potentials have also been
used while the manipulator is under control of a joystick.
In this scenario the operator is prevented from inadver-
tently driving the manipulator into the obstacles by the
repulsive force of the avoidance potentials. The obstacle
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Fig. 23. Experimental data from two obstacle avoidance.
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Fig. 24. CMU DDARM II control architecture.

potentials are given a small range (by reducing A4) so that
very little of the workspace is eliminated. No global well is
used. Effectively, this scenario replaces the artificial po-
tential path generation with the much higher level path
planning of the operator. However, the superquadric
avoidance potentials still remain valuable as a preventa-
tive measure against operator error.

The current implementation calculates the artificial
forces due to the global well potential and the super-
quadric object potential. Commanded joint torques may
be calculated by use of the transpose of the Jacobian or
by using resolved acceleration control [17]. The algorithm
runs at a peak speed of 375 Hz for one object, 200 Hz for
two objects. Due to the sequential computation of the
object potentials, addition of other obstacles to the envi-
ronment increases the computational requirements lin-
early. Parallelization of the code could be easily imple-
mented with the addition of more processors, yielding a
control rate equal to that for one object. Object positions
are currently constant valued variables in the control
code, but visual feedback will in the future provide object
position data in real time, enabling dynamic obstacle
avoidance.

The newly developed control system for the CMU
DDARM 11 is pictured in Fig. 24. The real-time con-
troller runs on an Ironics 68020 under Chimera, a real-
time kernel for the Ironics [23, 25]. The real-time control
processor is separated from the Unix environment of its
Sun 3/260 host by a VME to VME bus repeater. All
control computation is done on a Mercury MC3200 float-
ing point processor at a rate of approximately 7 Mflops.

Communication with the DDARM is performed through
six Texas Instruments TMS320 processors (one for each
joint).

VIL

A novel superquadric potential has been developed
that provides obstacle avoidance and object approach
capabilities. Robust obstacle avoidance and goal acquisi-
tion is achieved by governing the end effector motion with
an avoidance potential placed in an global attractive well.
Local minima are not generated in the workspace because
of the asymptotically spherical nature of the superquadric
potential. Link collisions with the environment are also
eliminated by our scheme. For object approach, a second
form of the superquadric potential may be employed to
generate deceleration forces. This scheme reduces con-
tact velocities and forces to tolerable levels. Both the
avoidance and approach potentials have been imple-
mented in simulations of two and three link manipulators.
The avoidance potentials have been successfully imple-
mented in real time on the CMU DDARM II. The results
indicate an improvement over other local potential
schemes.

CONCLUSION
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