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Abstract – Future robotic space missions will employ a
precision soft-landing capability that will enable exploration
of previously inaccessible sites that have strong scientific
significance. To enable this capability, a fully autonomous
onboard system that identifies and avoids hazardous features
such as steep slopes and large rocks is required. Such a
system will also provide greater functionality in unstructured
terrain to unmanned aerial vehicles. This paper describes an
algorithm for landing hazard avoidance based on images
from a single moving camera. The core of the algorithm is an
efficient application of structure from motion to generate a
dense elevation map of the landing area. Hazards are then
detected in this map and a safe landing site is selected. The
algorithm has been implemented on an autonomous
helicopter testbed and demonstrated four times resulting in
the first autonomous landing of an unmanned helicopter in
unknown and hazardous terrain.

Index Terms – autonomous landing, hazard
detection, structure from motion, UAV.

 I. INTRODUCTION

This work has been conducted in the context of
providing autonomous image-based navigation algorithms
to space science missions. Autonomous spacecraft systems
have the potential to reduce costs while enhancing existing
systems and enabling new capabilities for future deep space
missions. In particular, landing on planets, moons, comets,
and asteroids will benefit tremendously from on-board
systems that autonomously and accurately determine
spacecraft  velocity and position relative to a landing site. In
addition, autonomous detection of hazards during descent
will enhance safety and enable missions to landing sites that
are scientifically interesting but hazardous.

To date, no space science mission has employed hazard
detection and avoidance during landing and this has had an
adverse impact on landing site selection. For example, the
Mars Exploration Rovers mission selected Gusev Crater and
Meridiani Planum for two reasons: they are flat plains that
are relatively free of landing hazards and they are potentially
scientifically interesting. Given a hazard avoidance
capability, future missions will be able to pick landing sites
with a greater emphasis on science return and less on
engineering safety criteria.

Proposed sensors for hazard detection and avoidance are
often based on range imaging.  These active sensors are
expensive, massive, power hungry, large and complicated.
In contrast, cameras are cheap, small, low power and
relatively simple. Given efficient and robust algorithms for
processing imagery, cameras can be used instead of range
sensors and the cost and accommodation savings to
missions will be large.

This paper describes a novel algorithm for hazard
detection and avoidance from imagery taken by a single
moving camera.  The specific novel components of the
algorithm are as follows. Unlike in binocular stereo vision,
this algorithm uses images from a single camera.
Consequently, it must compute the motion between images
and use this estimate when triangulating to establish the
structure of the scene. Since the motion between images is
limited but unconstrained the algorithm uses 2D feature
tracking (instead of searching along the scan line) to
establish correspondences; this approach is more general
than binocular stereo-vision. When compared to other
structure from motion algorithms this algorithm is novel in
that it generates a dense terrain map and does this in a
computationally efficient and robust fashion. The final novel
component of the algorithm is its use of an altimetry
measurement to establish the overall scale of the scene.

Autonomous testbeds (e.g., rovers, aerobots, and
helicopters) are commonly used by NASA to demonstrate
technology on earth under mission relevant conditions.  At
the Jet Propulsion Laboratory an autonomous small-scale
helicopter is used to demonstrate algorithms for planetary
landing and small body exploration. Image-based hazard
detection and avoidance has been implemented on the JPL
Autonomous Helicopter Testbed which has resulted in the
first autonomous landing of an unmanned helicopter in
unknown and hazardous terrain.

A. Related Work

Vision-based control of autonomous aerial vehicles has
been an area of active research  for a number of years.  In [2],
image-based motion estimates are combined in an Extended
Kalman filter along with IMU, GPS and sonar altimeter
measurements to provide a navigation solution for an
autonomous helicopter. Amidi et al. [1] present a visual
odometer to estimate the position and velocity of a
helicopter by visually locking on to and tracking ground
features. Attitude information is provided by a set of
gyroscopes while position and velocity is estimated based
upon template matching from sequences of stereo vision
data.  [5][14][13] extend vision-based control to the
autonomous landing problem.  In [5], no autonomous
landing is attempted, however a vision-based approach for
safe-landing site detection in unknown, unstructured terrain
is described.    Both [14] and [13] describe a vision-based
approach for locating a known target and then tracking it
while navigating to and landing on the target.  However, in
these two approaches, the target area is known a priori  to
be flat and safe.



