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A Theoretical and Experimental
Investigation of Explicit Force Control
Strategies for Manipulators

Richard Volpe and Pradeep Khosla, Senior Member, IEEE

Abstract—This paper presents a complete overview of basic
strategies that have been proposed for force control of robot
manipulators. First, the model of the plant to be controlled is
reviewed. Next, the strategies are divided into force-based and
position-based categories, according to previously reported im-
plementations. Each of the controller types within these cate-
gories is analyzed, and predictions of stability and efficacy are
made. Then it is shown that these two categories are actually the
same, and this recognition leads to the concept of a novel second
order low pass filter controller. Finally, all of the controllers are
experimentally tested on the CMU DD Arm II, confirming the
theoretical predictions. Among the important results presented
is the conclusive demonstration for the first time that integral
gain control is the best basic strategy for force control of
manipulators.

1. INTRODUCTION

ANY automation tasks require manipulators to
interact with their environments. Necessary to the
performance of these tasks are the basic capabilities of
pushing, scraping, grinding, pounding, polishing, twisting,
etc. All of these capabilities intrinsically require that the
manipulator be force controlled. Two main approaches
have been proposed for this purpose: explicit force control
and impedance control. Since it has been demonstrated
previously that an impedance controller with force feed-
back contains an explicit force controller [20], [23], the
discussion in this paper is limited to explicit force control.
Explicit force control involves the direct command and
measurement of force values, with the goal of having the
output follow the input as closely as possible. Two types of
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explicit force control have been proposed: force-based,
and inner position loop based. By far the most commonly
discussed, the force-based techniques usually employ some
form of PID control, as well as various simple forms of
filtering. Inner position loop controllers, as the name
suggests, have an outer force control loop that provides
position commands to an inner position-based controller.

While many of these controllers have been analyzed
before, this has not been done with an experimentally
determined plant transfer function [20], [21]. As will be
seen, erroneous conclusions about the stability of the
system can result without a specific system model. Fur-
ther, the analysis in this paper draws the force and posi-
tion-based strategies together, into one coherent frame-
work. This framework provides greater understanding of
how gain variations affect stability, and suggests a new
lowpass filter control technique.

The paper is organized as follows. First the plant model
of the arm /sensor /environment system is reviewed. Then
force-based explicit force control techniques will be pre-
sented and analyzed. Similarly, position-based explicit
force control strategies will be presented and analyzed. It
will then be shown how the two are the same, indicating
which particular schemes will be most successful. Follow-
ing this analysis, the experimental results will be pre-
sented for tests performed with each of the controllers
discussed. Finally, conclusions are drawn from the analysis
and experimentation.

II. ARM / SENSOR / ENVIRONMENT MODEL

The physical system employed in this study is depicted
in Fig. 1. The environment is a cardboard box with an
aluminum plate resting on it. The box is resting on a table
that is considerably more stiff than the box, and is there-
fore considered ground for these tests. The force sensor is
mounted on link six of the CMU DD Arm II. Attached to
the force sensor is a steel probe with a brass weight on its
end. The brass weight serves as an end effector substitute
and provides a flat stiff surface for applying forces on the
environment.

Previous analysis has indicated that a fourth order
model of the arm/sensor/environment is necessary and
sufficient for force control [5, 20]. This model is shown in
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Fig. 1.

Fig. 2. The transfer function of this system is:

F, (mps® + ¢35 + ky)k,
F (mgs®+ (cy +¢3)s + (ky + k3))
(mys?+cs+k) + (mps?+cys+k3)(c,s +ky)

ey

where the measured force, F,, is equal to k,(x, — xp).
We have experimentally extracted parameter values for
the components of this model, for the box/plate environ-
ment described. Theoretical and experimental details can
be found elsewhere [21].

The pole /zero locations indicated by the extracted pa-
rameters differ greatly from those assumed by other re-
searchers [5], [6]. Fig. 3 shows all but the leftmost pole,
which is at —28000 on the real axis. The complex pole
pair (with real value ~ —12) is due mainly to the envi-
ronment. The other pole pair (on the real axis) is due
mainly to the sensor dynamics. These pole pairs will be
called the environment and sensor poles, hereafter. It can
be seen that the sensor poles are fairly far removed from
the environmental ones, and are located farther into the
left half plane. The leftmost sensor pole (at —28000) will
be ignored.

I11. FORCE-BASED ExpLICIT FORCE CONTROL

Force based explicit force control describes a force
controller that compares the reference and measured
force signals, processes them, and provides an actuation
signal directly to the plant. The reference force may also
be fedforward and added to the signal going to the plant.
Therefore, the general control diagram is shown in Fig. 4,
where G is the plant, H is the controller, R is the
feedforward transfer function, and L is a force feedback
filter. The plant G may be represented by the fourth
order model discussed in the previous section. Active
damping, if present, is included in G.

