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Abstract: We present two results on attitude estimation using vector and rate gyro measurements,
when both sets of measurements are biased. The first result concerns an observer for attitude and
gyro bias that has previously been presented by Hamel and Mahony, and by Mahony, Hamel, and
Pflimlin, with proven almost-global stability results when either (i) the reference vectors in the inertial
frame are stationary; or (ii) the reference vectors are time-varying but the gyro measurements are
unbiased. We prove that the same observer with an added parameter projection is semiglobally
exponentially stable when bias estimation is included and the reference vectors are time-varying.
The second result concerns estimation of bias in the body-fixed vector measurements. We show how
the bias can be estimated in a manner that is decoupled from the attitude and gyro bias estimation,
provided the measurements are sufficiently excited relative to the level of measurement noise.
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1. INTRODUCTION

Determination of the attitude of a vehicle with respect to
a reference frame is one of the fundamental tasks of a
navigation system. Frequently, the attitude is determined
by comparing vectors measured in a body-fixed coordinate
frame with known reference vectors in the reference frame.
The necessary vector measurements can be obtained, for
example, by using on-board magnetometers, which measure
the earth’s magnetic field; star-trackers, which measure the
position of stars relative to the vehicle; or accelerometers,
which measure the earth’s gravity field together with the
acceleration of the vehicle. If at least two non-parallel vector
measurements and their corresponding reference vectors
are available, then the attitude can be determined by using
algorithms like the quest algorithm (Shuster and Oh, 1981).

In practice, vector measurements are affected by noise, which
is particularly significant at high frequencies. It is therefore
common to combine vector measurements with measure-
ments from rate gyroscopes, which complement the vec-
tor measurements by providing high-frequency information
about the attitude.

Most commonly, vector and gyroscope measurements are
integrated using an extended Kalman filter (ekf). An overview
of early ekf implementations is given by Lefferts, Markley,
and Shuster (1982). Crassidis, Markley, and Cheng (2007)
survey more recent results based on ekfs, as well as other
estimation techniques such as unscented filtering, particle
filtering, nonlinear observers, and extensions of the quest
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algorithm. Integrated inertial (ins) and satellite (gnss) nav-
igation systems have also been studied for several decades
and are typically based on ekfs (Maybeck, 1979; Phillips
and Schmidt, 1996; Grewal, Weill, and Andrews, 2001). Such
systems implicitly determine the attitude by matching the
accelerometer vector with changes in the velocity vector.

One alternative to the ekf is to construct nonlinear observers
with explicitly proven stability properties, by using, for ex-
ample, Lyapunov-based methods. Such observers typically
have a smaller computational footprint than ekf-based solu-
tions, and they are therefore of particular interest as low-cost
navigation equipment becomes available in an increasingly
wide range of products, such as cell phones, cars, and small
unmanned vehicles.

The first observer of this type was presented by Salcudean
(1991). Salcudean’s observer was later extended by Vik and
Fossen (2001), by adding gyro bias estimation as well as lin-
ear velocity estimation in the context of gps/ins integration.
Thienel and Sanner (2003) improved the stability analysis of
Vik and Fossen (2001) by deriving a persistency-of-excitation
condition that guarantees exponentially vanishing estimation
errors. The nonlinear observers based on Salcudean’s work
assume that the attitude is resolved in a separate subsystem
and provided as a measurement to the observer. A drawback
of this assumption is that the noise characteristics of the
resolved attitude may differ significantly from the character-
istics of the measurements used to produce it.

More recently, Hamel and Mahony (2006); Mahony, Hamel,
and Pflimlin (2008) have proposed an explicit complementary
filter that does not rely on a separate subsystem for resolving
the attitude, but instead makes use of vector measurements
directly. Their observer includes estimation of gyro bias and



is rigorously analyzed with respect to stability. An underly-
ing assumption, however, is that the reference vectors are
stationary (constant). Stability in the case of time-varying ref-
erence vectors is studied in a later paper by Mahony, Hamel,
Trumpf, and Lageman (2009) and in a recent paper by Hua
(2010), albeit without considering gyro bias estimation. It is
proven that the observer without bias estimation can in fact
handle time-varying reference vectors as well. Moreover, Hua
presents algorithms for using the derivative of gnss velocity
as a reference vector without explicit differentiation.

