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Abstract. This paper discusses computational and experimental details necessary for successfully imple-
menting and evaluating a wide variety of force control strategies. First, a review of both explicit force
and impedance control strategies is provided. Second, the basic computational requirements of these
schemes are discussed, and the hardware and timing information for our implementation is provided.
‘Third, computational problems such as noise filtering and sampling rates are explained and discussed
in detail. Finally, a review of the experimental results obtained is provided. These results support the pre-
‘vious discussions by demonstrating the importance of fully considering the implementational details
. required for successful force control of robotic manipulators.
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t
1. Introduction

... It has generally been recognized that there is a class of tasks for which manipulators
. need to be force controlled [20, 40, 18]. Examples of such tasks include pushing, pull-
, - ing, scraping, polishing, inserting, etc. Since these tasks inherently require not just
* % the exertion but the control of forces, force sensing and:force control algorithms
- must be employed. This paper addresses control architecture and computational

~ methods we have employed to implement and experimentally compare a wide
. variety of force control methods. This testing has revealed the relative efficacy of
é each control strategy, as well as the computational considerations necessary for

" the algorithms which implement each strategy.

In this paper we first review the wide spectrum force control strategies that
we have tested [31, 37]. Second, the computational requirements of each strategy
will be presented. Third, we describe the architecture of the CMU DD Am 1l
system, and discuss the implementation considerations which limit the effectiveness

* This work was completed while the author was a member of the Departinent of Physics, The Robotics
2 Institute, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
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of some schemes. Fourth, we present some experimental results from our imple-
mentations.

Previously proposed force control stratchcs are usually divided into two
categories: explicit force control and impedance control [40, 8, 25]. The explicit force
control strategies are typically some variation of PID control of exerted forces. The
impedance control methodology controls the apparent dynamics of the manipulator,
as experienced by the environment with which it is in contact. We have previously
shown through analysis and experimentation that impedance control is equivalent
to proportional gain force control [35]. We have also demonstrated and explained
the superiority of integral gain force control for force trajectory tracking [37].
Further, we have developed and demonstrated an impact controller that provides
stable and bounceless impact with the environment [34].

The computational requirements of each of these strategies can be discussed in
terms of the multiplies and additions required, or in terms of the experimentally
determined cycle times for each algorithm in our system. To put this in perspec-
tive, we will describe the system and give these computational times. Among the
most intensive operations are the force sensor interrupt servicing and the manipula-
tor inverse dynamics computation. Some control schemes do not employ the
dynamics computation and, therefore, have faster cycle times. Other operations
requiring CPU bandwidth are joystick servicing, trajectory queue reading and
data logging, manipulator kinematics and Jacobian calculations, tool and manipula-
tor Jacobian multiplications, joint velocity computations, the operator interface, etc.

Five of these algorithmic operations inherently limit the robustness of the control-
lers. These are: the velocity signal computation, the force signal computation, the
force derivative computation, the hybrid position/force control switching, and
impact transient handling. Each of these will be extensively discussed, and experi-
mental data will be used to demonstrate the limitations inherent in these compu-
tations.

Finally, we will present some experimental results obtained, and discuss how com-
putational costs have effected these results,

2. Explicit Force Control Strategies

This section describes the forms of explicit force control that were implemented and
experimentally evaluated [31]. Explicit force control strategies utilize direct evalua-
tion of desired and measured forces. Two types of output are possible from this
type of controller: forces or positions. In the former, forces are commanded
directly, and then translated into manipulator joint torques. In the latter, position
setpoints are given to an inner-loop position controller. We have previously shown
that position-based methods may be recast as force-based methods [36]. Therefore,
only the force-based methods are reviewed here.

Force-based explicit force control describes a method that compares the reference
and measured force signals, processes them, and provides an actuation signal directly
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to the plant. The reference force may also be fedforward and added to the signal
going to the plant. The plant is the arm/sensor/environment system, comprised of
the CMU DD Arm 11, a Lord force sensor, and several different environmental sur-
faces. It has previously been shown that the plant is best represented by a fourth
order transfer function [4, 31, 33]. To control this plant some subset of PID control
(i.e. P, I, PD, etc.) is usually chosen. We have extensively investigated these control
methods through both analytical and experimental means {37, 36]. The specitic forms
of these controllers will be discussed next.

2.1. STRATEGIES FOR FORCE-BASED EXPLICIT FORCE CONTROL

This section presents force-based explicit force control strategies that have been
implemented. From a computational perspective, all are approximately equal in
~ complexity. The strategies presented here are generalizations of schemes previously”
proposed, as indicated below. In all cases, the joint torques commanded by these
schemes are obtained through the transpose of the Jacobian, and gravity compen-
sation is employed. The parameters / and x are Cartesian force and velocity. K is
a gain for either proportional (subscript fp), integral (f'i), or derivative (fd ) force
control. K, is the velocity gain and provides active damping that is incorporated’
directly into the plant [36]. The subscripts ¢ and m denote commanded and
measured qualities. The variables s and a are Laplace domain complex numbers:

Proportional Control 22, 12, 1, 4, 5, 42, 38]

f =f;' + Kfp(j;‘ "fm) - K,x,, (h
Integral Control [29, 43, 3, 30]
f = Kfl J(j;' _fm)d’ - Ku-\-'m (2)

Proportional—lnlegrél Control |25, 19, 5]
1 = Kple = o) + K [ (e = fu) bt = Ko &
Proportional—Derivative Control [$5, 41, 30}
Unfiltered: f =/ + Kp(/f. —f) + K,,,-—-(f‘ —fu) — KX, (4)
Filtered:  F(s) = F.(s) + [Kjp + K9] |
«[Fito) = () )] - Kuskito )
Second Order Low Pass Filter Control {31, 36]

F(s) = ( )(F c(8) = Fiu(5)) + KX ,u(s)- (6)
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3. Impedance Control Strategies

Unlike explicit force control, impedance control is designed to make the manipulator .
have a specific dynamic behavior. This section reviews impedance control with and

without model-based dynamics compensation.

