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Abstract: We present a framework for estimating states and parameters in systems that can
be described by a detectable linear system perturbed by a nonlinear function of the states,
exogenous signals, and a vector of unknown, constant parameters. The estimators designed in this
framework consist of two interconnected modules: a parameter estimator that is constructed as
though the states and the nonlinear perturbation were directly available for measurement; and an
observer/perturbation estimator that estimates the states as well as the perturbation. The design
methodology is based on satisfying an #{,, condition, which leaves the designer with a wide range
of options for carrying out the design. We discuss the use of LMI-based techniques in particular, and
illustrate their application on a simulation example. We also discuss how the results of the paper can
be applied to a more general class of cascaded nonlinear systems.
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1. INTRODUCTION

A problem frequently encountered in model-based control
and estimation is the presence of uncertain perturbations in
the system equations. Such perturbations can be the result
of external disturbances or internal plant changes, such as
a configuration change, system fault, or changes in physical
plant characteristics. The uncertainty associated with these
perturbations can often be characterized in terms of a vector
of unknown, constant parameters.

Unknown parameters are often dealt with by introducing
parameter estimates that are updated online. For linearly
parameterized systems there is a large body of work on adap-
tive control and estimation (see, e.g., Krsti¢, Kanellakopoulos,
and Kokotovi¢, 1995). For systems that are nonlinearly pa-
rameterized, however, only a few specialized techniques have
been developed. Ortega (1996) presented a simplified version
of a result by Fomin, Fradkov, and Yakubovich (1981), which
applies to nonlinear parameterizations with a convexity prop-
erty. Another method for convex or concave parameteriza-
tions was proposed by Annaswamy, Skantze, and Loh (1998)
and extended to general nonlinear parameterizations by Loh,
Annaswamy, and Skantze (1999). The results of Boskovi¢
(1995, 1998) and Zhang, Ge, Hang, and Chai (2000) focus
on first-order systems with fractional parameterizations. Qu
(2003) presented an approach for a class of higher-order
systems with matrix fractional parameterizations, where an
auxiliary estimate of the full perturbation to the system equa-
tions was used in the estimation of the unknown parameters.
An approach for more general nonlinear parameterizations
was presented by Qu, Hull, and Wang (2006), using a con-
trol law based on a parameter estimate that is biased by an
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appropriately chosen vector function. Tyukin, Prokhorov, and
van Leeuwen (2007) developed an adaptive design framework
for monotonically parameterized perturbations based on the
idea of virtual algorithms that are designed as though the
time derivative of the measurements were available. Liu, Or-
tega, Su, and Chu (2011) have recently presented methods
based on Immersion & Invariance.

The authors have previously presented a methodology for
estimating unknown parameters in systems of the form x =
ft,x) + B(t,x)v(t,x) + ¢, where ¢ = B(t,x)g(t,x,0) is a
perturbation parameterized by the vector 0 (Grip, Johansen,
and Imsland, 2008; Grip, Johansen, Imsland, and Kaasa,
2010). This design methodology is based on the observation
that, if the perturbation ¢ were directly available, then identi-
fying 6 would be a matter of inverting the nonlinear equation
¢ = B(t,x)g(t,x, 0) with respect to 0. The overall design is
therefore modular, consisting of a parameter estimator and a
perturbation estimator. The parameter estimator is designed
as though ¢ were known, to dynamically invert the expres-
sion ¢ = B(t,x)g(t,x, 0) with respect to 6. The perturbation
estimator is designed to produce an estimate of ¢. The two
modules are then connected, so that the parameter estima-
tor uses the estimate of ¢ provided by the perturbation
estimator instead of the actual perturbation. The parameter
estimate is in turn fed back to the perturbation estimator.