Recently there have been flight missions that use terrain
imaging for spacecraft control. The Mars Exploration Rover
Descent Image Motion Estimation System (MER-DIMES)
used images to estimate velocity, but had no capability to
generate terrain maps.  MDRobotics/Optech have developed
a scanning lidar system for the XSS-11 Mission that can
generate terrain maps, but like all scanning lidar systems it
consumes many more resources (~10Kg, 75W) than a
camera-based system (<1kg, <5W for MER DIMES). The
Near Earth Asteroid Rendezvous Mission used imagery to
touchdown on the surface of Eros, but all operations were
manual. MUSES-C will attempt to return a sample from an
asteroid. The terminal control for this mission is performed
by placing a known marker on the surface of the asteroid; no
landing hazard detection is employed. The purpose of the
Deep Impact  mission is to impact a comet at high velocity
with a penetrator spacecraft while another spacecraft images
the impact site as it passes by. The targeting requires closed
loop image-based control using autonomous centroiding,
but no terrain reconstruction or hazard avoidance is needed.

 II. TERRAIN MAP GENERATION

The inputs into the hazard detection and avoidance
(HDA) algorithm are two overlapping images of the surface
and a measurement of the distance between the camera and
the surface along the camera optical axis (i.e., a slant range
from a narrow beam altimeter), for the first image.  The
outputs from the algorithm are: the change in position and
attitude between images, a dense terrain map of the imaged
surface and a safe landing site on the surface. The algorithm
has multiple stages. First a sparse set of point features are
selected and tracked between the images. These features are
then used as inputs to a motion estimation routine that
solves for the change in pose (attitude and position) of the
camera between image acquisitions and the depth to each of
the sparse features.  Next, a dense grid of features are
selected and tracked between the images using the motion
and depth estimates to bound the search for feature tracks.
Triangulation using these dense feature tracks results in a
cloud of 3D points which are projected into a 2D grid to
create a terrain map.  Local operators are applied to the
terrain map to estimate slope and roughness.  A safe site for
landing is then selected that is farthest from all slope and
roughness hazards. The details of each stage of the
algorithm, with an emphasis on computational efficiency,
are described below.  Run times and important parameters
for each stage are described in TABLE I.

Fig. 1 Feature selection and tracking.

A. Initial feature selection and tracking

The first stage in the algorithm finds locations in the
first image that will be good for tracking and then searches
for their corresponding location in the second image using
image correlation.

Feature selection is done using the efficient
implementation of the Shi, Tomasi and Kanade feature
detector described in [2]. First image gradients
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Ir(r,c),Ic (r,c) are computed using finite differences over
the entire first image. Next the autocorrelation matrix A(r,c)
for a small window T around each pixel (hereafter called the
template) is computed.
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For efficiency, the elements of A  are computed using a
sliding sum; each time the template is shifted by a pixel,
the gradients that leave the template are subtracted from the
sum and the gradients that appear in the window are added.
Pixels are better for tracking when A  has two large
eigenvalues. As described in [2] the check for large
eigenvalues can be replaced by  the check against a
minimum allowable eigenvalue λt.
(2) 
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P = (a − λt )(c − λt ) − b
2 > 0

a > λt

Motion estimation is more likely to be well
conditioned if the selected features are evenly spread over the
image.  To enforce an even distribution, the image is broken
into blocks of pixels and the feature that meets the
conditions in (2) and maximizes P over the block is selected
as the best pixel in the block. As shown in Fig. 1, this
approach, spreads the features evenly across the image.

Once features are selected they are tracked into the
second image using a 2D correlation-based feature tracker.
No knowledge of the motion between frames is assumed, so
the correlation window is typically square and large enough
to handle all expected feature displacements. To increase
efficiency a sliding sums implementation of pseudo-
normalized correlation C(r,c) is used [7].
(3) 
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˜ I corresponds to the I with the mean subtracted
Correlation is applied in a coarse to fine fashion as

follows. First,  block averaging is used to construct an
image pyramid for both images.  The number of image
pyramid levels nl depends on the size w of the window W
(hereafter called the window) over which the feature is
correlated.
(4) 
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nl = log2(w) − 2
The template half-width tl and window half-width wl at each
level are scaled depending on the level in the pyramid
according to the following rules.
(5) 
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Feature tracking starts at the coarsest level of the
pyramid with a template and a window size scaled to match
the coarse resolution. The pixel of highest correlation is
used to seed the correlation at the next finer level. As given
in (5), after the coarse level, the template size increases as
the pyramid level increases while window size is fixed. At
the finest scale, the original image data is correlated, albeit
with a small window size, and the feature track is accepted if
the correlation value is higher than a threshold. Sub-pixel
tracking is obtained by fitting a biquadratic to the
correlation peak and selecting the track location as the peak
of the biquadratic.