3.1. MODEL BASED CONTROL

Model based control involves the use of a dynamic model of the manipulator to com-
pute the actuation torques {2, 13]. This Computed Torque strategy provides a way to
compensate for the non-linearities of the manipulator dynamics. Thus, a linear con-
trol signal, u, will provide the desired joint acceleration in the manipulator:

14 = D(0)u + h(8,6) + g(6) — T; (7

where 7 is the actuator torque vector, D is the manipulator inertia matrix, A is the
Coriolis and centripetal torque vector, g is the gravitational torque vector, and I' is
the reaction torque vector from environmental interactions. With this formulation
the problem becomes one of choosing u.

For a Cartesian space position controller, the desired joint acceleration must be
obtained from the desired Cartesian acceleration. First, it is known that x = J§,
where J is the manipulator Jacobian. Taking the derivative of this equation and
solving for the angular acceleration gives the control signal:

u=40=J"'%-Jb). (8)
It is still necessary to define the desired Cartesian acceleration. One choice is the
acceleration due to gravity: %, = [0,0, -9.8m/s%,0,0,0]. Considering the static,

free-space situation (r = h = I" = 0), a gravity compensation vector of joint torques
may be computed:

g=-DJ'%,. 9)

The simple form of %, allows for streamlining of the computation of this vector.
Another way to obtain the Cartesian acceleration is to specify the desired behavior
of the manipulator by a second order impedance relation [8]:

Mx—-CAx—-KAx=f. (10)
The impedance parameters, M, C, and K must be chosen by the user. The variable x

and its derivatives are obtained from the transformation of the corresponding
angular values:

Ax = x; = Xy = X, — F (), (1)

Ax = X, — X, —xc 2O, (12)

where # represents the forward kinematics, and ¢ and m denote the commanded and
measured quantities. Finally, the force, f, corresponds to the physical force exerted
on the manipulator: J 7f = I". Since the force experienced is the negative of the force
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imparted, f = —f,,. The measured force may then be substituted into Equation (10)
for the desired behavior and Equation (7) for the arm model.

Summarizing, '
7= D(0)u + h(0,6) + g(0), (13)
T =1+J 7S, (14)
u=J"\E, - Jb,), | | (15)
Xy =M {C (% = km) + K(Xc = Xm)} = fin], (16)
Xm =F(0,), (17}
S = JOpm, (18)
J =J(0,,). (19)

The following two sections will illustrate the use of these equations in impedance
control. The next section shows the use of the full dynamics implementation, while
the last section shows the use of a steady state simplification.

3.2. SECOND-ORDER IMPEDANCE CONTROL

This section presents second-order impedance control with dynamics compensation *
[8]. From Equations (15) and (16) in (13) and (14), we have:

r=DJY (M (CAx+KAx—f,)—JO) +h+g+J7f,. (20)

This is the best form to use for the real time computation in a second order
impedance controller, since it utilizes the efficiency of the Computed Torque tech-
nique directly. However, for the purposes of discussion it is useful to utilize the
relation D(6) =JTA(x)J, where A is the Cartesian space manipulator inertia at
the end effector of the arm [10]. This yields:

r=JTAM(CAX+ KAx—f,) - JTAJO+ h+ g+ T/, (21)

Note that second order impedance control utilizes force feedback in two ways.
First, this feedback is used in the physical model of the arm dynamics, Equations
(13) and (14). Second, the feedback is used in the impedance relation, Equation
(16). While Equations (13) and (14) effectively linearize the arm, Equation (16)
modifies the Impedance Control signal to compensate for the experienced force.

3.3. SECOND-ORDER IMPEDANCE CONTROL WITH A STEADY-STATE APPROXIMATION

For the steady state case, all velocities in the dynamics equation are assumed zero
and the inertia is assumed constant [9, 7]. Therefore, Equation (21) gives:

r=JTAM'[(CA% + KAx) - f| + I S + 8. (22)
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Note that Equation (13) is not used to calculate the inverse dynamics, and there is no
use of the inverse of the Jacobian. Rather, the matrices AM ™!, AM~!C, and
AM 'K are chosen, usually as diagonal gain matrices. _

While not as accurate as the full dynamics representation, this approach has one
major advantage: there is no inversion of the Jacobian, which is computationally
intensive and can become singular. Therefore, while this scheme is faster and more
robust than the previous, it is also less accurate, especially for situations in which
the velocity terms cannot be neglected.

4. Position Control

When the measured force is zero for the previous impedance control algorithms, they
reduce to position controllers. However, there are other methods of position control.
It is important to review these position control methods, because when the manipu-
lator interacts with an environment some degrees of freedom will not be constrained
and must remain position controlled. This section reviews the most common position
control methods employed.

4.1. JOINT SPACE CONTROL

Joint space PID position control has the following form:
= Kol6 = O) + Kulde = ) + K, [(0c = ) (23)

While this strategy has been proposed for use in conjunction with force control [21],
it is not truly compatible with Cartesian Hybrid Position/Force Control {18], on
which all of the previously reviewed force control strategies rely. Further, this
form of control neglects dynamic coupling of joint motions. The results of an imple-
mentation of this scheme are presented later, mainly for comparison purposes.