1.1 Contributions

This paper is concerned with two problems on the topic
of attitude and bias estimation using nonlinear observers.
First, we consider the observer by Hamel and Mahony (2006);
Mahony et al. (2008). As discussed above, this observer has
proven stability properties when either (i) the reference vec-
tors are stationary; or (ii) the reference vectors are time-
varying but the gyro measurements are bias-free. What is not
considered by Hamel and Mahony (2006), Mahony et al. (2008,
2009) or Hua (2010) is the case when the reference vectors
are time-varying and the gyro measurements are biased. By
adding a parameter projection to the bias estimation algo-
rithm, we show in Section 5 that the observer is applicable in
this case as well; in particular, we prove semiglobal exponen-
tial stability for this case.

In addition to gyro bias, bias in the vector measurements
can constitute a significant problem. A particular example
is when an accelerometer measurement is used as one of
the body-fixed vector measurements. Low-cost accelerome-
ters typically have a large bias; on the other hand, the cor-
responding reference vector, derived using the gravity vec-
tor and possibly the derivative of gnss velocity, is typically
subject to a very small bias. Motivated by this situation, we
present in Section 6 an algorithm for estimating bias in the
body-fixed vector measurement by using a bias-free reference
vector. The algorithm is decoupled from the attitude and gyro
bias estimation, and it is therefore analyzed on its own.

2. PRELIMINARIES

Any rotation can be described by a unit vector k ∈ R3 about
which the rotation takes place, and an angle of rotation β. The
corresponding unit quaternion q is defined as q = [s, r>]> =
[cos(β/2), k> sin(β/2)]>, which implies ‖q‖2 = s2+‖r‖2 = 1.
We shall alternately describe rotations by unit quaternions
and rotation matrices R ∈ SO(3). The two representations
are related by R = Rq(s, r) := I + 2sS(r) + 2S(r)2, where
S(x) denotes the skew-symmetric matrix such that for all
x,y ∈ R3, S(x)y = x×y . For all x,y ∈ R3 and all R ∈ SO(3),
the following holds for S(·): S(x) = −S(x)>; y>S(x)y = 0;
and RS(x)R> = S(Rx). We refer to Fossen (2011) for more
detailed background information.

We denote by ‖ · ‖ the Euclidean norm for vectors in Rn

and the Frobenius norm for matrices in Rm×m. For (X,x) ∈
Rm×m × Rn, we define ‖(X,x)‖ = √‖X‖2 + ‖x‖2. For a sym-
metric matrix X we denote by λmin(X) and λmax(X) the mini-
mum and maximum eigenvalues of X. Throughout the paper,
we assume that the various dynamical systems are initialized
at time t = 0. For time-varying variables, we shall omit the
time argument unless it is explicitly needed.

3. PROBLEM FORMULATION

Let R ∈ SO(3) denote the rotation matrix from the body-fixed
frame to an inertial reference frame. The dynamics of R is
described by

Ṙ = RS(ω), (1)

where ω represents the angular velocity of the vehicle body
in body-fixed coordinates. The angular velocity is presumed
bounded by ‖ω‖ ≤ ω̄. A measurement ωm = ω + bg is
available, where bg represents gyro bias. We assume that
bg is constant and belongs to an a priori known, compact,
convex set Bg ⊂ R3. This assumption is reasonable, as it only
requires knowledge of some bound on the magnitude ‖bg‖.
We furthermore assume availability of n vectors vbj , j ∈
1, . . . , n, in the body-fixed frame, as well as corresponding
reference vectors vij = Rvbj , j ∈ 1, . . . , n, in the inertial
frame. The reference vectors are presumed to be time-varying
but always nonzero. Unless otherwise stated, we also assume
that the vector measurements have been normalized so that
‖vbj ‖ = ‖vij‖ = 1. As in other places in the literature
(Mahony et al., 2009; Hua, 2010), we ensure that the attitude
is observable through an additional assumption regarding the
reference vectors.

Assumption 1. There exists a constant cobs > 0 such that, for
each t ≥ 0, the inequality ‖vij×vik‖ ≥ cobs holds for some pair
of indices j, k ∈ 1, . . . , n.

Remark 1. Practically speaking, Assumption 1 requires there
to always be two normalized reference vectors with the angle
between them bounded away from 0◦ and 180◦.