The coarse to fine nature of this feature tracker makes it
efficient even for large translations between images.
However, since a 2D correlation is used to track features, it
is susceptible to rotations between images and large changes
in scale.  In practice we have found it is possible to track
features when the change in attitude between frames is less
than 10˚ in roll about the optical axis, less than 20˚ in pitch
and yaw and the change in altitude between images is less
than 20%.

Fig. 2 Motion estimation and coarse depth estimation.

B. Structure from motion

The next stage in the algorithm, is a structure from
motion estimation that uses feature tracks to solve for the
change in position and attitude (e.g., the motion) of the
camera between the images and the depth to the selected
features in the first image (e.g., the structure). Structure
from motion has been studied for decades, and there are
numerous structure from motion algorithms in existence (see
[9][10] for the state of the art).

This stage uses a previously reported [11] robust non-
linear least squares optimization that minimize the distance
between feature pixels by projecting the features from the
first image into the second image based on the current
estimate of the scene structure and camera motion. In this
approach the motion between two camera views is described
by a rigid transformation (R, t) where the rotation R,
represented as a unit quaternion q, encodes the rotation
between views and t encodes the translation between views.
The altimetry measurement is used to set the initial depths
to the features in the scene.  This altimetry augmentation to
our structure from motion algorithm eliminates the scene
scale ambiguity present in structure from motion algorithms
based solely on camera images. The output of this stage of
the algorithm is the 6 DOF motion between images and the
depth to the features selected in the first image. Fig. 2
shows three views of the computed motion and structure for
the images shown in Fig. 1. The two positions of the
camera are shown as red and green coordinate axes. The
fields of view of the images are shown as red and green
rectangles and the 3D position of the feature tracks are
shown as white dots.  

C. Dense structure recovery

 The final stage of the algorithm uses the motion
between images and the coarse structure provided by the
depths to the feature tracks to efficiently generate a dense
terrain map. Unlike in stereo vision where the images are
separated by a known baseline aligned with the image rows,
when using a single camera to recover scene structure, the

motion between images is arbitrary. Consequently, standard
scan-line rectification algorithms cannot be applied to make
surface reconstruction efficient; other approaches need to be
developed.

Fig. 3 Dense feature tracking on epipolar segments.
For a pinhole camera, the projection of a pixel in the

first image must lie on a line in the second image that is
determined by the motion between images (the epipolar
line).  The depth to the pixel determines the location of the
pixel along the line. If the depth to the pixel is unknown,
but bounded, then the pixel will lie along a segment of the
line (an epipolar segment). By applying image correlation
along this segment, the depth to the pixel can be determined
exactly with minimal search. Using these observations an
efficient algorithm for terrain map generation that can
operate with images under arbitrary motion has been
developed.

First the maximum and minimum scene depths are
established. Because  the features are spread over the entire
image, the depth to features estimated in the structure from
motion stage of the algorithm are used to indicate how
much depth variability there is in the entire scene. However,
there may be some parts of the scene closer or farther than
the feature depths.  To deal with this uncertainty, the range
of allowable scene depths is increased by a fraction (20%-
40%) from that estimated during structure from motion.

To generate a dense set of scene depths, a grid of pixels
are selected in the first image. The spacing of the grid is an
important parameter; a coarse grid may miss landing hazards
while a fine grid will have an increased processing time. At
the moment grid spacing is a user defined parameter, but it
could be set automatically based on the size of the helicopter
(or lander) and the pixel resolution.   

Next, the epipolar segment is determined for each pixel
in the grid. Let the minimum and maximum scene depths
be αmin and αmax, and let the unit focal length homogenous
coordinates of the pixel p  in the first image be
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h = [ho,h1,1] . The 3D coordinate of pixel h at minimum
scene depth is
(6) 
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Xmin = [hoαmin,h1αmin,αmin ]
T .

Its 3D coordinate in the second image is
(7) 
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′ X min = [ ′ x min 0, ′ x min1, ′ x min 2]
T = R(q)Xmin + t

and the projection of h into the second image is
(8) 
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′ h min = [ ′ x min 0 / ′ x min 2, ′ x min1 / ′ x min 2]
T .