The Computed Torque, previously introduced in Section 3.1, was proposed to
account for dynamic coupling. It was the first scheme to use Equation (13) to calcu-
late the nonlinear dynamics of a manipulator {17], using a control law expressed in
joint space as

u=06. + K, (0. — 6,) + Ks(6, - 6,,). | (24)

This joint space form of Computed Torque was not implemented in our study, and is
presented here for completeness. Instead, a Cartesian Space formulation was
employed, as will be reviewed in Section 4.3.

4.2. FIRST ORDER IMPEDANCE CONTROL

First order impedance control is essentially PD position control in Cartesian space.
Unlike Equation (10), there is no acceleration term: f = —CAx — KAx. Therefore,
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the commanded torque can be obtained directly through the transpose of the
Jacobian [39, 26, 40]:

T=JT(K,A% + K,Ax) +¢. (25)

This formulation is equivalent to second order impedance control without dynamics
compensation, Equation (22), with f,, = 0. We have previously discussed the need
for either force or acceleration measurements to implement second order impedance
control [36].

This controller suffers from large tracking error during free space motion, but
works well in static situations. Further, it is much less computationally intensive
than other Cartesian schemes. For this reason it was used extensively to control
the unconstrained degrees of freedom during our force control experiments.

4.3. RESOLVED ACCELERATION CONTROL

Resolved Acceleration Control was the first scheme to usc'Equation (15) to resolve
the desired Cartesian acceleration into joint space, for use in the Computed Torque
scheme [16]. Operational Space Control [10] provides an equivalent result, but repre-
sents the dynamics equations in Cartesian Space [15, 31]. The Cartesian acceleration
is specified as:

i'u = -i;c + Kv(jt - im) + KP(.\’(. - xm)- (26)

It can be seen that this equation corresponds to Equation (16) with . = —Af "'/,,.
This term seems strange at first, since Resolved Acceleration Control is not designed
to interact with the environment (f,, = 0). However, the feedforward acceleration
can be thought of as the result of an artificial force. This force is exerted by the envi-
ronment only in computer model of the world, and is calculated from the gradient of
a modelled artificial potential field. One use of artificial forces is for obstacle avoid-
ance strategies in which objects to be avoided are surrounded by repulsive potentials
[11, 32). -

5. Support Function Computations

To implement the above strategies, a basic set of computational modules are needed.
Recently, we have rigorously structured this module relationship to readily enable
reconfiguration of the control software [28). Here we will present the modules and
the computational costs in terms of execution time. To ground these speeds in common
units, we present the processor times required for simple operations. Also, we discuss
the interprocessor communication sequence, as well as the interrupt servicing over-
head. First, however, we will describe the computational hardware for the system.

5.1. COMPUTATION ENVIRONMENT

All of the pfcviously discuss algorithms were implemented on the CMU DD Arm Il
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Fig. 1. System architecture for the CMU DD Am I1.

system which consists of over ten microprocessors, a force sensor controller, a tactile
sensor, a joystick, a camera, joint resolver hardware, and six joint motor amplifiers.
The microprocessor boards are of main concern in this discussion. They are located
in four backplanes (three VME and one multibus) as shown in Figure 1. The Sun’s
VME backplane contains a Sun 3/260 Host computer and one end of a VME/VME
bus repeater. The second VME backplane contains a Mercury MC3200 floating
point board (with a Weitex 13132 processor), an Ironics M68020 processor (with
2 serial ports), a parallel IO board, two ends of VME/VME bus repeaters, and
one end of a VME/Multibus repeater. The third VME backplane (not utilized for
the force control implementations) contains an Imaging Technology vision system,
a Heurikon M68030 processor, and one end of a VME/VME repeater. The Multi-
bus contains six Texas Instruments TMS32010 joint controllers (320s), one
TMS32010 master controller, and one end of the VME/Muitibus repeater.

The real-time control of the CMU DD Arm II is performed by the M68020

Fooan -
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processor residing on a VME backplane that is connected to the Sun through a
repeater. This processor operates under the Chimera II real-time operating
system [27]. A real-time control and user interface program runs on the
M68020. The interface utilizes Chimera II system calls to communicate with the
Sun, the Mercury floating point processor, the force sensor, the tactile sensor,
the joystick, and the vision system. It also downloads control code to the Mer-
cury and the 320s, as well as controlling execution rates on these boards. The
Mercury floating point processor can be accessed by the user through the Sun
for code development, or by the interface program for real-time control code
execution. The six 320 joint controllers calculate the three phase torque values
needed by the motors, as well as obtaining the joint position values from the joint
resolvers.

5.2. BASIC COMPUTATIONS

Since the Mercury MC3200 serves as the main computational engine for the control
algorithms, this section presents the times needed for execution of basic operations
and routines running on this board. All software is written in C, and compiled
- with the Green Hills™ compiler provided by Mercury. The computation times for
basic operations are shown in Figure 2. At first glance it appears that the
MC3200 is only capable of 2 Mflops. However, pipelining of multiple floating point
math commands can achieve speeds of up to 7 Mflops for optimized C-code. (The
advertised claim of 20 Mflops is possible only for special operations, programmable
in Assembly Language.) Note that memory access for an * =" operation takes almost
as much time as an add or multiply. Further, because subscripted access of matrices
or vectors requires offset calculations, it should be avoided. In the case where the
subscripts are global integers, the costs go up drastically. (Access of matrix or vector
eclements by ‘hardcoded’ offsets is fine however, since the addresses are pre-computed
by the compiler.) Finally, trigonometric and type-casting operations are also costly
and should be avoided.

