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Abstract

Dynamic scene perception is currently limited to de-
tection of moving objects from a static platform. Very few
inroads have been made into the problem of dynamic
scene perception from moving robotic vehicles. We dis-
cuss novel methods to segment moving objects in the mo-
tion field formed by a moving camera/robotic platform in
real time. Our solution does not require any egomotion
knowledge, thereby making the solution applicable to a
large class of mobile outdoor robot problems where no
IMU information is available. We address two of the
toughest problems in dynamic scene perception on the
move, using only 2D monocular grayscale images, and
secondly where 3D range information from stereo is also
available. Our solution involves optical flow computa-
tions, followed by optical flow field preprocessing to
highlight moving object boundaries. In the case where
range data from stereo is computed, a 3D optical flow
field is estimated by combining range information with
2D optical flow estimates, followed by a similar 3D flow
field preprocessing step. A segmentation of the flow field
using fast flood filling then identifies every moving object
in the scene with a unique label. This novel algorithm is
expected to be the critical first step in robust recognition
of moving vehicles and people from mobile outdoor ro-
bots, and therefore offers a general solution to the field
of dynamic scene perception. It is envisioned that our
algorithm will benefit robot scene perception in urban
environments for scientific, commercial and defense ap-
plications. Results of our real-time algorithm on a mobile
robot in a scene with a single moving vehicle are pre-
sented.

Keywords:  Computer vision, dynamic scenes, moving
object detection, optical flow, robotics, segmentation,
scene understanding.

1. Introduction
The robotics community to date has mostly focused on

autonomous robot operation in static scenes [1], or highly
constrained dynamic scenes [2]. Autonomous operation
in urban scenes however realistically involves operation
in the presence of moving objects, either to avoid hitting

or being hit by moving vehicles/people, or detect, track,
and approach moving people and vehicles in the scene.
Moving object detection from fixed cameras using opti-
cal flow algorithms that employ region-based correspon-
dence measures [3], or feature-based matching [3] have
been discussed extensively.  However, 2D optical flow
information by itself is insufficient to locate moving ob-
jects on the move due to the effective motion of back-
ground pixels, as shown in Figure 1b. It is unrealistic,
and uneconomical to stop a robot frequently to enable it
to localize moving objects. Therefore, we propose new
techniques that will allow moving object detection on the
move in real time.

We classify the problem of moving object detection
into four categories:

1. Detection of moving objects from a static camera
2. Detection of moving objects from a moving cam-

era with known egomotion (from IMU, etc.), and
knowledge of 3D/depth/range information (from
stereo)

3. Detection of moving objects from moving camera
without any knowledge of egomotion, and knowl-
edge of 3D/depth/range information (from stereo)

4. Detection of moving objects from moving camera
without any knowledge of egomotion, and no
knowledge of 3D/depth/range information

As mentioned previously, prior work on moving object
detection has mostly concentrated on the first category

[3]. The last two scenarios where no egomotion informa-
tion is available are the toughest problems to solve, and
have not been addressed much in previous research ef-
forts. In [4], the expected image motion was computed
using vehicle odometry. In [5], a quadratic motion model

  (a) Input observed image  (b) 2D Optical flow vectors
Figure 1: Typical estimated 2D optical flow image of a
moving car observed from a moving robot platform



is used to compute car motion on flat road surfaces and
outliers are detected using robust multiresolution tech-
niques. Such a solution is elegant, but requires expensive
computing power and does not account for vehicle vi-
bration on uneven surfaces. Vibration and abrupt motion
of the robot vehicle on uneven surfaces, coupled with
errors in optical flow estimates causes spurious optical
flow vectors, as shown in Figure 2. These issues signifi-

cantly complicate the problem of robustly detecting
moving objects from mobile platforms.

We present a general solution for the problem of object
detection in dynamic scenes where no knowledge of ro-
bot egomotion is available. We address this problem for
two cases: (a) a stereo-camera robot system, where range
information is available, and (b) a monocular camera
platform with no range information. While our proposed
algorithms for dynamic object detection should be suffi-
ciently robust to require no prior knowledge of robot
egomotion, they are required to run in real-time on a mo-
bile robot platform moving at up to 0.75 m/s with a cam-
era frame rate of up to 15 Hz. These system constraints
pose a formidable challenge algorithmic requirements

The paper is organized as follows. In Section 2, we
discuss our real-time optical flow algorithm that is used
to estimate temporal-spatial motion patterns in dynamic
scenes. In Section 3, we detail our real-time segmentation
algorithm to segment moving objects in the presence of
robot egomotion using monocular cameras, and in Sec-
tion 4, we discuss moving object segmentation on the

move with stereo-cameras. Results are presented in Sec-
tion 5.