An analogous procedure is used to compute 
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′ h max  and the
camera  model is then used to convert 
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′ h min  and 

€ 

′ h max into
pixel locations 

€ 

′ p minand 

€ 

′ p max that define the epipolar segment
in the second image.  The CAHVOR camera model is used
[17]. If 
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′ p minor 

€ 

′ p max  are outside the image then the pixel is
removed from consideration. This process is repeated for
each pixel in the grid. In Fig. 3 the green segments in the
bottom image correspond to the epipolar segments for pixels
(red squares) shown in the top image.

Next the matching location of pixel p along the epipolar
segment is determined. First a window around p in the first
image is compared to a window around 
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′ p min  in the second
image using sum-of-absolute differences (SAD).
(9) 
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S(r,c) = I1(r,c) − I2
T
∑ (r,c)

The window in the second image is then incremented by one
pixel along the epipolar segment and the SAD is
recomputed.  This process repeats until 

€ 

′ p max  is reached.
Let 

€ 

′ p  be the location in the second image of the maximum
SAD value along the segment.  In a final clean up
procedure, correlation values (3) at the eight pixel locations
bordering 

€ 

′ p  are computed and a biquadratic is fit to them.
As with the correlation tracker, a sub-pixel correlation peak
is obtained from the bi-quadratic and 

€ 

′ p  is assigned to its
location. If the correlation value is less than a threshold, the
pixel is eliminated from consideration.

Notice that in contrast to the search for feature tracks
over a large window done in the initial stage of the
algorithm, the search for dense depth is done along a small
one dimensional segment. This increased the efficiency  of
feature tracking for dense depth recovery and makes it
possible to use the efficient SAD tracker. Correlation is
more accurate than SAD, but it is less efficient to compute.
However, because  the search space is constrained,
experiments have shown that the SAD tracker rarely tracks
incorrectly. Fig. 3 shows the result of SAD tracking the red
boxes shown in the top image along the green epipolar
segments with matching locations shown as blue boxes.

Once the grid of feature tracks is established,
triangulation, using the method described in [16], is applied
to establish the depth to each feature. Next, the homogenous
coordinates of each feature are scaled by the correspond
depths to produce a cloud of 3D points in the coordinate
frame of the first image.

D. Terrain map generation

For hazard detection, the terrain data should be
represented in a surface fixed frame, (i.e., a frame aligned
with gravity that is fixed to surface independent of the
camera motion) so that (1) local slope relative to gravity can
be computed and (2) the helicopter can use surface fixed
pose information to navigate to the safe  landing site.  
Furthermore, for efficiency, the terrain data should be evenly
sampled so that local operators of fixed size can be applied
to detect hazards.  The point cloud generated from the dense
feature tracks does not meet these criteria. The points are in
the coordinate frame of the moving camera, and the points
are unevenly sampled in Cartesian space due to the even
sampling in image space of a perspective camera that is
likely pointed off nadir. To satisfy the hazard detection
criteria, a the point cloud is projected into a digital elevation
map (DEM).

Fig. 4 Digital elevation map.
To generate the DEM, a transformation from the camera

frame to a surface fixed frame is needed.  This
transformation can come from an onboard filter that
estimates position and attitude in the surface fixed frame or
it can be constructed on the fly using the height of the
camera above the ground and the surface relative roll and
pitch angles of the camera (yaw or azimuth is not needed).
Roll and pitch can be measured using an inclinometer, or, if
the terrain is assumed to have zero mean slope, they can be
estimated by fitting a plane (using robust statistics if
necessary) to the point cloud.  The roll and pitch of the
camera are the two angles the describe the relationship
between the camera optical axis and the surface normal of
the plane. Height above the surface can come from a direct
altimetry measurement or it can be computed from the
camera roll and pitch and a slant range to the surface.

The DEM is generated as follows. The 3D points in the
point cloud are transformed to the surface fixed frame. Next,
the horizontal bounding box that contains all of the points
is determined and its area A is computed. If there are N
points, the size s of the bins in the digital terrain map is set
such that 
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s = A /N . With these settings, the DEM will
cover roughly the same extent as the point cloud data and
each grid cell will contain approximately one sample. Once
the bounds and bin size of the elevation map are determined
and the points are in the surface fixed frame, the DEM is
generated using the same procedure as described in [6].
Stated briefly, for each point, the bin in the DEM that the
point falls in is determined and then bilinear interpolation of
point elevation is used to deal with the uneven sampling of
the surface by the point cloud data. Fig. 4 shows two views
of the DEM generated by this process for the feature tracks
shown in Fig. 3.