5.3. BASIC ALGORITHMS

Our experience has shown that all control code should utilize as much in-line expan-
sion as possible with as few global variable accesses as possible. One other rule of
thumb has been to not use more than four arguments to a function call, since
only four are passed in registers. Using these programming rules, we have d¢\c|0pcd
software on the MC3200 for all of the outlined force control strategies. The com-
putation times of these algorithms are shown in Fxgure 3. Some discussion of these
computation times is useful.

e The routine sgtoft() has five functions: subtraction of a bias vector (obtained by
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Operation Time (us) | Variable Types
for(i=0;ic<N;i++) . 0.80 | per iteration
asb; 0.41 | float a, b;
i =3 0.53 | int i,3;
a+bh; 0.50 | float a,b;
a-b; | 0.50 | float a,b;
a*b; - 0.50 | float a,b;
a/b; 2.30 | float a,b;
as*bh; e+t 0.82 | local floats, parallel processing capability
c(jl; 0.41 | float c{N]; extern int j;
cljl; 0.20 | float c[N]; int j;
d[§10x); 061 | float d[N}J[M]; extern int j,k;
d[j1[x]; 0.53 | float d[N][M]; extern int j; int Xx;
d(§](x]; 0.51 | float d[M)(N]; extern int k; int j;
d(§1x1; 0.50 | float d[MI[N]; int j,Xk;
c(j] = d{§1(x] » glk]l; 30.00 | glohal variables; j,k < 3
clj] = d(j1[x] » gix]; 11.80 | math library call
c(j] = d[31[x] » gix]; 7.60 | subroutine with complete expansion
cl[j) = d[31(x] * glx1; 6.60 | complete expansion, local variables
sin(a); 5.30 | float a;
cos(a); | 5.50 | float a;
a = (float)i; 5.20 | float a; int i;
{ = (int)a; 5.60 | float a; int i;

Fig. 2. Computation times for basic operations on the MC3200 processor.

calibration) from the eight measured strain gauge values, multiplication of the
result by a calibration matrix to obtain six forces/torques, conversion of units
from English to SI, calculation and subtraction of the geometrically dependent
torque caused by the end effector, and transformation of the forces/torques into
the end effector frame. Some of these operations, such as the calibration matrix
multiply and units conversion, were combined to save time.

The invdynamics() routine was the most computational costly routine imple-
mented. It has previously been shown that this scheme can be optimized for the
CMU DD Arm II such that there are 303 muitiplications and 226 additions
[13]. Using the previously determined time of 0.5 us for these 529 operations, it
might be expected that the inverse dynamics would take a maximum of 215 pus.
However, the structure of the inverse dynamics computation requires that inter-

—r
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Routine (ps) | Description Equations
sincos() 72 | Obtain sine and cosine for all 6 arm joints.
sgtort() 60 | Change 8 strain gauge values to 6 forces/torques.
invdymamics | 714 | Newton-Euler customized inverse dynamics. . 13
gravcomp() 130 Gravity compensation. Special case of above. 9
7%j 43 | Forward kinematics and Jacobian. 17, 19
tkjij () 151 | Forward kinematics, Jacobian, and inverse Jacobian. | 17, 19
pa) 25 | Joint space PD control. 23 )
pid() 35 | Joint space PID contral. 23
pdg() 160 | Joint space PD control with gravity compensation. 23,9
x() 236 | Cartesian PD control. Includes fkj(), sincos(). 25
xg() 382 | Addition of gravcomp(). . 25,9
xtg() 578 | Addition of hybrid force control and sgtoft(). 25,9, 14, 1.6
xtct() 1261 | Replacement of gravcomp() with invdynamics(). 26, 13-15, 1-6
imp() 550 | Steady-state impedance control. Similar to xfg() 22,9
. impet() 1200 | Impedance control with dynamics. Similar to xfct() | 20
from320s() 63 | Obtain joint angles from joint controllers.
t0320s() 48 | Check torque limits and send out commanded values.

Fig. 3. Compulation times for basic algorithms on the MC3200 processor.

mediate results be saved during the forward recursion, and accessed during the
backward recursion. Since the number of intermediate variables is larger than
_the registers available in the MC3200, these saves require memory accesses. A
close look at the code shows over 1000 such accesses, requiring close 1o 500 .
This accounts for the bulk of the execution time.

e The fkjij() routine employs Paul’'s method for forward kinematics and Jacobian
computation [23]. The inversion of the Jacobian was done with the Strassen inver-
sion technique [24], which utilizes the block structure of the Jacobian due to the
spherical wrist of the CMU DD Arm II. The tool Jacobian is mmpulcd and
inverted separately due to its simple structure.

e The times for the joint space algorithms are included for completeness and com-
parison purposes. As mentioned earlier, they were not used during force control.

e The impedance control algorithms were not timed separately since they are so
similar in computational structure to their explicit force control counterparts.

While the Mercury processor executes the above control aigorithms, it does not
decide the-execution starting time. Instead, it acts as a slave to the M68020 which
triggers it. This control process, as well as all others, are discussed next.
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5.4. REQUIRED PROCESSES

The control system implemented utilizes at most four processes while executing force
control algorithms. These are the main control loop, the user interface, the joystick
reader, and the joystick interpolator. There is also an interrupt handler for the force
sensor data. '

The main control loop is the core of the system and assumes highest possible
priority while executing. The philosophy followed is that the main control loop
must execute periodically, and all other processes must make due with the remain-
ing bandwidth of the CPU. If there is not enough time left over, the processor is
saturated, and control is impossible at this rate.

The functions of the main loop process are: read all measured and reference values
and transfer them to the MC3200, trigger the MC3200, wait, transfer out the
computational results from the MC3200, and log data. The measured values consist
of joint angles obtained from the 320 boards, and strain gauge force values place in
memory by an interrupt handler. The reference values consist of positions, velocities,
and forces that are entered by the user, obtained from the joystick, or read from a
trajectory cache that has been read from a file. The logged data consists of the
measured and reference values, as well as the computed values for the MC3200. Log-
ging can absorb a significant amount of time since it requires extensive data transfer
both from the MC3200 and within the Ironics board. (Logging does not rely on real-
time disk access, however. All data is stored in memory, and uploaded after an
experiment is completed.)