The techniques cited above are all based on the assump-
tion of full-state measurement. The authors have recently
presented an extension of their previous work to the case
of partial-state measurements, for systems that can be de-
scribed as a linear system with a nonlinear perturbation
(Grip, Saberi, and Johansen, 2009, 2011). This extension con-
sists of replacing the perturbation estimator with a high-
gain observer for an extended system, which estimates both
the states of the system and the perturbation. Although the



extension greatly expands the class of systems that can be
handled, there are some drawbacks to the way the high-gain
observer is designed. Principal among these is the issue of
complexity: the design is carried out by transforming the
linear part of the system to a special coordinate basis (SCB)
(Sannuti and Saberi, 1987); assigning gains using a pole-
placement technique; and then scaling the gains in certain
directions to achieve stability. This process requires consider-
able effort from the designer, not least in understanding the
structural properties displayed by the scB. In a subspace of
the state space the gain is designed based only on the infinite
zero structure of the system, which can be dramatically al-
tered by infinitesimally small changes to the system matrices.
This sensitivity can in some cases lead to poor conditioning
that must be rectified through further effort by the designer.
Finally, the design methodology implicitly assumes that a
high-gain design is needed, and a minimum-phase condition
is therefore imposed to ensure that high gain does not cause
instability.

1.1 Contributions of This Paper

The goal of this paper is to present an alternative method-
ology for the case of partial-state measurements, which is
conceptually simpler than the one presented by Grip et al.
(2009), and which rectifies some of the drawbacks mentioned
above. In particular, we shall replace our previous high-
gain design with an observer/perturbation estimator. The ob-
server/perturbation estimator serves the same purpose, and
is implemented in the same way, as the high-gain observer.
However, the gains can be chosen freely by the designer, as
long as they ensure that the #{,, norm of a particular transfer
matrix is sufficiently small. Consequently, a wide range of
I, design techniques can be applied, including Riccati-based
techniques, LMI-based techniques, and direct methods (see
Saberi, Stoorvogel, and Sannuti, 2006).

1.2 Preliminaries

For vectors zi,...,z,, we denote by col(zy,...,z,) the col-
umn vector obtained by stacking the elements of z,...,z,.
The operator || - || denotes the Euclidean norm for vectors and
the induced Euclidean norm for matrices. For a symmetric
matrix P, the maximum and minimum eigenvalues are de-
noted by Apax(P) and Apin(P). For a set E C R™, we write
(E-E) :={z1 —z» € R" | z1,z, € E}. Throughout the pa-
per, we assume that all signals and functions are sufficiently
smooth to permit differentiation when necessary. When con-
sidering systems of the form z = F(t, z), we assume that all
functions involved are sufficiently smooth to guarantee that
F: R.o X R" — R" is piecewise continuous in t and locally
Lipschitz continuous in z, uniformly in £, on Ry X R™. The
solution of this system, initialized at time t = 0 with initial
condition z(0) is denoted by z(t). We shall generally simplify
the notation by omitting function arguments.

2. PROBLEM FORMULATION

We consider systems of the following type:
X=Ax+Bu+Ep, xeR", ueR™ ¢ecR (la)
¥y =Cx, ¥y ER, (1b)

where x is the state; y is the output; ¢ is a perturbation to
the system equations; and u is a time-varying input that is

well-defined for all £ € R.( and may include control inputs,
reference signals, measured disturbances, or other known
influences. For ease of notation, we introduce the vector
v := col(u,y) of known signals. The perturbation is given
by the expression ¢ = g(v,x, 0), where g is a continuously
differentiable function and 0 € RP? is a vector of constant,
unknown parameters.

We shall design an estimator for both the state x and the
unknown parameter vector 6. The technicalities of this design
are most easily overcome if the time derivative u is well-
defined and piecewise continuous, and x, u, 1, and 0 are
known a priori to belong to compact sets. We shall therefore
make this assumption throughout the paper. We note that
this assumption also implies that v and v belong to compact
sets. In most estimation problems, the restriction of the
variables to compact sets is reasonable, because the states
and inputs are typically derived from physical quantities with
natural bounds. When designing update laws for parameter
estimates, we also assume that a parameter projection can
be implemented as described by Krsti¢ et al. (1995, App.
E), restricting the parameter estimates to a compact, convex
set ® C RP, defined slightly larger than the set of possible
parameter values. Throughout the paper, we assume that 6
is always initialized from 0, that is, 8(0) € ©, and we shall
make use of this assumption when constructing our proofs.

We denote by X ¢ R™, V ¢ R™*" and V' ¢ R™*" the compact
sets to which x, v, and v belong, and by ® the compact image
of V X X x ® under g.

For ease of notation, we define
: ._ 099 ;.99
av,v,x,0,¢) = v (v,x,0)v+ ax(v,x,9)(Ax+Bu+E¢)),

which represents the time derivative of the perturbation ¢.

Assumption 1. The pair (C,A) is detectable; and the triple
(C, A, E) is left-invertible with no invariant zeros at the origin.