3.1 Attitude Error Representation

The estimate of the rotation matrix will be denoted by R̂,
and the attitude estimation error will be represented by a
rotation matrix R̃ := RR̂>. The goal is to ensure that R̃ → I
as t →∞, which implies that R̂ asymptotically represents the
same rotation as R. The attitude error will also be represented
by a unit quaternion q̃ = [s̃, r̃>]> corresponding to R̃. Note
that R̃ = I is equivalent to |s̃| = 1 and r̃ = 0. It is also useful
to note that s̃ = 0 corresponds to a rotation error of 180◦

about some axis (i.e., the maximal error rotation angle).

4. PREVIOUS RESULTS

Hamel and Mahony (2006); Mahony et al. (2008) present the
following observer for estimating R and bg :

˙̂R = R̂S(ωm − b̂g + σ), (2a)

˙̂bg = −kIσ, (2b)

where σ represents an injection term given by

σ =
n∑
j=1

kjvbj × R̂>vij , (3)

with kj ≥ kP > 0, i = 1, . . . , n, as well as kI , representing
scalar observer gains. Under the assumption that the refer-
ence vectors vij , j = 1, . . . , n, are stationary, it is proven that
the observer states converge to the true states for almost all
initial conditions.

4.1 Time-Varying Reference Vectors

If the reference vectors vij , j = 1, . . . , n, are time-varying, then

convergence of R̂ to R can still be proven if the presence of



gyro bias is disregarded (i.e., ωm = ω and b̂g = 0). This can
be done, for example, based on the analysis of Hua (2010), as
outlined in the remainder of this section.

The dynamics of the error variable R̃ is described by ˙̃R =
ṘR̂> + R ˙̂R> = RS(ω)R̂> − RS(ω + σ)R̂> = −RS(σ)R̂> =
−S(Rσ)R̃, where S(x)> = −S(x) and RS(x)R> = S(Rx) have
been used. The dynamics described by a corresponding unit
quaternion is therefore (Fossen, 2011)

˙̃s = 1
2
r̃>Rσ, ˙̃r = −1

2
(s̃I − S(r̃ ))Rσ. (4)

The unit quaternion dynamics is confined to the unit sphere;
that is s̃ + ‖r̃‖2 = 1. Note that

Rσ =
n∑
j=1

kjRS(vbj )R̂
>vij =

n∑
j=1

kjS(Rvbj )R̃v
i
j

=
n∑
j=1

kjS(vij)(I + 2s̃S(r̃ )+ 2S(r̃ )2)vij

= 2
n∑
j=1

kjS(vij)(s̃S(r̃ )+ S(r̃ )2)vij .

By defining the Lyapunov-like function

V(s̃) = 1− s̃2 = ‖r̃‖2, (5)

one obtains the time derivative

V̇ = −2s̃r̃>
n∑
j=1

kjS(vij)(s̃S(r̃ )+ S(r̃ )2)vij

= −2s̃
n∑
j=1

kj(r̃ × vij)>(s̃I + S(r̃ ))(r̃ × vij)

≤ −2kP
n∑
j=1

s̃2‖r̃ × vij‖2,

where we have used the identity y>S(x)y = 0. Finally, using
the inequality ‖r̃ ×vij‖2 +‖r̃ ×vik‖2 ≥ 1

2‖r̃‖2‖vij ×vik‖2 (Hua,
2010) together with Assumption 1 yields

V̇ ≤ −kPc2
obss̃

2‖r̃‖2 = −kPc2
obss̃

2(1− s̃2).

Since V̇ is negative whenever s̃ ≠ 0 and |s̃| ≠ 1, it is straight-
forward to show that for any initial condition satisfying

R̃(0) ∈ {Rq(s̃, r̃ ) | |s̃| > 0}. (6)

|s̃| will increase monotonically such that |s̃| → 1 (implying
‖r̃‖ → 0 and R̃ → I). That is, the initial rotation error must be
strictly less than 180◦.

5. ATTITUDE AND GYRO BIAS ESTIMATION WITH
TIME-VARYING REFERENCE VECTORS

In this section we build on the analysis outlined in the
previous section to show that the observer, including bias
estimation, is applicable even if the reference vectors are
time-varying. The only modification that we make to (2) is to
add a parameter projection of the type shown in Appendix
A (Krstíc, Kanellakopoulos, and Kokotovíc, 1995, App. E),
which ensures that b̂g remains within a compact, convex set
B̂g ⊃ Bg , defined slightly larger than Bg . Accordingly, we
rewrite (2b) as

˙̂bg = Proj(b̂g ,−kIσ). (7)

Defining the bias estimation error b̃g = bg− b̂g , we obtain the
complete error dynamics

˙̃R = −S(Rb̃g + Rσ)R̃, ˙̃bg = −Proj(b̂g ,−kIσ). (8)

To state the stability result for (8), we introduce the parame-
terized set R̃(ε) = {Rq(s̃, r̃ ) | |s̃| ≥ ε}, where 0 < ε < 1.