 III. HAZARD DETECTION AND AVOIDANCE

Steep slopes, rocks, cliffs and gullies are all hazards for
landing. By computing the local slope and roughness, all of
these hazards can be detected. We use the algorithm
described in [6] to measure slope and roughness hazards.
The algorithm proceeds as follows. First the DEM is
partitioned into square regions the size of the lander
footprint. In each region a robust plane is fit to the DEM
using least median squares. A smooth underlying elevation
map is generated by bi-linearly interpolating the elevation of
the robust planes at the center of each region. A local
roughness map is then computed as the absolute difference
between DEM elevation and this smooth underlying terrain
map. Slope is defined as the angle between the local surface
normal and vertical; each robust plane has a single slope. A
slope map is generated by bi-linearly interpolating the
robust plane slope from the center of each region.

The lander will have constraints on the maximum slope
and maximum roughness that can be handled by the
mechanical landing system.  These thresholds are set by the



user. At the top of Fig. 5 the elevation map, roughness map
and slope map are shown for the terrain shown in Fig. 4.
For the elevation map, dark corresponds to high terrain and
bright corresponds to low terrain. For the slope and
roughness maps, green corresponds to regions that are well
below the hazard threshold, yellow is for regions that are
approaching the threshold and red is for regions that are
above the threshold.

Fig. 5 (A) Hazard detection and avoidance maps. (B) Safe landing
map overlaid on terrain.

Selection of the safe site starts by generating binary
images from the slope and roughness maps; parts of the
maps that are above the threshold (hazards) are positive
while parts that are below are negative (not a hazard). The
roughness and slope hazards are grown by the diameter of
the lander using a grassfire transform [3] applied to each
map. The logical-OR of the  grown slope and roughness
hazard maps creates the safe landing map.  A safe landing
map  is shown in Fig. 5 where safe areas  are in green,
hazardous areas are in red. Near the border and near holes in
the map where there is no elevation data, it is unknown if a
hazard exists.  These regions are considered hazards, but are
marked yellow in the safe landing map.  

A grassfire transform is applied to the safe landing map
and the bin that is farthest from all hazards is selected as the
landing site. If there are multiple bins with the same
distance from hazards then the one closest to the a-priori
landing site is selected. An a-priori landing site is the site
that the lander will land at if no other information is
available (i.e., if hazard detection fails to converge). On the
safe landing map in Fig. 5 the a-priori landing site is
marked as a black X and the selected safe site is shown as a
purple +. On the right of Fig. 5 the safe landing map is
shown texture mapped onto the terrain data from Fig. 4. In
this figure it is obvious that the safe site was selected in a
low slope and low roughness region.

the total processing time on an SGI O2 with a 400
MHz R12000 is less than one second. The run times for
each stage of the algorithm are shown in TABLE I.

TABLE I EXAMPLE ALGORITHM RUN TIMES (FOR GIVEN PARAMETSRS)
ON A 400 MHZ R12000 PROCESSOR

Algorithm Stage Run Time Parameters
Feature selection & tracking 0.21 s 11x11 pixel templates

81x81 pixel windows
Structure from motion 0.10 s 59 feature tracks
Terrain map generation 0.41 s 600 structure pixels
Hazard detection & avoidance 0.05 s 19x27 terrain map

 IV. JPL AUTONOMOUS  HELICOPTER  TESTBED

The JPL Autonomous Helicopter  Testbed  (AHT) is a
twin-cylinder, gas powered radio-controlled model helicopter
approximately 2 meters in length and capable of lifting
approximately 9 kg of payload.  Onboard avionics include a
PC/104-based computer stack running the QNX RTOS,
(700 MHz PIII CPU with 128Mb DRAM and 128 Mb flash

disk), NovAtel RT2 GPS receiver, Inertial Sciences ISIS
IMU, Precision Navigation TCM2 compass & roll/pitch
inclinometers, and downward-pointing MDL ILM200B laser
altimeter  and a 640-480 Sony XC-55 progressive scan
grayscale CCD camera.   A Dell Inspiron 8200 laptop
functions as a ground station used to send high-level control
commands to, and display telemetry from, the JPL AHT as
well as being a conduit for differential corrections from a
NovAtel RT2 GPS basestation receiver  to the JPL AHT.
Communication between the laptop and AHT is achieved
using a 2.4 Ghz Wireless -G Ethernet  link.

Fig. 6 The JPL Autonomous Helicopter Testbed
An error-state Kalman filter [12] produces state

estimates used for the control of the AHT.  The state of the
filter is initialized using inputs from the compass &
inclinometers  (orientation) and  GPS. (position).  Once
initialized, the filter state is updated using inputs from the
above mentioned sensors as well as the gyro rates and
accelerations from the IMU.