The controller H is usually some subset of PID control
(ie., P, I, PD, etc.). The simple form is chosen for two
reasons. First, it is important to fully test and compare
these simple controller forms to reveal their relative
strengths and weaknesses. If the results are adequate,
then more sophisticated nonlinear and adaptive tech-
niques [8], [9], [16] need not be utilized. However, even if
simple PID type control proves inadequate, a complete
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Fig. 2. General fourth order model of arm, sensor, and environment
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Fig. 3. The pole and zero locations for the fourth order model, using
the experimentally extracted parameters. Not shown is the leftmost pole
which is at —28000 on the real axis.

understanding of the behavior of the system under PID
control is preliminary to understanding the analyzing the
more sophisticated techniques.

The following sections present the specific forms of PID
controllers tested. These schemes will be analyzed and the
analytical results will be compared with previous results
obtained by other researchers.

A. Strategies for Force-Based Explicit Force Control

This section presents the force-based explicit force con-
trol strategies that have been considered for this research.
An extensive overview of strategies that have been consid-
ered by other researchers has been previously presented
[29], [20], [24]. The strategies presented here are either a
generalization of those, or selected because they are con-
sidered to be the most promising. In all cases, the joint
torques commanded by these schemes are obtained
through the transpose of the Jacobian, and gravity com-
pensation is employed. The following notation is used: f,
is the reference force, f,, is the measured force, f is the
control signal, X, is measured velocity, K, is the propor-
tional force gain, K is the integral force gain, and K, is
the derivative force gain. Finally, K, is the velocity gain
for the active damping employed. (In our experiments, the
CMU DD Arm II has no intrinsic damping. Therefore,
active damping was employed and included in the transfer
function G, as previously mentioned.)

Proportional Control: [14], [10], [1], [5], [6], [32], [28], [2]

f=fr+Kfp(fr_fm)_Kvxm' (2)
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Fig. 4. Block diagram of a generic force-based, explicit force controller.

Integral Control: [18], [33], [3], [19], [31]

f=Knf(f, = fu) di = K, k. 3)

Proportional-Integral Control: [15], [13], [6]
f=Kplf, = fa) + K[ (f, = ) dt = K%, (@)

Proportional-Derivative Control: [6], [30], [19]

d
f=fr + Kfp(fr —fm) + dezt-(fr _fm) - Kux.m- (5)

Often, the force signal is very noisy and must be filtered
before a derivative may be taken. Therefore, a simple
dominant pole filter may be employed in the feedback
path (L =a/(s + a)). The resultant control law in the
Laplace domain is:

F(s) = F(s) + [K, + Kgys]

X[f,— (s—‘}z-a)f’"] - K, sX,. (6)

B. Analysis of Force-Based Explicit Force Control

Given the wide spectrum of approaches and results
reported in the literature, it is worthwhile to take a
second look at these control strategies. Each will be
analyzed below using the plant model previously devel-
oped.

1) Proportional Control

For proportional control, H = K,, and L = 1in Fig. 4.
While the value of the feedforward term, R, does not
affect the characteristic equation, a value different than
unity will not cancel the reaction force from the environ-
ment, and the controller will not converge to the desired
value. The feedforward term will be discussed further
below. The closed loop transfer function with feedforward
is:

(R + Kfp)G

@)
1+K,,G

K

F,
This is a Type 0 System and will have a nonzero steady-
state error for a step input. The root locus of this system
is shown in Fig. 5. The corresponding Bode plot is shown
in Fig. 6.
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Fig. 5. Root locus for the fourth order model under proportional gain
explicit force control. The locus first crosses the imaginary axis for
K, = 1.2.
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Fig. 6. Bode plot for the fourth order system under proportional gain
explicit force control.

As can be seen from the root locus, both the sensor
poles and the environment poles move away from the real
axis for increased proportional gain. Thus the system
becomes more oscillatory. However, the environmental
poles go to a pair of zeros, while the sensor poles go to
infinity. Thus, the system may remain stable, but oscilla-
tions are likely to occur near the natural frequency of the
environment. Further, note that the poles actually move
into the right half plane, making the proportional gain
controller unstable. This is contrary to the predictions of
other researchers [6], which were based on a plant model
that was not experimentally derived.

The Bode plot further illustrates this problem. There is
a resonance peak from the environment dynamics, which
corresponds to a normal mode of oscillation of the
arm/environment system [21]. After this peak there is a
40 dB/decade drop-off which gives a minimum phase
margin of ~ 15°at K, = 1[24].