Theorem 1. Consider the dynamics of (R̃, b̃g) ∈ SO(3) × R3.
For each 0 < ε < 1, there exists a k̄P > 0 such that, for
all kP > k̄P , the equilibrium point (I,0) is exponentially
stable with all initial conditions such that R̃(0) ∈ R̃(ε) and
b̂g(0) ∈ B̂g contained in the region of attraction.

The proof of Theorem 1 is given in Appendix B. Compared
to (6), we see that the requirement on the initial condition
R̃(0) in Theorem 1 specifies that the initial error rotation
angle must not only be strictly smaller than 180◦, but smaller
by a certain margin. This margin can be made arbitrarily
small by increasing kP . In addition, the initial bias estimate
must be initialized from the set B̂g , which has been chosen
to encompass all possible values of the actual bias bg . The
stability result is therefore best described as semiglobal (in
the same way as Hua, 2010), which is slightly weaker than
the almost-global result for the case of stationary reference
vectors (Mahony et al., 2008).

When estimating constant parameters using Lyapunov-based
techniques, it is common for the derivative of the Lyapunov
function to become negative semidefinite rather than nega-
tive definite, thus requiring a further invariance-based argu-
ment to prove asymptotic stability (e.g., based on Barbălat’s
lemma or LaSalle’s invariance principle). By contrast, the
proof of Theorem 1 provides a Lyapunov function with a
negative definite derivative within the region of attraction.
The availability of such a Lyapunov function is often an ad-
vantage, as it provides an explicit stability margin that can be
useful, for example, when studying robustness or intercon-
nections with other subsystems.

The observer can be implemented in terms of unit quater-
nions instead of rotation matrices, as described by Mahony
et al. (2008, App. B). This is generally more desirable, as it
involves a four-dimensional vector of unit length rather than
a 3× 3 matrix in SO(3).

6. ESTIMATION OF VECTOR BIAS

A potentially significant problem that is not accounted for
in the observer (2) is the presence of bias in the vector mea-
surements. As mentioned in Section 1.1, a particular situation
where vector bias may pose a problem is when an accelerom-
eter measurement is used as one of the body-fixed vectors.
Motivated by this scenario, we consider a single, biased vector
measurement vbm = vb + bv in the body-fixed frame, where
vb is the true value of the vector and bv is a constant bias. By
using the unbiased reference vector measurement vim = vi =
Rvb, we shall estimate the bias bv asymptotically. Moreover,
we shall do so in a way that is completely independent of
the attitude or the gyro bias, meaning that the vector bias
estimation can be studied separately from the attitude and
gyro bias estimation. In this section we no longer assume that
vb and vi are normalized to have magnitude 1.

Define y = ‖vim‖2 − ‖vbm‖2 and p = ‖bv‖2. Noting that
‖vi‖ = ‖Rvb‖ = ‖vb‖, we calculate

y = ‖vi‖2 − ‖vb + bv‖2 = ‖vi‖2 − ‖vb‖2 − ‖bv‖2 − 2(vb)>bv
= −‖bv‖2 − 2(vb + bv)>bv + 2b>vbv
= ‖bv‖2 − 2(vbm)>bv = p − 2(vbm)>bv .



Defining the constant vector θ = [p, b>v ]> and the time-
varying vector φ = [1,−2(vbm)>]>, we can now write

y = φ>θ. (9)

Based on (9), we may construct an over-parameterized ob-
server

˙̂θ = Γφ(y −φ>θ̂), (10)

where Γ is a symmetric, positive-definite gain matrix. Defining
the error variable θ̃ = θ − θ̂, the error dynamics becomes

˙̃θ = −Γφφ>θ̃. (11)

The following theorem gives a stability result for (11), subject
to a persistency-of-excitation condition.

Theorem 2. Suppose that there exist ε > 0 and T > 0 such
that, for each t ≥ 0,∫ t+T

t
φ(τ)φ>(τ)dτ ≥ εI. (12)

Then the origin is a globally exponentially stable equilibrium
point for (11).