Assumption 2. There exists a number > 0 such that for all
(v,V,x,0,¢) € VXV’ xXx0@x® and for all (%, 0, $) € R" x
0 x R, llav,v,x,0,¢) -d(v,v,x,0,p)|l < Bl col(x - X, 0 -
9! d) - ¢) H

Remark 1. In Assumption 2, we specify a Lipschitz-like con-
dition on d, which is global in the sense that there are no
bounds on X and ¢. Although this condition may appear
restrictive, we are free to redefine g (v, x, 0) outside the com-
pact set V x X x ® without altering the accuracy of the system
description (1). We may, for example, introduce a smooth
saturation on x outside X, in which case the condition is
satisfied if g(v, x, 0) is sufficiently smooth.

3. PARAMETER ESTIMATOR

When designing the parameter estimator, we pretend that x
and ¢ are available, so that an estimator of the form

0 =uo(v,x,¢,0) )
can be implemented. The function uy is designed so that
(2) dynamically inverts the expression ¢ = g(v,x,0) with
respect to 6, causing 0 to converge exponentially to 6. The
formal requirement is given by the following assumption,
which is stated in terms of the estimation error 6 = 6 — 0.

Assumption 3. There exist a differentiable function V;: Ry X
(@-0) — Ry and positive constants a, ..., a4 such that for
all (t,0) € Rog X0,



a1 011> < Vy(t,0) < a, 0], 3)
WVu, = OVu, = i -
S (00) = S Duo(v,x, 6,0 - 0) < ~as1012, @)
oV, ~ ~
i t,GH_ oll. 5
\ae< || = a1 5)

In reality, x and ¢ are not available, and hence (2) is not
implementable. Instead, the parameter estimator that we
actually implement is

0=uo(v,%,,0), (6)
where X and ¢3 are estimates of x and ¢ provided by the

observer/perturbation estimator to be presented in Section
4. Thus, the dynamics of the estimation error becomes

0=-up(v,%,,0-0). %)

As mentioned in Section 1, we assume that the parameter es-
timates are restricted by projection to a set ®, encompassing
all possible values of 0. This requirement is formally stated
by the following assumption:

Assumption 4. The update law (6) ensures that if 0(0) € 0,
then forallt > 0, O(t) € O.

3.1 Constructing the Parameter Estimator

Constructing the parameter estimator to satisfy the above
assumptions constitutes the greatest challenge in applying
our methodology. Grip et al. (2010) discussed this issue in de-
tail, and provided a series of propositions with accompanying
examples that showed how the parameter estimator may be
constructed for certain types of nonlinearly parameterized
perturbations. The same propositions were presented with
slight modifications for the partial-state measurement case
by Grip et al. (2009). We repeat the propositions again in
this section, but without proofs, examples, and some of the
surrounding discussion.

The first two propositions apply to the case when the equality
¢ = g(v,x,0) can be explicitly inverted, either the whole
time (Proposition 1), or just part of the time (Proposition 2).

Proposition 1. Suppose that for all (v, x, ¢) € VxR"xR¥, we
can find a unique solution 0 = 8* (v, x, ¢) from the equation
¢ = g(v,x,0). Then Assumptions 3 and 4 are §atisiiied
with the update law ug (v, X, ¢, 8) = Proj(I'(60* (v, X, ) —09)),
where I' is a symmetric, positive-definite gain matrix.
Proposition 2. Suppose that there exists a known function
I: Vx R* x R¥ — [0, 1] such that ¢ — L(v(t),x(t),P(t))
is piecewise continuous and that for all (v,x,¢) € V x
R™ x R¥, I(v,x,¢) > 0 implies that we can find a unique
solution 0 = 0*(v,x, ¢) from the equation ¢ = g(v,x, 0).
Suppose furthermore that there exist T > 0 and o > 0
such that for all t € R.o, /7 L(v(T),x(T),p(T))dT > 0.
Then Assumptions 3 and 4 are satisfied with the update law
uo(v, %, P, 0) = Proj(l(v,x, P)T(0* (v, %, ) — 0)), where T is
a symmetric, positive-definite gain matrix.

When it is not possible or desirable to solve the inversion
problem explicitly, it is often possible to implement the
parameter estimator as a numerical search for the solution.

Proposition 3. Suppose that there exist a positive-definite
matrix P and a function M: V x R* x ® — RF*k such that
for all (v,x) € V x R", and for all pairs 61, 0, € 9,

) og"
M, x, 91)8—‘3(v,x, 0,) + % (v,x,0.)M"(v,x,0;) = P.

Then Assumptions 3 and 4 are satisfied with the update law
Ug(v,x,¢,0) =ProjM(v,x,0)(¢p —g(v,x,0))), whereT is
a symmetric, positive-definite gain matrix.

Proposition 4. Suppose that there exist a function S: V X
R"™ — S, such that each element of t — S(v(t),x(t)) is
piecewise continuous, where S, .. is the cone of p X p positive-
semidefinite matrices; and a function M: V x R" x © — RP*k,
both bounded for bounded x, such that for all (v, x) € VxR"
and for all pairs 61,6, € 0,

-
M(v,x, Gl)g—g(v,x, 0,) +g—‘g (v, x,0:)MT (v, x,01) = S(v, x).

Suppose furthermore that there exist T > 0 and o > 0
such that for all ¢t € R., ftHTS(V(T),x(T))dT > ol,
and a number L; > 0 such that for all (v,x,0) € V x
R" x 0, |g(v,x,0) — g(v,x,0)| < Ly(07S(v,x)0)'/2. Then
Assumptions 3 and 4 are satisfied with the update law
ug(v, X, 43 0) = Proj(TM(v, X, 9)((13 -gv,x, 9))), where T is
a symmetric, positive-definite gain matrix.

In Section 5 we shall analyze the stability properties of the pa-
rameter estimator (6) together with the observer/perturbation
estimator that will be introduced in the next section. To do
so we shall need an additional assumption regarding 1.

Assumption 5. The parameter update law Aue(v,fc,ci),é) is
Lipschitz continuous with respect to (%X, ¢), uniformly in
(v,0),onV x R" x R¥ x 0.

Remark 2. The Lipschitz condition in Assumption 5 is global
in the sense that X and 43 are not presumed to be bounded,
and it may therefore fail to hold in many cases. However,
if a local version of the Lipschitz condition holds, then the
update law is easily modified to satisfy Assumption 5 by
introducing a saturation on X and ¢ outside the compact sets
X and . When checking Assumption 5, the projection in the
update law may be disregarded, since the Lipschitz property
is retained under projection (Grip et al., 2010, App. A).

4. OBSERVER/PERTURBATION ESTIMATOR

The purpose of the observer/perturbation estimator is to
estimate both the state x and the perturbation ¢. To ac-
complish this we extend the system (1) by introducing ¢
as a state, and introduce an extended system vector x =
[xT, #T]". The dynamics of the extended system is given by

X =Ax +Bu+Ed(v,v,x,0,¢), y=Cx, (8)

where

(82 o [] e[ ecten

We construct the following observer:

X =AR +Bu+E} +Kyc(y — CR), (9a)

. 0, . as 00, 4 o
z= ag(v,x,G)G ax(v,x,G)Kx(y cx)  (9b)

+ Ko (y — Cx), (90)
¢ (9d)

where K, € R™" and Ky € R¥*" are gain matrices. In (9),
we have made use of the parameter estimate 0, produced
by the parameter estimation module, and its time derivative
0 = ug(v,fc,cfb, é). The variables X and <i) are estimates of
x and ¢, and they are gathered in a vector ¥ = [XT,¢T]".
It is convenient to analyze the observer in terms of X, which

g, x,0) + z.



constitutes a nonsingular transformation from the original
observer states (X, z).

Taking the time derivative of <f> yields (]Ab =dv,v,X, é, cf)) +
K¢ (y — Cx). Defining the error ¥ = x — X it is therefore easily
verified that the error dynamics of the observer becomes

X=(A-KC)x +Ed, (10a)
d=dv,v,x,0,¢) —d(v,v,%,0,P), (10b)

where K = [K;,K;]T. In (10), d can be viewed as a nonlinear
disturbance term, which must be suppressed in order to
ensure stability. Considering the dynamics (10a), the transfer
matrix from the input point of d to the state ¥ is given by

H(s) = (sI-A+KC)'E.
Our stability results in the next section will be presented in
terms of an ., condition on H(s).

5. STABILITY

Before stating our main stability result for the overall estima-
tor, we give a preliminary result for the observer/perturbation
estimator alone. The proof of this and the other formal re-
sults in this section are given in Appendix A.