The addition of a feedback lowpass filter can reduce the
magnitude of the resonance peaks. The corresponding
closed loop transfer function becomes:

R+ K
o (R+K,;))G ‘ ®

a
m 14+ K| —— |G
fe ( s+a )
The root locus is modified by the presence of a pole on
the real axis that moves left from s = —a. Depending on
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the magnitude of a, this pole can reduce the response of
the resonance peak. For a — % this becomes a pure
proportional controller. For a — 0 this scheme is very
similar to integral control, discussed below. (For this rea-
son, an implementation of filtered proportional control
will not be presented in this paper.) Improved response
with lowpass filtering has been reported [1].

Finally, we have shown elsewhere that the proportional
force gain may theoretically be as low as negative one
[23). The modified root locus, for gains —1 < K, <, is
shown in Fig. 7. In this figure the poles are shown at the
beginning of the root locus, where K, = —1. Comparing
Figs. 7 and 5 it can be seen that negative gains provide a
very stable system. Gains in this region have proven very
effective for impact control [22], [26].

2) Integral Control

For integral control, H = (K;/s), and L = 1 in Fig. 4.
A nonzero feedforward term, R, yields the following
transfer function:

K,
L (re o
L. ST 9)
K )
N e ¥
s

Letting R be unity places a closed loop zero at s = —K
which limits the effectiveness of the integrator pole. Also,
a feedforward signal is not necessary since the integrator
will eliminate any steady state error for a constant input.
Therefore, R is set to zero and the transfer function is:

Ky
g
-5 10

Ky
1+ -LG
S

3|

This is a Type 1 System and has a finite error to a ramp
input. The root locus of this system is shown in Fig. 8. The
corresponding Bode plot is shown in Fig. 9.

As can be seen in the root locus plot, the introduction
of the integral pole moving to the left causes the environ-
mental and sensor poles to move right. This has been
previously viewed as destabilizing [6]. In the previous
section, the sensor poles caused this same behavior from a
proportional controller. The two root loci are compared in
Fig. 10. As can be seen, the loci are similar except that the
integral controller has the benefit of a dominant low pass
pole on the real axis. The Bode plot indicates that the low
pass nature of integral control hides the resonance spikes
well below unity magnitude. The point of zero phase
margin indicates a maximum integral gain, K; = 28 [24].

3) Proportional-Integral Control

A PI controller is a linear combination of the above two
schemes. In this case, H = K, + (K, /s), L =1, and for
reasons mentioned above, R = 0. Therefore, the transfer
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Fig. 8. Root locus for the fourth order model under integral
explicit force control.
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Fig. 9. Bode plot for the fourth order system under integral gain
explicit force control.

function 1is:

K
K, +-L|G
L= > 11)
En k. + )G

1+ fp+—s—

Obviously, the behavior is a combination of the behav-
iors of pure proportional and pure integral control. The
appearance of the root locus and Bode plot will depend
on the gain which is varied.

4) Proportional-Derivative Control
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Fig. 10. Comparison of proportional and integral gain root loci.

A PD controller includes a derivative term with the
proportional control discussed above. In this case, H =
Ky, + sK;;, L =1, and for reasons mentioned above,
R = 1. Therefore, the transfer function is:

F, (R+K; +Kys)G (12)
F, 1+ (K, +K;4s)G’

Choosing a specific value of K, with K =0 will
determine the starting place of the root locus of K,. This
starting place will be somewhere on the root locus of K,
in Fig. 5. Independent of the starting point the root locus
will have similar characteristics. For K, large, the deriva-
tive term will have no influence, so the controller and its
root locus can be approximated as those for proportional
control alone. For K, = 0 this scheme will reduce to
pure derivative control which will not follow the reference
force. However, the transfer function and associated root
locus for K, = 0 represent the extreme of the behavior
for a PD controller. Just as the behavior of PI control was
intuited from that of P and I control alone, the behavior
of PD control can be best understood by studying its
extremes of pure proportional and pure derivative control.
Thus, K » is considered zero in the following discussion.
The resulting root locus is shown in Fig. 11. The corre-
sponding Bode plot is shown in Fig. 12.

As can be seen in the root locus plot, for a certain
range of gains, derivative control moves all of the poles
further left, thus appearing to make the system more
stable. For this reason, PD control has been predicted to
be very stable [6].

However, the Bode plot of the system shows a major
problem with this approach. Derivative control acts as a
band pass filter, amplifying noise and oscillations at the
resonant frequency. This surely will drive an under-
damped system into oscillation.

Another implementational factor must be considered
with respect to derivative control. Typically, the feedback
signal from a force sensor is very noisy. One example can
be seen in Fig. 20. Taking the derivative of such a signal is
not advisable. However, filtering may be effective. Passive
filtering may be accomplished by the use of a compliant
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Fig. 12. Bode plot for the fourth order system under derivative gain
explicit force control.

sensor or sensor cover [1], [30]. However, this method can
introduce uncontrolled degrees of freedom into the sys-
tem, or reduce the effective force that may be applied.
Alternatively, active filtering may be used. This will be
discussed next.