The user interface process, the only aperiodic process, is also extremely important.
This process parses user commands, downloads the MC3200 and TMS320 boards,
permits selection of control modes and configures the system appropriately, permits
the selection of reference and gain values, creates separate processes for the reading
of joystick values, etc. The two joystick processes are necessary to read the joystick at
its maximum rate of about 30 Hz, and to provide servo commands by interpolation
at a rate of 150 Hz. Without the interpolation, the manipulator motion is not
smooth.

5.5. INTERPROCESSOR COMMUNICATION AND TIMING

To illustrate the role of the various processors and processes, it is valuable to trace
the transfer of data through the system during one control cycle. A timing diagram
for interprocessor communication in the system is shown in Figure 4. It should be
noted that the size of segment D is dependent on the control algorithm chosen to
run on the MC3200. Also, the size of segment F is dependent on the selected control
rate. During F, the user interface and joystick processes may execute. Interrupt
servicing, which takes place throughout, is not shown.

The timing for the Lord Force sensor communication with the 68020 interrupt
handler is shown in Figures 5 and 6. While the interrupt handler is only executing
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A ! B. LA B
TI TMS32010 l | | . B
Ironics M63020 T Bl P lL.¢
D :
Mercury MC3200 L e .
fan stant
Events ! ! .

A - get joint angles from A/D boards, add offsets
B - calculate three phase torques, send to D/A boards

C - ransfer joint angles 10 Mercury board, perform logging
D - run control law

E - transfer torque values to 320s, perform logging
F - run other processes, service interrupts

Fig. 4. A timing diagram showing the sequence of interprocessor communlcauon in the CMU DD Arm
1I system. The segments are not to scale.

on the 68020 for about 20 us for each piece of data, there is 60 s of overhead. Since
the data is arriving (8 x 414 =) 3328 times a second, force sensor interrupt servicing
steals at least 25% of the processor bandwidth. This is a significant portion and has
forced us to decrease our operation rate for force control algorithms. For instance,
First-Order Impedance Control can run at 400 Hz without force data, but the
control rate must be reduced to 300 Hz if it is used in conjunction with a force con-
troller in a Hybrid Control framework. Considering that this control rate reduction

START

Y

DATA RECEIVED -

DATA READY

\j

A - 23 10 150 microseconds (interrupt triggered)
B - 5 microseconds

C - 15 microseconds

D - 75 microseconds

E - 25 microseconds

R - repeat A.B,C.D six times

N - new cycle triggered by falling edge

Fig. 5. A timing diagram showing the communication details between the Lord force sensor and the
interrupt handler on the Ironics 68020. The START signal indicates the beginning of the transfer cycle
for eight strain gauge values. The DATA signals perform handshaking between the pamllcl port interrupt
servicer on the 68020, and the Lord force sensor hardware.
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le 24ms i
START -42;4‘»,?2; ; : .x.\:
T ~1.67 , :
DATA RECEIVED L 67 ms LTI .
DATA READY ."]H‘[

Fig. 6. A timing diagram showing a larger time slice than in Figure 5. The 416 Hz (2.4 ms) cycle of the
force sensor controller hardware is apparent. Also the clumping of the incoming eight strain gauge values
is evident. Each of the spikes on the DATA RECEIVED line correspond to letter C in Figure S. The dark
bands on the DATA READY line correspond to letter A.

results from only one sensor, it is obvious that there is an intrinsic likelihood of data
overload in sensor based control systems. We have begun work on distributed sensor
processing and control to address this issue [28).

6. Algorithm Implementation Considerations

In addition to the above system issues, there are many problems and issues
associated with the implementation of the previously reviewed algorithms. Some
are only minor annoyances, while others can effect the stability or range of opera-
tion of a particular controller. Among the issues discussed in this section are
velocity signal calculation, force signal noise and filtering, the force signal deriva-
tive, hybrid control switching, and impact transient handling.

Much of the following discussion utilizes graphed data to illustrate and validate
the topic. In the legends of the graphs, the reference value of the applied force
is called ‘RefForc’; the measured value of the experienced force is called
‘MezForc_wd’; the filtered value of this measured force is called ‘Filter_Forc’; the
derivative of this filtered force is called ‘Fdot’; the measured value of the Cartesian
velocity is called ‘MezXVel_wd’; the measured value of the end effector position is
called ‘MezP’; and the hybrid control selection parameter is called ‘SHybrid’ [25).
All of these variables are vectors and the indices follow the conventions of the C
computer language.

6.1. THE VELOCITY SIGNAL

The angular velocity signal for the joints of the CMU DD Arm Il is obtained by
differencing and averaging the angular position signal. The position signal is a 16
bit absolute position value obtained from pancake resolvers located at each joint.
Every control cycle, the position is obtained and placed in a stack. A velocity signal
averaged over the past n control cycles can be obtained by simple differencing of the
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current position with the one n cycles before it:

Vpyg = %[v(r) +ov(t—T)+---+v(t—nT)]

=1[p(l) —pl—nT) plt=T)—plt=2T)
n

T T
p(t—(n—-1T)—p(t —nT)
+ : ]
=—'-[p(r) —p(t —nT)] , (27).