Lemma 1. There exists a y > 0 such that, if K is chosen such
that A — KC is Hurwitz and |H(s)|l~ < y, then (assuming
0 € 0) the error dynamics (10) is input-to-state stable with
respect to 0.

Next, we state our main stability result for the combined
parameter estimator and observer/perturbation estimator.

Theorem 1. There exists a y > 0 such that, if K is chosen
such that A — KC is Hurwitz and ||H(s)|l. < ¥, then the
error dynamics (10), (7) is exponentially stable with all initial
conditions such that 6(0) € ® contained in the region of
attraction.

Theorem 1 specifies that K must be chosen to satisfy cer-
tain conditions. The question of whether such a K exists is
answered by the following theorem.

Theorem 2. There exists a y* > 0 such that, forall y > y*, K
can be chosen such that A — KC is Hurwitz and ||[H(s) ||e < Y.
Moreover, if (C, A, E) is minimum-phase, then y* = 0.

6. GAIN SYNTHESIS AND TUNING

Theorem 1 tells us that we can design our observer by
ensuring that A — KC is Hurwitz and that ||[H(s)|l. < y, for
some y > 0. This condition may not be achievable in general;
however, Theorem 2 shows that it is always achievable if
the system satisfies an additional minimum-phase condition.
From the proof of Theorem 1, it is possible to compute an
explicit numerical value of y for use in constructing the gains.
Such a computation is, however, likely to be conservative
and lead to poor performance. It is therefore preferable in
practice to tune the observer by starting with a large value of
y and decreasing it gradually until the desired stability and
performance is achieved.

As a practical matter, ensuring that A — KC is Hurwitz and
that ||[H(s)|l» < y can be achieved using several different 7,
design methods; specifically, Riccati-based methods, direct
methods, and LMI-based methods (see Saberi et al., 2006).

The use of LMIs is attractive, because it allows for easy
incorporation of additional performance criteria in the design
process. For a given y, it follows from the bounded-real
lemma (see, e.g., Saberi et al., 2006, Th. 11.45) that ||[H(S) ||« <
y is satisfied by choosing K = P~'X, where X and P = PT > 0
are solutions of the LMI1
[PA+ATPXCC'TXT+I PE }

=T 2 < 0.

E'P —yi
Such a solution is far from unique—there are additional
degrees of freedom in choosing K that can be used to im-
prove performance. In particular, it was shown by Chilali and
Gahinet (1996) that by including additional 1M1s based on a
common Lyapunov matrix P, it is possible to constrain the
closed-loop poles to some convex LMI region (assuming the
region is feasible for the given #,, objective), or to incorpo-
rate additional H,, or > minimization objectives.

(11)

6.1 Limiting the Observer Gain

Of particular concern in observer design is the effect of mea-
surement noise, which is severely amplified if the observer
gains are chosen too large. Using LMIs, we can incorporate an
additional objective to ensure that the gains are not chosen
much larger than what is necessary to achieve ||[H(s)[l» < y.
Suppose that y is affected by additive noise n; that is, y =
Cx +n. Equation (10a) then becomes ¥ = (A—KC)x+Ed—Kn.
If we view this as a linear system with inputs d and #, the
transfer matrix from »n to ¥ is G(s) := —(sI - A + KC)"'K.
In the spirit of Chilali and Gahinet (1996), we can minimize a
bound on ||G(s)||~, while at the same time satisfying (11), by
minimizing a value y2 > 0 subject to the LMIs (11) and
[PA+ATP—XC—C‘TXT+I -X }
T 2| <O.
-X _YnI
This LMI minimization problem can be solved using com-
monly available software (see Boyd, El Ghaoui, and Feron,
1994).

Remark 3. Note that the overall dynamics (10) is nonlinear,
and thus there is no well-defined transfer function from n to
the estimation error ¥. Minimizing |G (s)|/«~ should therefore
be viewed as a technique for limiting the magnitude of K
rather than a precise performance objective.

(12)

Remark 4. Asin other H-based design problems, it is bene-
ficial to pre-scale the input and output channels of the trans-
fer function to the same order of magnitude. Details on this
topic are beyond the scope of this paper, and we refer instead
to other sources (e.g., Skogestad and Postlethwaite, 2005).