5) Filtered Proportional-Derivative Control

To filter the force signal a dominant pole filter may be
used in the feedback path. Therefore the transfer function
becomes:

F,
F a
m 1+(Kfp+deS)(s+a)G

(R+ K. +K;;s)G

As before, K;, is chosen to be zero for this analysis.
Choosing a — « will not make an effective filter of the
high frequency noise. Choosing ¢ — 0 will make this a
proportional gain controller. Proportional gain control has
already been shown to be ineffective in masking the
resonance oscillation of the system.

For the case of nonzero K » and a — 0, the character-
istic equation becomes that of a PI controller. As dis-
cussed before, the response of this controller will be
between that of P and I control alone.

C. Discussion of Forced-Based Explicit Force Control

It seems apparent from the above analysis that explicit
force control with the experimentally determined plant is
best accomplished by integral control. First, the integral
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controller is a Type 1 System and will have zero steady-
state error for a constant reference force. Second, an
integral controller acts as a low pass filter, reducing the
chance of resonance oscillations occurring in the system.
This is deemed to be very important. Higher order modes
of oscillation can cause the assumed model to become
invalid and actually make the system nonlinear, especially
if separation from the environment occurs.

One of the main arguments against integral control is
that it does not permit fast force trajectory tracking.
However, this goal is not achievable for a manipulator
that is not mechanically attached to the environment. A
simple argument should demonstrate this point. Consider
a manipulator that is pressing on a surface with a natural
frequency of oscillation. Between the manipulator and the
surface there is no physical compliance. Consider also
that the manipulator is to reduce its applied force. If the
rate of the reduction is greater than the natural frequency
of the environment, then contact will be lost. In other
words, the arm will pull away faster than the environment
can respond. Lost contact can cause instability to develop
and should be avoided. Therefore, it can be simply put
that the force control response time is limited by the environ-
mental dynamics. This is seen directly in the integral
control root locus and Bode plots above, Figs. 8 and 9.
The limiting value of K, obtained from the phase margin
[24] places the integral pole just to the right of the
environmental poles.

IV. PosiTioN-BASED EXPLICIT FORCE CONTROL

A second class of explicit force controllers consists of
those based on an inner position loop [11], [4], [7]. These
controllers were probably implemented first for practical
reasons—most commercial manipulators have built in
position controllers and don’t allow direct access to actua-
tor torques. As shown in Fig. 13, the outer force loop
provides a reference position to the inner position loop.
In this diagram, W is the position controller which is
typically a PD controlier:

W=K,+K,s. (14)

The reference force is transformed into a reference posi-
tion through an admittance, which is described as the
inverse of a second order impedance, Z, where:

Z = mfs2 +cps + k. (15)

Again the joint torques are obtained from the Cartesian
forces through the transpose of the Jacobian, and gravity
compensation is employed. The plant damping is again
provided actively by the velocity gain K.

A review of position-based force control implementa-
tions that have been performed by other researchers is
given elsewhere [29], [20].

A. Analysis of Position-Based Explicit Force Control
1) Ensuring a Type 1 System
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Fig. 13. Block diagram of a generic position-based, explicit force con-
troller.

As has been stated previously, a Type 1 system is
desirable because it has zero steady-state error to a con-
stant input. Previous analysis of the position-based con-
trollers, expecially that of DeSchutter, indicates the need
to consider controllers that must become Type 1 Systems
[4]. The previous work, coupled with the plant model
developed in this paper, indicates a new and novel way in
which to view inner position loop-based explicit force
control. As will be seen, the previously reviewed force-
based explicit force controllers are actually a subset of
this strategy.

Consider first the position-based force controller that
uses velocity as well as position feedback (W = K, + K,,s).
Deschutter’s results indicate that the outer force con-
troller providing reference positions must have at least
one free integration. To achieve this the force controller
must be Z = s(ms + c;). This is essentially a second
order low pass filter. Contrary to this is the first order low
pass filter which will have a nonzero steady state error [7].

Next, consider the position-based force controller that
uses only velocity feedback (W = K, s). For this scheme,
the outer force loop must provide a reference velocity, as
well as satisfy the criterion of at least one free integration.
This implies Z = m fsz. Notice that this scheme is exactly
what has previously been considered as integral gain ex-
plicit force control with active damping. Viewed in this
way, the velocity feedback is not just added to improve
damping. Instead, it is part of an inner loop, position-
based, feedback controller.

Finally, the third case of no inner loop reduces to the
second case since the transfer function of the arm, sensor
and environment does not change form when the active
damping is removed. This is because velocity ‘feedback’ is
still present in the system in the form of natural damping.

2) Position-Based Explicit Force Control Viewed as
Force-Based Explicit Force Control

Having shown the correspondence between position-
based and force-based explicit force control, it is possible
to change the first into the second. Consider separating
the position controller in Fig. 13 into two parts, W, and
W,. Fig. 14 shows the resultant controller block diagram.

It can now be seen that the inner loop simply adds
stiffness and damping to the plant. Since the plant already
contains active damping [21], this component of W, is
superfluous. The position gain, on the other hand, is
completely undesirable. It increases the manipulator
stiffness, which is added directly to the environmental
stiffness in the plant transfer function, making the system
more oscillatory. Therefore, position-based force control
differs from force-based force control by the addition of

et ElET
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Fig. 14. Reformulation of the block diagram of generic position-based,
explicit force controller.

stiffness to the plant. Further, this additional stiffness is
destabilizing.

The outer loop of the position-based force control can
be shown to assume the form of any of the force-based
explicit force controllers previously discussed. Consider
the form of the controller shown in Figure 14. It is
apparent that the controller now has a form previously
associated with force-based explicit force control, where

g K, +K,s
- mys* + cps +k;

(16)

z

Notice that all of the explicit force controllers can be
constructed from this transfer function:

Proportional Control K., =K,/k;
Proportional Control K, =K,/¢cs
Integral Control K;=K,/c;
Integral Control K;=K,/m;
Derivative Control K, =K, /k;
PI Control

PD Control

Filtered P Control K;, /(s +a) =
Filtered PD Control

The only new controller in this list is the last one, and it
will be discussed in the next section.

3) Second Order Low Pass Filter

The second order low-pass filter is newly introduced by
the concept of position-based explicit force control. It is
worthwhile to look at the root locus and Bode plot for this
scheme. Like the first order dominant pole introduced by
low pass filtering or integral control, the two poles intro-
duced by a second order filter should be placed to the
right of the environmental poles. Since the controller has
been chosen to be Type 1, one of the poles is constrained
to begin its locus at the origin. Thus the other should
begin to the left of the environmental poles. As the gain is
increased, the filter poles on the real axis will come
together and give a double pole filter just to the right of
the enviromental poles. A root locus for a = 20 is shown
in Fig. 15. The corresponding Bode plot is shown in
Fig. 16.

Unlike integral gain control, these two filter poles can
leave the real axis. Thus, oscillations in the system may be

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 11, NOVEMBER 1993

400
300}
200+

100+

imaginary

-1

0
00
-200
2300}
-400

-200 -150 -100 -50

real

50

Fig. 15. Root locus for the fourth order model under explicit force
control with a second order lowpass filter. The poles quickly leave the
real axis near the origin (for K; = 100) and then move more slowly.

result. If the filter poles leave the real axis to the right of
the environmental poles, the frequency and decay of the
oscillations will be dominated by the filter poles. In this
case, the characteristics of the oscillations may noticeably
differ from those seen for proportional or integral gain
control.

K,=mg;=¢c;=0
K,=m;=k;=0
K,=m;=k;=0
K,=c;=k;=0
K,=mg=¢c;=0

Kfp=Kv/cf’ Kfl= p/Cf mf=kf=0

(Kp, + Kys) /(s +a) = (K, + K,5)/(cps + kg) mp=0.
2nd Order Low Pass Filter -~ K, /(s(s + a)) = K, /(s(ms + c;))

Kv=kf=0‘

V. ANALYTICAL CONCLUSIONS AND EXPERIMENTAL
PREDICTIONS

Thus far we have presented a stability analysis of vari-
ous explicit force control routines using the experimen-
tally derived plant model. This work is unique in its broad
coverage of control strategies and use of an experimen-
tally determined plant model. The results of this work also
contradict the predictions of other researchers [6] in that
integral control is apparently best, and PD control worst.

The analysis indicates that integral control is the best
choice for explicit force control for several reasons: a
simple form, intrinsic lowpass filtering, and zero steady
state error for a constant reference force. A possible
second choice is the second order lowpass filter. Al-
though, slightly more complicated than simple integral
control it promises to filter the force oscillations better.
Proportional control is the third choice. However, with
this controller the dominant poles are complex, indicating
that oscillations will occur even for low gains. Further, the
analysis shows that proportional gain control becomes
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Fig. 16. Bode plot for the fourth order system under explicit force
control with a second order lowpass filter.

unstable, which has not been predicted previously. Finally,
any control using the derivative of the force signal does
not seem promising. This type of controller will act as a
band pass filter at the natural frequency of the system.
Also, obtaining a good derivative of the force signal may
prove difficult. '

The rest of this paper presents the data obtained from
the implementation of the explicit force control strategies
discussed. All experiments were performed with the CMU
DD Arm II and implemented under the Chimera II real
time operating system [17] with the computer architecture
described elsewhere [20]. This experimental review of
force control methodologies is unique in its breadth, since
a complete spectrum of strategies has been implemented
on the same system. The commonality amongst the exper-
iments has permitted the ability to objectively compare
and contrast these strategies, and draw conclusions about
the efficacy of each. As will be seen, the results support
the previous analysis and show the superiority of integral
force control for force trajectory tracking.

First, data collected from explicit force control strate-
gies is presented. These include proportional control with
feedforward, integral control, and proportional-derivative
control. All of these tests were conducted using the envi-
ronment modelled previously. The contact problem was
ignored to simplify these tests, but we have studied it
extensively elsewhere [22, 26). Finally, results are pre-
sented from tests conducted with the best of these con-
trollers on a very stiff environment.

VI. ExpLICIT FORCE CONTROL

This section presents the results of implementing the
explicit force control schemes discussed. All of these
schemes were implemented in a Hybrid Control frame-
work [12] in which the force was controlled in one direc-
tion (world frame z axis), and all other directions were
position controlled. To be consistent with the
arm/sensor /environment model developed, active damp-
ing was provided (K, = 10) in the force controlled direc-
tion [21], [25]. The control rate was 300 Hz. The chosen
reference force trajectory has steady state, step, and ramp
components and is shown as a dashed curve in all of the
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graphs. The measured force response of the system is
shown as a solid curve.

A. Proportional Gain with Feedforward Control

The first controller to be discussed is proportional gain
force control with the reference force feedforward. The
exact form of the control law used is:

T=JT[fr + Kfp(fr _fm) - Kvxm] +g

where g is the gravitational torque. Figs. 17(a)-(h) show
the response of this controller to the reference force
trajectory. There are several things to note about the
response profiles to variations in the proportional gain.
First, as predicted by the model, the system exhibits the
characteristics of a Type 0 system: finite steady state error
for a step input and unbounded error for a ramp input.
Second, for an increase in position gain, the steady state
error reduces, but at the cost of increasingly larger over-
shoot. As correctly predicted, this control scheme causes
instability at K =L Also, the fact that the environmen-
tal poles are always off the real axis can be seen in the
steady state oscillations that occur at the system’s natural
frequency (~ 15 Hz), particularly after the step input.
Finally, it can be seen that negative proportional gains are
increasingly more stable, but the response of the system
approaches zero as Ky, = —1.

One possible method of improving the steady state
error of this controller is to increase the feedforward
signal by a factor that would make that error small for the
open loop case (K, = 0). Fig. 17(d) shows that a feedfor-
ward term of approximately 1.4 f, would be necessary.
This, however, would not eliminate the oscillations that
are present, especially after the step input.

a7

B. Integral Gain Control

Integral explicit force control was implemented with the
following form of control law:

T=JT[Kﬁf(f, -fdt—K,i,|+g. (18)

Figs. 18(a)—(e) show the response of this controller to the
reference force trajectory. The most notable aspect of this
controller is the dominance of the integrator pole on the
real axis for low gains. This causes the system to be Type
1, as is apparent from the zero steady state error to the
step input and constant error to the ramp input. As
predicted, this pole acts as a low pass filter until it moves
past the environment poles. This happens gradually as the
gain increases past K; = 10 as shown in the center of the
root locus diagram of Fig. 8. Also predicted by that model
is that the system becomes unstable for gains near K; =
30. The real system is not unstable until K; reaches the
upper thirties, which implies a small modelling error.
Also, the model previously presented does not explain the
nonlinear response seen for K, = 37.5. For a linear sys-
tem, the envelopes of the two dominant oscillations would
be the same, which is obviously not the case. This limita-
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Fig. 17. Experimental data of proportional gain explicit force control with feedforward. Experimental data of proportional
gain explicit force control with feedforward.

tion of the model is not significant, since it does not
manifest itself within the desirable operating range of this
controller.

C. PD Control

Proportional /Derivative control was also implemented.
Simple differencing of the measured force signal to obtain
the derivative was unsuccessful because of the extremely
noisy nature of the force signal. Therefore, the force

feedback signal was lowpass filtered by using the transfer
function L = a/(s + a) in the feedback path in Fig. 4.
The reference signal is not filtered. Therefore, the imple-
mented control law in the Laplace domain is:

(s) = JT{F,(S) +[K;, + Kpys]

~[F,(s) - (—“——)Fm(s)] + K,,X(s)} +g(s). (19)
s+a
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Fig. 19 shows the response of the system, as well as the
reference force and filtered force (long dash curve), for
Kfp = (.5, de = (.01, and a = 10. The results are not
much better than for proportional gain alone. As will be
reviewed below, improvements in the performance of this
controller cannot be made by varing the gains given here
[27].