Good results are obtained for the CMU DD Arm II with 3 < »n < 10. The lower
number provides a velocity signal with less lag and more noise, and the higher
number just the opposite. For free space motion with the CMU DD Arm 11, the
natural frequency of the system is determined by the stiffness provided by the
position gain. This frequency is usually low enough that the velocity signal
lag is not significant. However, when the arm is in contact with the environ-
ment, the natural frequency of the system is largely determined by the environ-
mental stiffness. This frequency is much higher than in the free space motion
case. Therefore, the velocity signal lag can become a major portion of the
oscillation cycle. As the delay approaches 90° the velocity signal will be in
phase with the position signal. In this case, the velocity gain will not damp,
but rather add to the already large stiffness of the syslem driving 1t toward
instability.

For the tests conducted in contact with the environment, a velocity averaging
factor of n = 3 was used for joints 4, 5, and 6. A factor of n = 5 was used for joints
1, 2, and 3. For tests involving free space motion, the natural frequency is smaller
and a factor of n = 10 for joints 1, 2, and 3 is usually used. The value n =3 for
the last three joints tends to be sufficient at all times.

Since the Cartesian velocity signal contains components from all of the joint
signals, the delay will be between three and five cycles. For the control rate of
300 Hz, the delay is between 0.01 and 0.016 seconds. Figure 7 shows the velocity
and position signals during proportional gain explicit force control (K, = 0.75),
after a step input. The delay of the velocity signal is about 0.0] seconds, or a 45
phase lag for the 12 Hz oscillation. This also explains why an averaging factor of
n = 10 is unacceptable. This delay would put the velocity signal in phase with the
position signal.

Note that active damping when the manipulator is in contact with the environ-
ment must be used with caution. The time delay from the velocity calculation, filter-
ing is always present. If this delay is a significant part of the natural frequency of the -
system, then the velocity signal will act as a position signal and add to instability,
Further, stiffer environments have higher oscillation frequencies, making the
velocity signal least reliable when it would be most useful. Therefore, the damping
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Fig. 7. Velocity phase lag due to averaging. It can be seen that the velocity signal lags its ideal value by
about 0.16s, or 45 degrees.

intrinsic to impedance control, and sometimes used in explicit force control, is
always suspect.

Finally, it is worth mentioning that these problems with delay only apply to active
damping. Passive damping, as supplied by some soft sensors or end effector covers,
will provide damping without time delay [41, 1]. These devices also lower the natural
frequency of the system, making active damping possible.

6.2. THE FORCE SIGNAL

A Lord 15-50 force sensor was used in all of the experiments. In its factory con-
figuration, it supplies eight strain gauge values at 416 Hz, as shown in Figure 6.
However, the controllers used often ran at only 300 Hz, as previously discussed.
Since the Lord sensor controller has its own internal clock, there is no way to easily
change the update rate. Alternatively, individual request for data can be made, but
only with a maximum rate of 250 Hz, due to clock skew. Therefore, we chose to
receive the data at the faster rate of 416 Hz and ignore one of every four sets.
This has the added effect that each data set could be as old as one 416 Hz cycle,
or 2.4ms. This asynchronous sampling has no appreciable effect on the stability of
the controllers since force oscillations were an order of magnitude slower than the

control rates and sampling time.
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Fig. 8. Filtered and unfiltered force signals.

What does drastically effect control stability is the noise in the resultant force
signal. As shown in Figure 8, this can be substantial. Filtering of the force signal
is partially effective, but introduces lag as can be seen in Figure 9, where the
measured force signal is a solid line and the filtered force signal is a short dash
line. This effect is very detrimental for PD force control [37], as will be reviewed
in the Section 6.3.

The force signal noise has several contributors, discussed bclow intrinsic noise,
kinematic fluctuations, kinematic inaccuracies, and inertial effects. All of these
factors contribute to a noise amplitude of ~ 0.1 Newtons. This is an order of
magmtude above the sensor resolution.

Intrinsic Noise. This is present in the analog and digital electronics of the sensor
system as well as the joint position resolvers. The joint position measurement noise
contributes because of the need for transformation of the measured force to the con-
trol frame. Considering that the CMU DD Arm Il has 16-bit absolute positioning
resolvers, fluctuation in the last bit typically causes angular errors on the order of
2(21:/2'6) = 96 uradians. The additive effect of the six joints will then cause a worst
case error of 0.57 milliradians in orientation. Multiplying this by the 1.25m reach of
the arm, gives a position error of 0.71 mm.

- Kinematic Fluctuations. The kinematics of the arm are based on the assumption that
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Fig. 9. The lag of the filtered force causes the force derivative to be in phase with the measured force.

the links are completely rigid. However, bending or oscillations in the arm structure
lead to erroneous calculations of the sensor frame position and orientation, and

therefore the measured force. This is especially true when there are forces exerted
on the arm, such as during impact and force control.

End Effector Weight Compensation. Since the orientation of the end effector with
respect to the direction of gravity (down) changes, the torque imparted on the wrist
sensor changes as the orientation changes. Figure 10 shows the geometry of this
problem. Assuming that the end effector consists of all material effectively beyond
the strain gauge sensing elements, it has an effective mass, m,, and length, /,. If 4

is the approach vector, we have:
|r| = I,m,gsin 6, _ (28)
Ty = TSin @, : (29)
T, = —TCOS ¢, ' (30)
where '
(31

sinf = Val + al,

sing = Val + a2,
ax

COS P = ——e.
Val+al

(32)
(33)




IRCaFiial hid s ade iy

e S ST

v

IMPLEMENTATION OF FORCE CONTROL STRATEGIES 139

X

Fig. 10. The geometry of the end effector bias torque () as a function of the approach vector (¢) and
gravity (g) in the world frame.

For the end effector we utilized during force control experiments, /, = 4.1 cm and
m, = 0.57kg. This yielded a gravitational bias force of 5.6 N and a maximum bias
torque of 0.22 N.m.