7. SIMULATION EXAMPLE

In this section we revisit an example previously considered
by Grip et al. (2009), concerning a DC motor with friction
modeled by the LuGre friction model. The model is borrowed
from Canudas de Wit and Lischinsky (1997). When this ex-
ample was considered by Grip et al. (2009), a problem was
encountered due to a small parameter o, that altered the in-
finite zero structure of the system and resulted in excessively
high gains. To achieve stability with more moderate gains, the
design was carried out based on a manually altered model
with 07 = 0. The #-based methodology does not require
such an alteration when the gains are synthesized using LMIs.

The model is described by Jw = u — F, where w is the mea-
sured angular velocity, u is the motor torque, F is the friction
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Fig. 1. Actual (solid) and estimated (dashed) values for simu-
lation example

torque, and the parameter J = 0.0023 kgm? is the motor and
load inertia. The friction torque is given by the dynamic LuGre
friction model: F = ogn + o1 + &2w, where the internal
friction state n is given by n = w — opn|w|/C(w), with
C(w) = xp + x1exp(—(w/wg)?). The model is parameterized
by oy = 260.0Nm/rad, o5 = 0.6Nms/rad, &g = 0.28 Nm,

= 0.05Nm, o, = 0.0176 Nms/rad, and wo = 0.01rad/s.
As in the previous paper , we shall assume that these pa-
rameters are known, except for the uncertain parameter 0 :=
oo, which represents Coloumb friction. To indicate that C
depends on the unknown parameter, we write C(w, 9). We
assume that 0 is known a priori to belong to the range

= [0.05Nm, 1 Nm]. Following the notation from previous
sections, we write x = col(w,n), ¥ = w, and v = col(u, y).
We furthermore define the perturbation ¢ = g(v,x,0) =
oonly|/C(w, 0). By extending the state space as described in
Section 4, we obtain the system Jw = u — (x2 + 07)w — ogn +

op,n=w-—¢,p=dv,x,0, ).

We design the parameter estimator as before (Grip et al.,
2009), by noting that the equation ¢ = g(v, x, 0) can be ex-
plicitly inverted with respect to € when ¢ + 0. Proposition 2
applies to such situations and yields the parameter estimator

0 = Proj(L(v, %, $)T(0* (v, %, $) - 0)),
where 0* represents the algebraic solution 0*(v, X, d))
ooAly|/d — cexp(—(d/wo)?). The function I(v,%, qb) is
defined as l(v, X, ¢) = 0 when |¢)| < 0.9 and I(v, X, (I))

when IcPI > 1, with a linear transition between 0 and 1 for
0.9 < |¢| < 1. We choose the gainT = 1.

To understand why this choice of parameter estimator makes
sense, consider the error dynamics of 0 in the hypothetical

situation that X = x and ¢ = ¢:
0 = —Proj(L(v,x, $)0).

It is easy to see that 0 is drawn exponentially toward the
origin when l(v,x,¢) > 0 (e, |¢p| > 0.9), and that it
remains constant otherwise. Thus, if |¢p| > 0.9 occurs a
certain portion of the time, then the conditions specified by
Proposition 2 are satisfied.

Next, we design the observer/perturbation estimator accord-
ing to (9). It is straightforward to confirm that the triple
(C,A,E) corresponding to the model is left-invertible and
minimum-phase. Thus, by Theorem 2, we know that we can
make ||[H(s)l|l« as small as is necessary to achieve stability.

We design the gains using the formulation described in
Section 6, by minimizing y2 > 0 subject to the LMIs (11)
and (12), for some sufficiently small choice of y > 0. We find
that y = 0.5 yields stability and good performance, resulting
in the gain K = [-0.70,-1.13 - 107>,4.95]7. The simulated
states and the unknown parameter are shown together with
the estimated values in Fig. 1.

8. CONCLUDING REMARKS

The methodology presented in this paper is focused on
the case where 0 represents a vector of unknown, constant
parameters. However, the methodology can be applied in a
straightforward way to the case when 6 is a state variable
described by 0 = f(v,0), provided an observer for 6 of
the form (6), satisfying Assumption 3, can be constructed.
This observation effectively extends the results to a class of
nonlinear cascaded systems.
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Appendix A. PROOFS

Proof of Lemma 1 By the bounded-real lemma (Salgeri et_al.,
2006, Th. 11.45), ||[H(s)|le < y and the fact that A — KC is
Hurwitz implies that the LMI (11) with X = PK is satisfied for
some positive definite P. Define the Lyapunov-like function
W = %¥"PX. The time derivative of W along the trajectories of
the error dynamics (10) is
W =g%"(P(A-KC)+ (A-KC)"P)x + 2X"PEd

=X"(PA+A™P - XC - C"X")% + 2% PEd
C[R]'[PA+ATP-XC-C"XT+1 PE|[&
T ld E™P -yI||d

— X1 + y2ldl>.