Autonomous flight is achieved using a  hierarchical
behavior-based control architecture [8].  A behavior-based
controller partitions the control problem into a set of loosely
coupled behaviors. Each behavior is responsible for a
particular task. The behaviors act in parallel to achieve the
overall goals of the system. Low-level behaviors are
responsible for functions requiring quick response while
higher-level behaviors meet less time-critical needs. For
example, the low-level roll control behavior is responsible
for maintaining a desired roll angle while the high-level
navigation behavior  is responsible for achieving a desired
GPS waypoint location.  

 V. SAFE LANDING EXPERIMENTS

A total of four successful autonomous landings were
achieved on two separate days, one on the first day of
testing and three on the second.  The landings were achieved
in unknown, hazardous terrain using the following
procedure.  The helicopter is commanded to fly laterally
over the terrain while maintaining its current altitude.
While in transit, 40 images of the terrain below the
helicopter are gathered over the course of several seconds by
the onboard downward-looking camera.  Two images for
hazard detection are chosen from these 40 images with the
criteria being a function of the baseline (larger baseline gives
better stereo ranging) and amount of overlap (larger overlap
increases number of features to track) between  images.  

If a safe site is located by the hazard detection and
avoidance algorithm, the pixel coordinates of this safe site
are transformed into GPS coordinates.  This transformation
is made possible due to the fact that the 6DOF state of the
helicopter plus the laser altimetry range to the ground is
gathered when each image is captured.  Once the GPS



coordinates are computed, they are passed to the navigation
control behavior of the AHT and it guides the helicopter to
the desired GPS coordinates.  Once the AHT is within a
predetermined threshold of these coordinates (currently 2
meters), the AHT descends maintaining a desired vertical
velocity while continuing to attempt to reduce the error
between its current GPS position and desired position.
Once the AHT is within a predetermined distance threshold
above the ground (determined from laser range
measurements and currently set at 1.5 meters), the AHT
slowly changes the pitch of the main blades on the
helicopter to effect  a smooth landing at the safe site.

TABLE II gives the results from the 4 successful
landings of the AHT.  Unfortunately, the results from the
second run are missing but the position error is on the same
order of magnitude as the other 3 runs.  This position error
is the Euclidian distance between the desired GPS northing
and easting values and the actual GPS northing and easting
measurements provided by the GPS receiver on board the
AHT.  In addition, the GPS receiver also provides estimates
of the standard deviation for each individual northing and
easting measurement.  These standard deviations are given
because the position error is a direct function of how
accurate the GPS measurements are at the time the error is
computed.  In the results below, dozens of measurements of
the values reported are taken after the AHT has successfully
landed and averages computed to smooth out variations. The
table also shows that all algorithm run-times took less than
2 seconds. The top row of Fig. 7 shows the result for the
third run in TABLE II.

Once autonomous landing in relatively benign terrain
was demonstrated, testing was moved to a more challenging
test site containing rocks, slopes and gullies. Work is
ongoing to demonstrate an end-to-end safe landing in this
terrain, however we have demonstrated in-flight hazard
detection and safe site selection 20 times in this terrain.
One of these results is shown in the bottom row of Fig. 7.
Both results in Fig. 7 have false positive hazards cause by a
low roughness hazard threshold and terrain map generation
noise.  In future runs this threshold can be increased to
eliminate this problem.

TABLE II SAFE LANDING ACCURACY RESULTS

Run
#

Position
 Error

Northing Std.
Dev.

Easting Std.
Dev.

Run
time

1 1.21m 0.70m 0.43m 1.8s
2 Data from  this run is missing
3 1.20m 0.61m 0.47m 1.9s
4 0.89m 0.39m 0.35m 1.7s

 VI. CONCLUSION

Currently, our system relies on GPS to navigate for
landing.  We our working on methods for GPS denied safe
landing based on using visual navigation. In addition to
image-based motion estimation, some of the techniques we
are currently pursuing are landmark recognition for position
estimation during landing and landing site visual servoing.

The main commercial application of this technology is
autonomous navigation of unmanned aerial vehicles for
military, search and rescue, fire fighting and surveillance
applications. This technology could also be used directly by
autonomous underwater vehicles for seafloor exploration
with applications to the search for oil and other natural
resources and scientific discovery for geology, biology and
chemistry.
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Fig. 7 Hazard detection and avoidance results. (A) First image and
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image and (D) safe landing map overlaid on terrain map for hazardous

natural terrain.
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