Proof. See Appendix B.

The requirement (12) is a standard persistency-of-excitation
condition that can be interpreted as requiring the individual
components ofφ (consisting of a constant 1 and the elements
of the vector−2vbm) to vary in a sufficiently independent man-
ner. Whether this requirement is reasonable or not depends
on the specifics of the application.

Remark 2. Equation (9) represents a linear regression model,
with output y , regressor φ, and parameter vector θ. Several
standard estimation methods can therefore be applied. For
example, by introducing a time-varying gain Γ satisfying Γ̇ =
αΓ − Γφφ>Γ , with α ≥ 0, we obtain the recursive least-
squares estimate of θ with forgetting factor α (Åström and
Wittenmark, 1995, Th. 2.5).

If the vector bias estimation is combined with the attitude
and gyro bias estimation in Section 5, then the overall error
dynamics becomes a cascade interconnection where the atti-
tude and gyro bias error is affected by the vector bias error,
but not the other way around. Analysis of cascade intercon-
nections is often straightforward (see, e.g., Panteley and Loría,
2001), because the states of the second subsystem in the
cascade can often be shown to converge to the origin when
affected by a vanishing disturbance from the first subsystem.
Due to the semiglobal nature of Theorem 1, however, the at-
titude estimate may be pushed out of the region of attraction
if the initial vector bias is large. Therefore, only a regional
stability result can currently be proven for the interconnected
system. Simulation results nevertheless indicate that this is
not a practical problem.

7. SIMULATION

In this section we consider a simulation example where two
vector measurements in the body-fixed frame and their cor-
responding reference vectors are available. The first of these
vector measurements is a biased accelerometer measure-
ment, with a corresponding reference vector representing
the acceleration of the body in the inertial frame minus the
gravity vector (obtained, for example, by differentiating gnss
velocity). The second vector measurement has a stationary
reference vector and may represent, for example, a magne-
tometer measurement. The motion in this example is not
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Fig. 1. Accelerometer measurement

constructed to correspond to a physically realistic situation,
as the goal is merely to study the response of the estimation
algorithms to a particular excitation.

The accelerometer measurements, including bias, are shown
for the first 50 s in Fig. 1. The variation in the acceleration
measurements are due to a combination of body acceleration
and changes in the attitude (resulting in variation in the
direction of the measured gravity vector). The same motion
pattern is repeated throughout the simulation. Band-limited
white noise has been added to the accelerometer measure-
ments, as well as the other body-fixed vector measurement,
the reference vectors, and the gyroscope measurement. Be-
fore being used in any of the estimation algorithms, the
measurements are filtered using first-order low-pass filters
with a 5-Hz cut-off frequency.

The vector bias estimation is implemented using the time-
varying gain corresponding to the recursive least-squares
algorithm, as described in Remark 2, with initial gain Γ(0) =
10I and forgetting factor α = 0. The attitude and gyro
bias observer with parameter projection is implemented with
gains k1 = k2 = 0.5 and kI = 0.1.

The estimates of the accelerometer bias, attitude, and gyro
bias are shown, together with the actual values, in Fig. 2.
With the chosen gains, it takes a considerable amount of time
for the estimates to converge. The convergence time can be
reduced at the expense of increased sensitivity to noise.

7.1 Estimation Bias

In the presence of measurement noise, the estimate of θ is
not an unbiased one. The first reason for this is that, by using
‖vim‖2 and ‖vbm‖2 to produce y , the squared norm of the
noise components of ‖vim‖ and ‖vbm‖ are included in y , and
these have a nonzero expected value. This does not constitute
a major problem, as it effectively introduces an extra constant
term that is additive with the redundant parameter p. The
second reason is that the regressor φ contains noise, and it
is well-known that noisy regressors generally lead to biased
estimates (Hong, Söderström, and Zheng, 2007). The low-
pass filtering mentioned above is crucial to reducing this
effect; if the noise level is too large relative to the level of
excitation, the estimates become severely degraded, which
may be detrimental in many applications. Other options for
reducing the estimation bias include compensation by using
a priori knowledge of the regressor noise intensity; and the
introduction of additional parameters (Hong et al., 2007).
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Fig. 2. Simulation results
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Appendix A. PARAMETER PROJECTION

Let the set of possible parameters be defined by Bg := {bg ∈
R3 | P(bg) ≤ 0}, where P : R3 → R is a smooth, convex
function. Let B0

g denote the interior of Bg , and let B̂g be

defined by B̂g = {b̂g ∈ R3 | P(b̂g) ≤ δ}, where δ is a small
positive number, making B̂g a slightly larger superset of Bg .