Since compensation for the weight of the end effector is position dependent, it is
subject to position measurement noise and kinematic fluctuations. Further, the
end effector weight compensation is subject to kinematic inaccuracies which can
cause the calculated direction of ‘down’ to be different from the direction of the
measured gravitational force. For instance, a 1” error in the D-H parameter, o,
was detected in this way by noting a discrepancy in the direction of the measured
force throughout the workspace of the CMU DD Arm 1L
Inertial Effects. Inertia causes the measured force not to equal the applied force if the
sensor is accelerating. Since most environments are stationary, zero acceleration
usually implies that the arm has zero velocity as well.

« Many manipulators (including the CMU DD Arm 1I) are capable of rapid

3 acceleration, and the inertial forces can be considerable. We have observed the

"inertia of the end effector causing problems with both impedance and explicit force
control schemes. For impedance control, the manipulator drifts, since it is attempt-
ing to apply an impedance to an external force, when one is not actually present. For

- explicit force control, the hybrid controlier will switch from position to force control
- in.the direction of the inertial force.
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Fig. I1. Experimental data from PD control with K = 0.5 and Ky, = 0.01.

6.3. THE DERIVATIVE OF THE MEASURED FORCE

The previous section described the noise that is present in the force signal. This noise
makes it essentially impossible to use PD force control. Even with lowpass filtering,
the system was unstable for appreciable derivative gain values. Figure 11 shows the
response of the system (solid), as well as the reference force (short dash), and filtered
force (long dash), for K = 0.5, K = 0.01, K, = 10, and a = 10 in Equation (5).
The results are not much better than for proportional gain alone [37). As will be
described below, improvements in the performance of this controller cannot be

made by varying the gains given here. "

First, increasing the derivative gain does not improve the response of the system
because the amplified low frequency noise can still drive the system unstable. While
Figure 11 seems to show a fairly smooth filtered force signal, a close-up view of the
same data has already been shown in Figure 8. Much of the noise has been removed,
but with a large enough gain the noise will dominate. Making the cut-off frequency
of the filter lower (a < 10) will eliminate this noise, but it introduces a more serious
problem of lag.

Figure 12 shows the calculated derivative (solid curve) appears accurate. (The
dotted curve is the measured force.) However, it is apparent from this figure and
Figure 11 that there is lag introduced by the filtering process. This lag becomes
extremely important when it is a significant portion of the period of oscillation of
the system. Figure 9 shows the original force signal (solid), the filtered force signal:
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Fig. 12. Calculated force derivative and measured force signal used in PD control.

(short dash), and the derivative of the filtered signal (long dash). For this oscillation
frequency, the filtering process causes the filtered force to lag the measured force by
one quarter cycle. This makes the-force signal 180° out of phase with the ideal
derivative signal. Thus, the proportional gain acts as a destabilizing negative
derivative gain. Fuither, the derivative of the filtered signal leads it by one quarter
cycle. Thus, the derivative is in phase with the originally measured force and the
derivative gain acts as a proportional gain. Increasing the derivative gain causes
greater oscillations exactly when the effective damping is being reduced by the
proportional gain. This obviously will cause the system to go unstable.

It can be concluded from this discussion that the filter pole should be significantly
larger than the natural frequency of the system. However, it also must be small
enough to effectively filter the noise of the force sensor. These two criteria could
not be met with our system. To be fair, most systems will never meet this criteria.
Force controlled systems are most challenged by stiff environments that have high
natural frequencies. It is unlikely that a sensor can be built that has noise only at
frequencies much greater than the natural frequencies of these environments.

- One solution, however, is to use a soft force sensor or compliant covering on the
sensor. The compliance acts as a lowpass filter with no time delay. In this way, the
derivative of the force signal may be used under the condition that the time necessary
to calculate it is not significant. In this case without a noisy force signal, simple
differencing of the current and most recent force samples will usually suffice.
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Thus, all that is required is that the force sampling frequency is not of the same
order of magnitude as the natural frequency of the system. Successful PD force
control with a soft force sensor has been reported elsewhere [41]. Soft sensors,
however, have other drawbacks such as smaller operation range, mechanical
fatigue, unactuated degrees of freedom, nonlinearities, etc.

6.4. HYBRID CONTROL SWITCHING

For an explicit force controller it is necessary to switch from position to force control
when using a Hybrid Control framework. One way to achieve this is to switch to
force control when a measured force threshold is exceeded. To prevent force signal
noise from causing the switch, a value of 2N was used for the threshold value for
switching to force control. Also, since the noise still exists while in force control
mode, the measured force may drop below 2N inadvertently. Thus, a lower
threshold value of 1 N was chosen for switching from force control. The switching
strategy was implemented in the second joystick process running at 150 Hz. Because
the switching was done by the joystick controller, the joystick values could be
interpreted as commanded velocity (free space motion), or commanded force
(constrained motion).

Another aspect of the switching strategy is that it could be made unidirectional —
permitting only switching to force control. When unidirectional, force control will
remain in effect even if the measured force is reduced below the threshold, as
when the manipulator leaves the surface. The behavior of the controller for this

case of contact loss can be quite interesting and illustrative [34, 37]. Experience

showed that some of the controllers tested were sure to become unstable when
surface contact was lost. To prevent damage to the system, bidirectional switching
was only used. (If the end effector lost contact with the environment, the controller
reverted to position mode, as can be seen at the tail of the data in Figure 11.) To
prevent the manipulator from losing contact with the environment, Impact
Control proved extremely effective [34].