Using (11) and Assumption 2, we therefore have W < —(1 —
y2BO X2+ y2B2110]12. Let y be small enough that 1 —y282 >

262 > 0. Then W < —€2||%|12 whenever || %]l = yBI0]l/¢, which
implies 1ss (Khalil, 2002, Th. 4.19). O

Proof of Theorem 1 By Assumption 4, the parameter esti-
mate 0(t) cannot escape from ©. It therefore follows from
Lemma 1 that ¥(t) is well-defined and remains in a compact
subset of R"*¥, Define the Lyapunov function V = W + yV,.
Let 8 denote the Lipschitz constant in Assumption 5, such
that [|ue (v, x, ¢, 0) — Ug (v, X, <13, é)ll < BIIR|l. Using Assump-
tion 3, we find that the time derivative of V along the trajec-
tories of (10), (7) satisfies

V< —(1-y2B)IRI2 + y2B216]2
ovy d0Vy ~
(? ~ 30 ug(v,x,¢,0 — 6))
; yaa% (o (v, X, b, 0 — 0) — up(v, %, b, 0 — 0))

<=1 = y2BHIRIZ + y*B21011 - yasll01? + yasBIONIXI.
It is straightforward to confirm that the above quadratic
expression is negative definite if y is small enough that
y < 4(1 — y?B2)(az — yB%)/(a3B?). The proof now follows
from the comparison lemma (Khalil, 2002, Lemma 3.4). O

Proof of Theorem 2 We start by showing that the pair
(C,A) is detectable. Consider any eigenvalue A of A that is
unobservable with respect to (C, A). There exist x € R" and
p € RX, not both zero, such that

A [x (A-Al)x +Ep
C p =0 = —Ap =0.
Cx

Clearly, either A = O or p = 0. If p = 0, then it follows
that x # 0 and [*M]x = 0, which implies that A is an
unobservable eigenvalue of (C, A). Since (C, A) is detectable,
A must be in the open left-half complex plane. If p = 0,
then A = 0 and [25][5] = 0, which implies that the
Rosenbrock system matrix R(z) = —[ 47 £] is rank-deficient
for z = 0. Since the triple (C, A, E) is left-invertible, this rank-
deficiency implies that (C, A, E) has an invariant zero at the
origin (Saberi, Chen, and Sannuti, 1991), which contradicts
Assumption 1. It follows that all unobservable eigenvalues of
the pair (C,A) are in the open left-half complex plane, and
hence it is detectable.

Since (C, A) is detectable, there exists a K such that A — KC
is Hurwitz, which implies that [|[H(s)||» < y for some y > 0.
It follows that there exists a y* < y such that [|[H(S)|lo < ¥
can be achieved for all y > y*.

The error dynamics (10a) is identical to the error dynamics
obtained by constructing a strictly proper filter of the Css ar-
chitecture (see Saberi et al., 2006, eq. (9.12)), for a system x =
Ax+Eu,p = Cx, where x is the state to be estimated, u is an un-
known input, and y is the available output. Hence, according
to Saberi et al. (2006, Th. 9.22), the gain matrix K can be cho-
sen such that A—KC is Hurwitz and ||H(s)||» < y for arbitrar-
ily small y > 0, provided the triple (C, A, E) has no invariant
zeros on the imaginary axis and the subspaces S™°(A, E, C,0)
and V*(A,E,C,0), defined by Saberi et al. (2006, Ch. 3.2.5),
intersect only at the origin. According to Grip et al. (2009),
left-invertibility and minimum phase of (C, A, E) implies left-
invertibility and minimum phase of (C, A, F). This implies
that (C, A, E) has no invariant zeros on the imaginary axis,
and also that S °(A,E,C,0)nV*(A,E,C,0) = {0} (see Saberi
et al., 2006, Ch. 3.2.5). O