First, increasing the derivative gain does not improve
the response of the system because the amplified low
frequency noise can still drive the system unstable. While
Fig. 19 seems to show a fairly smooth filtered force signal,
Fig. 20 shows a closer view of a section of the curve.
Obviously, much of the noise has been removed, but some
still remains. With a large enough gain the noise will
dominate. Moving the filter pole to the right (a < 10) will
eliminate this noise, but it introduces a more serious
problem of lag.

Fig. 21 shows that the calculated derivative (solid curve)
appears accurate. (The dashed curve is the measured
force.) However, it is apparent from this figure and Fig. 19
that there is lag introduced by the filtering process. This
lag becomes extremely important when it is comparable to
the period of oscillation of the system. Fig. 22 shows the
original force signal (solid), the filtered force signal (short
dash), and the derivative of the filtered signal (long dash).
For this oscillation frequency, the filtering process causes
the filtered force to lag the measured force by one quarter
cycle. This makes the force signal 180° out of phase with
the ideal derivative signal. Thus, the proportional gain
acts as a destabilizing negative derivative gain. Further,
the derivative of the filtered signal leads it by one quarter
cycle. Thus, the derivative is in phase with the originally
measured force and the derivative gain acts as a propor-
tional gain. Increasing the derivative gain causes greater
oscillations exactly when the effective damping is being
reduced by the proportional gain. This obviously will
cause the system to go unstable.

It can be concluded from this discussion that the filter
pole should be significantly larger than the natural fre-
quency of the system. However, it also must be small

enough to effectively filter the noise of the force sensor.
These two criteria could not be met with our system. To
be fair, most systems will never meet this criteria. Force
controlled systems are most challenged by stiff environ-
ments that have high natural frequencies. It is unlikely
that a sensor can be built that has noise only at frequen-
cies much greater than the natural frequencies of these
environments.

One solution, however, is to use a soft force sensor or
compliant covering on the sensor. The compliance acts as
a lowpass filter with no time delay. In this way, the
derivative of the force signal may be used under the
condition that the time necessary to calculate it is not
significant. In this case, without a noisy force signal,
simple differencing of the current and most recent force
samples will usually suffice. Thus, all that is required is
that the force sampling frequency is not of the same order
of magnitude as the natural frequency of the system.
Successful PD force control with a soft force sensor has
been reported elsewhere [30].

D. Second Order Low Pass Filter Control

As discussed in Section IV-A-1), a second order low
pass filter controller has been implemented. The following
control law was used:

K
7(s) =JT| —LZ—(F.(s) = F,(s))
s(s +a)

+K sX(s)| +g(s). (20)

Fig. 23 shows the response of this system for three distinct
regions of operation: filter poles meeting on the real axis
to the right of, near, and to the left of the environment
poles. This behavior was previously shown near the origin
in Fig. 15.

Figs. 23(a)-(c) show the response for @ = 15 and in-
creasing gain Ky, Referring to the root locus near the
origin in Fig. 15, it can be seen that the rightmost pole
dominates in (a), until the two poles on the real axis meet
in (b), and then leave the real axis in (c). For the small
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Fig. 18. Experimental data of integral gain explicit force control.

gain case, the dominant pole acts much like the single
pole of the integral controller presented previously. Be-
cause a is small, the filter poles meet to the right of the
environmental poles and dominate the response for low
frequencies. Notice that the oscillations present in (c) are
not close to the natural frequency of the environment, as
was true with the previous controller results presented.
Figs. 23(d)—(f) show the response for a = 45 and in-
creasing gain K;,. Again, the three graphs refer to the
poles spread on the real axis (d), together on the real axis

(e), and off the real axis (f). The filter pole dominates for
low gains, making the response look like integral control.
The response continues to look like integral control as the
poles meet in the vicinity of the environmental poles (e).
Fig. 23(e) shows the best response obtained with this
controller. In (f) the poles have again moved off the real
axis, as indicated by the oscillations.

Finally, Figs. 23(g)-(i) show the response for a = 180
and increasing gain K;,. The three graphs refer to the
poles spread on the real axis (g), together on the real axis
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(h), and off the real axis (i). Again, the first two graphs
look much like integral control. However, this time the
third graph also looks like integral force control with gain
that is too high. This is intuitively correct since the meet-
ing point of the filter poles for such a high value of a is to
the left of the environment poles. Thus, the right filter
pole acts like the integral control pole until it is moved far
to the left of the environment poles, at which point its
influence is negligible. The influence of the second filter
pole remains negligible throughout.

It can be concluded that this control scheme is only
marginally better than integral control. While the double
pole on the real axis promises to be a better low pass
filter, its location must still be close to the real axis
projection of the environmental poles to minimize lag.
This placement reduces its ability to better suppress the
oscillation of the system. Further, this controller is much
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more difficult to tune since it requires the adjustment of
two parameters instead of one. For these reasons it is not
preferable to pure integral control. However, this imple-
mentation does successfully demonstrate that position-
based explicit force control, as discussed in Section IV-A-
1), is stable and useful.