6.5. THE IMPACT TRANSIENT

The transition from free space motion to contact with the environment provides the
greatest test to the stability of the chosen control strategy. This is because of the
almost instantaneous exertion of reaction forces upon the arm. Some researchers
have addressed this problem by utilizing soft force sensors, or a soft ‘skin’ over
the force sensor surface [41, 1]. The introduction of extra compliance extends the
period of impact and absorbs some of the energy. As mentioned in Section 6.3,
we have chosen not to use passive compliance because of its intrinsic problems
such as mechanical fatigue and nonlinearities.

Considering the case of hard surface to hard surface impact, the transient time is
very short. For a manipulator end-effector moving at 1 m/s impacting a surface
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with stiffness of 10* N/m, the force will initially increase at a rate of 10*N:s. It a
resolution of 1N is considered adequate for control, the sampling rate must be
10* Hz. This is 25 times faster than our sampling rate. Further, a required sampling
rate of over 10° Hz would be necessary for robustness to some of the surfaces/speeds
that were tried in our experimentation. '

The impact transient is further complicated by the available torque of the
actuators. Even if the sampling rate were fast enough to adequately detect the rise
in external forces due to the impact, the joint torque necessary to substantially
soften the impact is not available. In other words, the arm cannot stop itself instan-
taneously to prevent the impact. Assuming a maximum allowed impact force of
10N, the arm would have to stop in | mm. To stop this suddenly, an acceleration
of 500 m/s2 is required (over 50g!). For a manipulator with an effective Cartesian
Space space mass of 1kg, SOON is required. At least 98% of this force must be
provided by the arm itself. Obviously this is not feasible for conventional actuators
and manipulators. '

A third problem is the kinematic fluctuations of the arm during impact. This is
mainly due to the compression and flexion caused by the impact forces. For
instance, vibrations in the links will cause changes in the end effector position,
although no change in joint position i1s measured. This can cause problems fot
schemes that rely on accurate measurement of the surface position or velocity
such as stiff impedance controllers [26] or impact damping strategies [12).

Other strategies that do not depend on position measurements are still effected
by low sampling rate and limited motor torque. These two problems lead to the
failure of positive proportional gain and integral gain force control during
impacts. Since the measured force overshoot is large and immediate, the first error
signals to the controller tend to drive the manipulator with a force directed away
from the surface (to reduce the error). This actuated force, coupled with the reaction
force from the surface, drives the manipulator ofl’ the surface. Once off the surface.
the measured force drops to zero, and the controller drives the arm into the surface
~ again. Bouncing ensues.

We have proposed the use of negative gain proportional force control to address
this problem [34). Instead of retreating from the large reaction force of the surface,
the controller matches it in the opposite direction. Thus, the manipulator *sticks’ to
the surface until the impact transient is over. After this period, and with stable con-
tact with the environment established, a switch is made 10 a robust force tracking
strategy such as integral gain force control.

+

7. Discussion of Results

This section presents the force control results we have obtained [37], given the imple-
mentational considerations previously discussed.

The best force tracking results were obtained with an integral gain explicit
force controller, Equation (2). Figure 13 shows the results for an integral gain of
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Fig. 13. Experimental data of integral gain explicit force control with feedforward and Kp=225.
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Fig. 14. Experimental data of proportional gain explicit force control with feedforward and K, = 0.5.
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Fig. 15. Experimental data of impact control with transition to integral gain force control. The impact
control phase lasts for 0.15s after the beginning of the impact. This is followed by a period of traasition
from impact control to integral gain force control which lasts 0.15s. Beyond 0.3s after impact, integral gain

. force control is used.

Ky = 22.5, where the reference force is the dotted curve and the measured force is
the solid curve. Integral gain worked best for two main reasons: (1) this strategy
intrinsically acts as a low pass filter that very effectively filters the noise seen in
Figure 8, and (2) the lag of the controller prevents the manipulator from reacting
- faster than the environment in which it is in contact, and thereby losing contact
with it. Both of these aspects successfully address rapid changes in the measured
or commanded force. Finally, integral gain control compensated for inaccuracies
in the actuator torques, and provided zero steady state error.

‘Contrary to integral gain force control, proportional gain force control was both
less stable and less accurate. Figure 14 shows the result for a proportional gain of
Kg, = 0.5, where the reference force is the dotted curve and the measured force is
the solid curve. This controller had a large steady state error which cannot be elimi-
nated, even for the highest stable gains. Further, for increasing gains the overshoot
and oscillations increase markedly. We have previously shown experimentally and
explained analytically that the proportional gain force controller is equivalent to
second order impedance control, with and without dynamics compensation [35].
The response of the impedance controllers, therefore, will not be shown here.

Finally, we have developed and tested an impact controller for stable contact tran-
sition [34). Figure 15 shows the resuit of this control strategy, where the dotted curve
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is the measured velocity, the dashed curve is the commanded force, and the solid
curve is the measured force. This controller utilizes both negative gain proportional
control, and positive gain integral control with a simple switching scheme. It has
proven very successful in our tests.

8. Conclusion

This paper has presented the computational considerations we have found necessary
while implementing a wide variety of force control strategies. Not only do these
‘implementational details’ require significant thought and engineering, they can
govern whether a control strategy is feasible or not. For instance, in the case of
derivative force control, system noise prevents its stable operation. Filtering of
this noise is also one of the attractive aspects of integral force control, which we con-
sider to be the best performer. Another example of a ‘detail’ is force sensor interrupt
handling, which can drastically reduce the computational bandwidth, and therefore
the sampling rate and stability margins of all control strategies. A third example is
the velocity signal, which cannot be reliably used for damping in stiff contact opera-
tions because of computational lag, exacerbated by high natural frequencies. Each of
these problems may be alleviated by cleaner measurement techniques and faster
processing. However, it is apparent that force control techniques that are not
sensitive to these problems are preferable. We have also demonstrated that such
robust techniques are currently realizable.
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