Then Proj(b̂g ,−kIσ) = p(b̂g ,−kIσ)(−kIσ), where

• p(b̂g ,−kIσ) = I if b̂g ∈ B0
g or ∇P> · (−kIσ) ≤ 0.

• p(b̂g ,−kIσ) = I − c(b̂g)∇P∇P>/‖∇P‖2 if b̂g ∈ B̂g \B0
g

and ∇P> · (−kIσ) > 0,

where∇P> is the gradient of P and c(b̂g) =min{1,P(b̂g)/δ}.

Appendix B. PROOFS

Proof of Theorem 1 Let M be a bound on ‖b̃g‖ on the com-

pact set B̃g = {b̃g | bg ∈ Bg , b̂g ∈ B̂g}. We start by defining
` > 0 such that ` < min{1/(2kI), c2

obsε2/(12nM + 8kIn)}.



Next, define a = c2
obsε2 − `(12nM + 8kIn) (note that a > 0

due to the definition of `) and let k̄P = max{M/(c2
obsε2(1 −

ε2)), ((1 + 2`ω̄)2 + 4`2M2ε2)/(4a`ε2)}. Using unit quater-
nions the error dynamics (8) becomes

˙̃s = 1
2
r̃>R(b̃g + σ), (B.1a)

˙̃r = −1
2
(s̃I − S(r̃ ))R(b̃g + σ), (B.1b)

˙̃bg = −Proj(b̂g ,−kIσ). (B.1c)

We know that b̂g(0) ∈ B̂g . Due to the projection, it therefore

follows that for all t ≥ 0, b̂g(t) ∈ B̂g , and hence b̃g(t) ∈ B̃g .
Consider the derivative of V defined in (5):

V̇ ≤ −s̃r̃>Rb̃g − kPc2
obss̃

2(1− s̃2) ≤ M − kPc2
obss̃

2(1− s̃2).
Using the above definition of k̄P , we see that |s̃| = ε =⇒ V̇ <
0. This implies that V is strictly decreasing whenever |s̃| = ε,
which in turn implies that |s̃| is strictly increasing. It follows
from |s̃(0)| ≥ ε and continuity of the solutions that |s̃| can
never become smaller than ε, and we therefore assume |s̃| ≥ ε
in the remainder of the analysis.

Consider the Lyapunov function candidate

W(r̃ , s̃, b̃g) = V + 2`s̃r̃>Rb̃g + `
2kI
b̃>g b̃g . (B.2)

We have W ≥ ‖r̃‖2 − 2`‖r̃‖‖b̃g‖ + `
2kI ‖b̃g‖2, where we have

used the fact that |s̃| ≤ 1. This quadratic expression is
positive definite with respect to r̃ and b̃g due to the bound
on ` described above. Moreover, W ≤ ‖r̃‖2 + 2`‖r̃‖‖b̃g‖ +
`

2kI ‖b̃g‖2. It follows that there exist positive constants α1 and

α2 such that α1‖(r̃ , b̃g)‖2 ≤ W ≤ α2‖(r̃ , b̃g)‖2.

For the time derivative of W we calculate

Ẇ ≤ −s̃r̃>Rb̃g − kPc2
obss̃

2(1− s̃2)+ `r̃>Rb̃g r̃>Rb̃g
+ `r̃>Rσr̃>Rb̃g − `s̃2b̃>g b̃g
− `σ>R>(s̃2I + s̃S(r̃ ))Rb̃g + 2`s̃r̃>RS(ω)b̃g

− 2`s̃r̃>R Proj(b̂g ,−kIσ)− `
kI
b̃>g Proj(b̂g ,−kIσ)

≤ ‖r̃‖‖b̃g‖ − kPcobss̃2‖r̃‖2 + `‖r̃‖2‖b̃g‖2 − `s̃2‖b̃g‖2

− `σ>R>((1− ‖r̃‖2)I + s̃S(r̃ )− r̃ r̃>)Rb̃g
+ 2`ω̄‖r̃‖‖b̃g‖ + 2`kI‖r̃‖‖σ‖ + `σ>b̃g