2. Real-time Optical Flow
Optical flow computation involves estimation of image

motion fields from temporal variations of spatial image
data. Optical flow fields correspond to 2D projections of
3D movements of surfaces in a scene, either due to dy-
namic objects in the scene being imaged, or due to ego-
motion of the robotic platform on which the camera is
placed. Optical flow traditionally involves feature or re-
gion tracking [3], coupled with velocity smoothness con-
straints. Feature tracking solutions, such as the LK
tracker, are fast, but yield sparse flow maps that may be
insufficient for moving object detection on the move;
therefore, we use a region-based flow technique. A
smoothing constraint is not used to avoid artificially
smoothing the flow field, which could disrupt moving
object segmentation. We briefly discuss our implementa-
tion of the real-time flow algorithm below.

Our real-time optical flow algorithm is based on the
sum of absolute difference (SAD) and is implemented
using a vectorized sliding sum method.  Each correlation
score is generated by computing the SAD of a window in
the current image with a window of the same size in the
previous image.  The resulting unsigned value is our cor-
relation score.  To compute multiple scores we start with
the window in the upper left corner of our flow search
window.  A sliding correlation window is used, moving
left-right, top-down over the entire search area.  This left
to right, top to bottom progression aids in the cache effi-
ciency of our algorithm as well as allows the position of
the minimum score to be stored as an index into this
search space.  The minimum score is computed by com-
paring vectors of correlation scores from each position in

the search window.  The index of the minimum correla-
tion score is then used in a lookup table to determine the
pixel offsets for the best matching correlation window.

A sub-pixel flow estimate at each pixel is generated by
computing a quadratic fit on the center and neighboring
correlation scores. This provides a fixed point estimate of
the flow vectors.  Each estimate is represented as two
eight bit values allowing us to search a 15x15 pixel flow
window and limiting the precision of our estimate to 1/16
of a pixel. Figure 4 shows computed optical flow using
the JPL real-time implementation. The true flow field is
also shown for comparison.
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Figure 3: Proposed general solution for real-time detec-
tion of moving objects in dynamic scenes from moving
robotic platforms

  
 (a) Moving car   (b) Spurious flow (vibrating platform)
Figure 2: Moving car in scene and spurious computed
optical flow caused by vibrating robot vehicle.

        
Figure 4: Real-time optical flow (blue arrows) esti-
mates on rotating sphere and true flow vectors.



3. Monocular Moving Object Detection on the
move

Monocular camera-based moving object detection on
the move involves extraction of signatures of moving
objects from the 2D optical flow field in the presence of
2D motion flow caused by robot egomotion. This is sig-
nificantly tougher than detection of moving objects from
static cameras, where optical flow magnitude can be used
to segment the moving objects in the scene. Moving ob-
jects are characterized by discontinuities in the 2D robot
motion flow field. Algorithms that inherently use region
homogeneity criteria and locate such discontinuities are
therefore useful for segmenting moving objects from a
optical flow field.

Markov random field models are popular methods for
segmenting spatial fields based on region homogenei-
ties/texture; however, they use slow, iterative relaxation
procedures such as EM or simulated annealing to con-
verge to the best segmentation solution. Quadtree
schemes for segmentation of color images have been
used, but are not very effective in handling discontinui-
ties in small regions, and yields “blocky” segmented im-
ages. Manjunath et. al. [6] use Gabor texture feature gra-
dient orientation to identify region boundaries. Robust
image segmentation methods using watershed [10] im-
plementations that run at 0.1 secs for 128x128 images
have been discussed [9]. However, it consumes too much
memory and computational resources to be run on our
real-time robot platform that also computes stereo and
the optical flow vector field at the same time. We pro-
pose the use of fast, yet robust, segmentation techniques
that will efficiently segment out moving objects in the
presence of robot egomotion. We preprocess the com-
puted optical flow image to highlight boundary regions
between moving objects and background pixels. This
preprocessed image is then segmented to yield labeled
moving object regions. Details of these steps are pro-
vided below.

3.1. Monocular Optical Flow Image Preprocessing
Moving objects in an image are typically characterized

by a discontinuity in the orientation of the 2-D optical
flow at the object pixel, and a change in magnitude of the
2-D flow at the object pixel, relative to background pix-
els. A change in flow magnitude is observed since typi-

cally the moving object moves in a different direction
and with a different velocity than perceived motion in
background pixels due to robot egomotion. However, the
flow magnitude gradient is not completely sufficient,
since the presence of a distinct static vertical background
structures closeby, with neighboring  (2D adjacent) dis-
tant background pixels will yield large 2D optical flow
gradients because of the smaller flow vectors on distant
pixels, relative to the larger displacement of nearer pix-
els. Therefore, regions that have large changes in flow
orientation coupled with  large flow gradients are la-
belled as potential moving objects. This amounts to do-
ing a consistency check on both, the velocity gradient

and orientation gradient at each point. Pixels that do not
satisfy both criteria are discarded.

The orientation map of the optical flow field FFF222 = (uxy,
vxy) at pixel (x,y) is defined as O x,y = tan –1 ( vx,y / ux,y ).
High-pass filtering the orientation map with a 3x3 Lapla-
cian filter highlights region boundaries with sharp varia-
tions in flow orientation. We denote this image as DO x,y.
The Laplacian of an orientation  map (Figure 6b) for a
car moving horizontally forward (marked with a circle in
Figure 6a) as the robot moves is shown in Figure 6.

The gradient of a vector field can be computed in sev-
eral ways. The divergence of a vector field FFF222 = (uxy, vxy)
at (x,y), ∇. FFF222  = ∂u/∂x + ∂v/ ∂y measures the ratio of the
incoming vectors to outgoing vectors at that point. In
other words, it measures the net outflow at every point in
the vector field.  The curl of a vector, ∇ × FFF222, measures
the rotational component at every point in the vector
field. Both these definitions are inadequate to extract the
gradient information for moving object detection. We
compute the gradient in the following manner:

∇ FFF222  = ∂u/∂x   ∂u/∂y 
∂v/ ∂x  ∂v/ ∂y

 The determinant of this matrix measures the volume
spanned by the gradient vectors. However, if one of the
vectors has zero components, the resultant volume of the
gradient matrix will be zero; therefore, the determinant is
not a suitable measure. We use the 1-norm of a matrix
∇ FFF222 1 = max( |∂u/∂x| + |∂v/∂x|, |∂v/∂x| + |∂v/∂y). The
gradients, ∂u/∂x, ∂v/∂x, etc. are computed using a Sobel
operator on each of the horizontal and vertical flow com-
ponent fields. The gradient of the flow field in Figure 6a
is shown in Figure 7a.
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Figure 5: Real-time monocular moving object segmenta-
tion concept

   
(a) Flow with moving car (b) Laplacian of
      (marked) the orientation flow map
Figure 6: Laplacian of orientation map from flow field



Since boundaries of moving objects are marked by
sharp changes in velocity and orientation gradient, the
orientation flow field is used to mask the gradient flow
field by clippings its values when the orientation gradient
is low, to generate a moving object boundary image M in
the following manner:

Mx,y = ∇ FFF222 1    IF DO x,y > T
 =  0            Otherwise

3.2. Monocular moving object labelling
After the preprocessing steps, moving object bounda-

ries have high values whereas static background and the
inside of moving objects are suppressed. Therefore, re-
gions inside closed boundaries would correspond to
moving objects. While adaptive thresholding followed by
closed-contour detection or a binary/grey watershed are
feasible solutions, they are computationally expensive.

Flood filling of the moving object boundary image M,
using neighborhood pixel changes as a stopping criterion
is a robust solution. The flood filling procedure used to
fill a neighboring pixel is:

              M(x',y') - TM <= M(x,y) <= M(x',y') + TM,     .
where M(x',y') is the value of one of pixel neighbors, and
TM is the threshold that should be exceeded in order for
the flood filling to stop. Therefore, to be added to the

connected component, a pixel should have at least one
neighbour with similar value.

Flood filling from within a moving object would fill
the inside of that object. However, this would require a
seed inside every moving object. Not only would this
require a-priori knowledge about the number of moving
objects and the approximate location of the center of
each moving object, but additionally N independent flood
filling runs would need to be done, thereby increasing

computation time. Instead, flood-filling of the moving
object boundary image M starting from a background
pixel would fill every background pixel, and yields a
labeled image where the insides of every moving object
have not been filled. Figure 7b shows the final segmented
moving object regions for the scene shown in Figure 4a
after flood-filling. A flow consistency check on every
unfilled region is then used to discard false background
regions, and retain true moving objects.

4. Stereo-based moving object detection on the
move

4.1.  3D velocity estimation
Before discussing the stereo-based algorithm for dy-

namic scene detection, we need to define the notation for
3D scene velocity, and 2D image velocity. Optical flow
typically estimates 2D pixel motion, but when combined
with range/depth information can yield estimates of true
3D pixel velocity. The 2D flow (2D velocity) at pixel
(x,y) in an image can written as FFF222 = (uxy, vxy). The corre-
sponding 3D velocity of the pixel in 3D space is denoted
in caps: FFF333 = (UXYZ, VXYZ). We will ignore the subscripts
(spatial dependencies) for 2D and 3D velocities in the
discussion for ease of notation, and refer to the 2D ve-
locities at (x,y) as (u,v) and 3D velocity at (X,Y,Z) as
(U,V) respectively. Note that the relation between a point
(X,Y,Z) in 3D space and its projection (x,y) in 2D image
space is given by:

 x = k X / Z,   y = k Y / Z                             (1)
where k is dependent on camera optics. Ignoring k, we

can denote the 3D velocity along the X and Y axes as:
     U = dX/dt = d( x . Z)/dt ; U = Z . dx/dt + x . dZ/dt

 V = dY/dt = d( y . Z)/dt ; V = Z . dy/dt + y . dZ/dt   (2)
If we assume that the stereo range estimates are coarse

such that a change in depth between two consecutive
frames at a single pixel cannot be detected for now (i.e.
dZ/dt=0), then the 3D velocities simplify to the follow-
ing:

U = Z . u
 V = Z . v (3)
In other words, scaling the 2D flow velocities at each

pixel by its depth/range yields an approximation to the
3D flow velocity at that pixel. Figure 8a shows the 3D
estimated 3D velocity vectors for the moving car in Fig-
ure 6a. Note that the background motion vectors due to
the moving camera/robot tend to have similar 3D veloc-
ity components, compared to the 2D velocity vectors in
Figure 6a where closer objects have larger 2D velocity
magnitudes. Therefore, segmenting the moving car from
a moving robot now becomes much easier using 3D ve-
locity estimates. Figure 8b shows the 3D velocity field
for a vibrating downwards robot motion shown in Figure
2. The 3D velocities of most of the background pixels
now uniformly reflect the downwards robot motion, in-
dependent of range.

 
(a) Gradient of flow field (b) Segmented image
Figure 7: (a) Flow field gradient of the image in Figure
4a,b and (b) monocular segmented moving object

(a) (b)
Figure 8: 3D velocity fields with (a) right-moving car
(Figure 1a) for smooth robot motion; (b) moving car
(shown in Figure 2a) with vibrating robot motion



4.2. 3D flow-based segmentation of moving objects
Knowledge of 3D velocity at every pixel greatly aids

moving object segmentation on the move, as we now
discuss. For a moving robot platform, the dominant mo-
tion in the scene would be due to egomotion, if much of
the scene was occupied by static background pixels (i.e.
moving objects in the scene occupy relatively fewer pix-
els than background).  Therefore, estimation of the domi-
nant motion, followed by detection of regions with out-
lier velocities would assist robust segmentation of mov-
ing objects on the move.

Several outlier detection methods [7] can be used, in-
cluding least-mean squares, or least-median squares
which is more robust than mean-square estimates, K-
means clustering, robust estimation methods [5], or ad-
vanced clustering techniques and new deviation measures
[8]. Many of these solutions, while being powerful, are
not suitable for real-time outlier detection with limited
computation and memory. Therefore, we use a fast Gaus-
sian-model based outlier detection method, where we
assume a Gaussian distribution for the estimated robot
3D velocity. If the true robot velocity vector in the X,Y
directions is given as (Vm,Um), the estimated velocity
vector at a background pixel (x,y) is modeled as (Vx,Uy) =
(Vm,Um) + N(0,Σx,y), where N( ) is a zero mean, normally
distributed random variable with variance Σx,y (2x2 ma-
trix). Assuming uncorrelated noise, the estimated back-
ground velocity at (x,y)simplifies to:

 (Vx,Uy) = (Vm,Um) + N(0,σx,y),
The variance σx,y is generally independent of robot ve-

locity, but is a function of depth; pixels at a greater dis-
tance could have larger uncertainties in depth estimates
than closer pixels. We assume uniform uncertainty at all
depths, which further simplifies the expression for the 3D
velocity of a background pixel due to robot egomotion:

(Vx,Uy) = (Vm,Um) + N(0,σ),
We use a 95% confidence interval test to generate a

hypothesis for a valid background pixel as:
     (x,y) = Background  IF (Vx,Uy) ∈ (Vm,Um) ± 2σ,
     (x,y) = Outlier               Otherwise (4)
Labeling regions with outlier 3D velocities as moving

objects may yield incorrect results, due to the inaccura-
cies in the outlier estimation process (background pixels
could be classified as outliers if a conservative outlier
threshold is chosen), and range estimation errors created
during the stereo-matching process. Therefore, we also
apply a flow consistency-based segmentation to these

outlier regions, similar to the monocular case, that rejects
regions with smooth 3D velocity field gradients thereby
ensuring that false background regions are correctly as-
signed as background pixels. The preprocessing steps
involve velocity field orientation estimation and velocity
field gradient computations (Section 3.1) followed by
flood filling, as discussed in Section 3.2.

5. Results
We present results of our real-time optical flow algo-

rithm and real-time moving object segmentation tech-
nique. The optical flow algorithm was developed and
implemented in-house at JPL, and currently runs at 6.8
Hz on a 320x240 image on a 2.1GHz PC platform. The
monocular and stereo-based optical flow segmentation
algorithms were implemented in C++, and they use the

Intel OpenCV library primitives. The segmentation algo-
rithms currently run at 10 Hz on a 900 MHz PC, and it is
expected that they can be sped up after further optimiza-
tion.

Figure 9 shows results of a moving robot in a static
scene. The monocular and stereo-based moving object
segmentation algorithms correctly label all pixels in the

scene as background pixels.
We then tested our optical flow algorithm and the

moving object segmentation algorithms on scenes with
forward motion of the robot and one moving object with
translational motion. To analyze the accuracy of the algo-
rithms, tests were done when the robot had smooth for-
ward motion, and also when it was subjected to vibra-
tional upward and downward motion, caused by uneven-
ness on the road surface.

Figure 10a shows a moving car with forward smooth
robot motion on an even road surface. The 2D optical
flow image is shown in Figure 10b and the monocular

  
      (a) (b) (c) (d) (e)
Figure 10: (a) Smooth robot motion with moving car and 2 several stationary cars (b) 2D flow field and (c) monocular
segmented  image; (d) 3D flow field from stereo and (e) stereo-based segmented moving object.

  
Figure 9: Optical flow field (superimposed) and range
data from a moving robot in a static scene



segmentation algorithm (Figure 10c) detects the moving
car and discards the stationary ones in the background.
The false alarm regions can be discarded based on region
size and optical flow consistency measures. Figure 10d
shows the estimated 3D velocity field from stereo-range,
where the background pixels have similar 3D velocity,
which simplifies moving object detection. The 3D stereo-
based segmented car is shown in Figure 10e. Note the
absence of any false alarms, compared to the monocular
segmentation case.

Figure 11a illustrates the performance of our algo-
rithms on an uneven road surface where the camera un-

dergoes downwards vibrational motion. The monocular
segmentation algorithm (Figure 11b) locates the moving
car but also falsely detects ground regions due to spuri-
ous 2D flow vectors caused by camera motion on the
uneven surface. The stereo-based segmentation algorithm
handles the robot vibrations much better, as shown in
Figure 11e.

6. Conclusions and Future Work
We have presented a real-time algorithm to detect

multiple moving objects as the robot undergoes egomo-
tion. Our technique does not require any knowledge
about robot egomotion from IMU and handles cam-
era/robot vibrations on uneven surfaces, thereby making
the solution very general and applicable to various dy-
namic perception problems. This technique represents a
clear improvement to traditional dynamic perception pro-
cedures.  Initial tests with single and multiple moving
objects in the scene show excellent results. Several im-
provements can be done to improve the generality and
robustness of the system. Better outlier detection meth-
ods can be employed for monocular and 3D-stereo based
optical flow to better locate moving objects in the pres-
ence of robot vibrations during motion.  Better 3D veloc-
ity estimates by considering the velocity in the Z-
direction can significantly improve moving object detec-
tion accuracy. A better flood-filling procedure (such as
the watershed) could improve performance. Additionally,
incorporating IMU information, if it is available, into the
segmentation scheme will definitely result in better de-
tection of moving objects on the move. We are also ex-
ploring the possibility of estimating the focus of expan-
sion to determine the direction of dominant motion
(caused by robot motion), which will better assist in lo-
cating objects with outlier velocities.
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Figure 11: (a) Vibrational robot motion on uneven road with moving car (b) 2D flow field and (c) monocular seg-
mented  image; (d) 3D flow field from stereo and (e) stereo-based segmented moving object.