VII. RESULTS WITH A STIFF STEEL ENVIRONMENT

All of the results presented previously were obtained
with the environment modeled reviewed earlier in this
paper and described in detail elsewhere [20], [21]. To
further test the proportional and integral gain controllers,
a very rigid steel pedestal was also used as the environ-
ment. This pedestal was made from one inch thick steel:
two 1 foot square plates at both ends of a cylinder 34
inches long and 8 inches in diameter. The bottom plate
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was bolted to a concrete floor. Another piece of steel was
bolted to the top plate. It consisted of two 6 by 1/4 inch
steel plates joined at right angles. (This is commonly
called ‘angle iron’.) The angle iron was 1 foot long and
provided a vertical surface to press.

Two points on this pedestal were used for force trajec-
tory experiments. The first was on the top surface (z

direction), directly above the wall of the supporting col-
umn. It was the most rigid point on the structure. The
pedestal was mounted such that this spot was very close to
the Cartesian position at which all previous experiments
were performed. The second spot on the pedestal used for
experiments was on the face of the angle iron (x direc-
tion). This was much less stiff but still considerably more
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stiff than the previously modelled environment. Its reduc-
tion in stiffness from the top surface was due to flexion of
the column and weaknesses in the bolted connections.
First proportional gain control was tried at the two test
points on the pedestal. Fig. 24 shows the response for the

highest proportional gains used in the z direction. For this
stiff direction, the gain is stable even for K =2 Fig. 25
shows the response for the highest proportional gains
used in the x direction. It is apparent that general behav-
ior of the controller is the same as before, with the




Newtons

Newtons

Newtons

— ((-1.0)*MezForc_wd[0])
RefForc[0]

Newtons

—— ((-1.0)*MezForc_wd(0])
---- RefForc[0

——
e T N S ¥ R M T M T TR S C R S T ]

Time(seconds)

Kjp =05
? (@

7

s

direction).

E] 1 s 2 s 3 33 4 43 El EX) . Y ?
K]p =10 Time(seconds)
®)

ot —— MezForc_wdl2]
--- ((-1.0)*RefForc(2])

Newtons

— _wd[2]
===~ ((-1.0)*RefForc{2])

i B B R T R M T R B Ty S UM S U e <

Time(seconds)
@

Ifﬁ =30

3 1 15 2 EX) 3 X} 4 45 E] 33 O [X] 7
Time(seconds)
®

Kji =50

Fig. 26. Experimental data of integral gain explicit force control on the steel environment (z direction).

° ~——((-1.0)*MezForc_wd[0})
---- RefForc{)

Newtons

-1.0)*MezForc_wd[0])
=== RefForci0]

307851 13 @ 23 3 a8 4 &8s w e &

Time{seconds)
(@

I{fi = 30

3 1 1S 2 s 3 35 4 43 E] X s & 7

Time(seconds)

Ky =50
! ®

Fig. 27. Experimental data of integral gain explicit force control on the steel environment (x direction).

i
) ] fForc{0]
Fig. 25. Experimental data of proportional gain explicit force control with feedforward against the steel environment (x
d{2) A MezFore,
p !
| s {
- rcf0]



VOLPE AND KHOSLA: MANIPULATORS

modelled environment. However, it can also be seen that
a stiffer environment permits higher proportional force
gains.

Next integral gain control was tried at the two test
points on the pedestal. Fig. 26 shows the response for the
highest integral gains used in the z direction. Fig. 27
shows the response for the highest integral gains used in
the x direction. For both directions, the gain is still stable
for K; = 50. It is apparent that general behavior of this
controller is also the same as before with the modelled
environment. However, it can also be seen that a stiffer
environment again permits higher gains.

The major conclusion to draw from this data is that all
of the discussions and results from the analysis of the
modelled system carry over to a very stiff environment. In
this case it can be assumed that most of the dynamics of
the system are within the manipulator and the sensor.
Therefore, an infinitely stiff environment (if one could be
found) would not provide much different results.

VIII. CONCLUSION

This paper has presented the analysis and experimental
testing of a broad spectrum of basic force control strate-
gies: proportional with feedforward, integral, filtered feed-
back proportional-derivative, and second order low pass
filtering. The data permits several important conclusions.
First, force trajectory tracking is best accomplished with
integral gain explicit force control. Second, PD force
control and damping strategies should not be relied on to
provide stability to the system when in contact with the
environment, since it is impossible to obtain a true deriva-
tive. Finally, the fourth order model of the environment
previously obtained through experimentation was further
validated by the correct predictions of system behavior
that it provided.

While integral control has been utilized by many re-
searchers, this work is unique in that the efficacy of
integral control has never been experimentally demon-
strated against the full spectrum of basic control strate-
gies.
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