= ‖r̃‖‖b̃g‖ − kPcobss̃2‖r̃‖2 + `‖r̃‖2‖b̃g‖2 − `s̃2‖b̃g‖2

− `σ>R>(−‖r̃‖2I + s̃S(r̃ )− r̃ r̃>)Rb̃g
+ 2`ω̄‖r̃‖‖b̃g‖ + 2`kI‖r̃‖‖σ‖,

where we have used the properties that ‖Proj(b̂g ,−kIσ)‖ ≤
kI‖σ‖ and −b̃>g Proj(b̂g ,−kIσ) ≤ kI b̃>gσ (Krstić et al., 1995,

Lemma E.1). Note that ‖σ‖ = ‖Rσ‖ and

‖Rσ‖ = 2

∥∥∥∥∥∥
n∑
j=1

kjS(vij)(s̃S(r̃ )+ S(r̃ )2)vij

∥∥∥∥∥∥ ≤ 4kPn‖r̃‖.

Using this bound, as well as |s̃| ≥ ε, we obtain

Ẇ ≤ ‖r̃‖‖b̃g‖ − kPc2
obsε

2‖r̃‖2 + `‖r̃‖2‖b̃g‖2 − `ε2‖b̃g‖2

+ 4`kPn‖r̃‖(2‖r̃‖2 + ‖r̃‖)‖b̃g‖ + 2`ω̄‖r̃‖‖b̃g‖
+ 8`kIkPn‖r̃‖2

≤ ‖r̃‖‖b̃g‖ − kPc2
obsε

2‖r̃‖2 + `M2‖r̃‖2 − `ε2‖b̃g‖2

+ 12`kPnM‖r̃‖2 + 2`ω̄‖r̃‖‖b̃g‖ + 8`kIkPn‖r̃‖2

= −(kPa− `M2)‖r̃‖2 − `ε2‖b̃g‖2

+ (1+ 2`ω̄)‖r̃‖‖b̃g‖.
Using the definition of k̄P , it is straightforward to show that
this expression is negative definite with respect to r̃ and b̃g ;
that is, there exists an α3 > 0 such that Ẇ ≤ −α3‖(r̃ , b̃g)‖2,
and thus there is an α > 0 such that Ẇ ≤ −αW . Using the
comparison lemma (Khalil, 2002, Lemma 3.4), we can there-
fore conclude that there exist positive constants K and λ such
that for all t ≥ 0, ‖(r̃ (t), b̃g(t))‖ ≤ Ke−λt‖(r̃ (0), b̃g(0))‖.
Noting that ‖I − R̃‖ = √

8‖r̃‖, we therefore have ‖(I −
R̃(t), b̃g(t))‖ ≤

√
8Ke−λt‖(I − R̃(0), b̃g(0))‖. �

Proof of Theorem 2 Let M be a bound on ‖φ‖, and consider
the Lyapunov function (inspired by Loría, Panteley, Popović,
and Teel, 2005)

V(t, θ̃) = 1
2
θ̃>

(
Γ−1 − `

∫∞
t

et−τφ(τ)φ(τ)> dτ
)
θ̃,

where ` <min{λmin(Γ−1)/M2,2e−T ε/(M6λ2
max(Γ)+e−T ε)}. We

have V ≤ 1
2λmax(Γ−1)‖θ̃‖2 and V ≥ 1

2 (λmin(Γ−1) − `M2)‖θ̃‖2,
which is positive definite due to the bound on `. Furthermore,

V̇ = −θ̃>φφ>θ̃ + `θ̃>
∫∞
t

et−τφ(τ)φ(τ)> dτ Γφφ>θ̃

+ 1
2
`θ̃>φφ>θ̃ − 1

2
`θ̃>

∫∞
t

et−τφ(τ)φ(τ)> dτ θ̃

≤ −|φ>θ̃|2 + `M3λmax(Γ)‖θ̃‖|φ>θ̃|

+ 1
2
`|φ>θ̃|2 − 1

2
`θ̃>

∫ t+T
t

e−Tφ(τ)φ(τ)> dτ θ̃

≤ −
(

1− 1
2
`
)
|φ>θ̃|2 + `M3λmax(Γ)‖θ̃‖|φ>θ̃|

− 1
2
`e−T ε‖θ̃‖2.

This is a quadratic expression with respect to ‖θ̃‖ and |φ>θ̃|,
which is easily shown to be negative definite by using the
bound on `. Once more the result follows from using the
comparison lemma (Khalil, 2002, Lemma 3.4). �


