
Structural Decomposition of Linear Multivariable

Systems Using Symbolic Computations

Håvard Fjær Grip and Ali Saberi

Abstract— We introduce a procedure written in the math-
ematics software suite Maple, which transforms linear time-
invariant systems to a special coordinate basis that reveals
the internal structure of the system. The procedure creates
exact decompositions, based on matrices that contain elements
represented by symbolic variables or exact fractions. The
procedure is meant as a complement to numerical software
algorithms developed by others for the same purpose. We
illustrate use of the procedure by examples.

I. INTRODUCTION

In 1987 Sannuti and Saberi introduced a structural trans-

formation of multivariable linear time-invariant (LTI) systems

to a special coordinate basis (SCB) [1]. The transforma-

tion partitions a system into separate but interconnected

subsystems that reflect the inner workings of the system.

In particular, the SCB representation explicitly reveals the

system’s finite and infinite zero structure, and invertibility

properties. Since its introduction, the SCB has been used in

a large body of research, on topics including loop transfer

recovery, H2 control, and H∞ control, and it has been used

as a fundamental tool in the study of linear systems theory.

For details, we refer to the books [2]–[6], all of which are

based on the SCB, and references therein.

While the SCB provides a fine-grained decomposition of

multivariable LTI systems, transforming an arbitrary system

to the SCB is a complex operation. A constructive algorithm

for strictly proper systems is provided in [1], based on a

modified Silverman algorithm [7]. This algorithm is lengthy

and involved, and includes repeated rank operations and

construction of non-unique transformations to divide the state

space. Thus, the algorithm can realistically be executed by

hand only for very simple systems.

To automate the process of finding transformations to the

SCB, numerical algorithms have been developed (see [8],

[5]) and implemented as part of the Linear Systems Toolkit

for Matlab [9]. Although these numerical algorithms are

invaluable in practical applications, engineers often operate

on systems where some or all of the elements of the system

matrices have a symbolic representation. There are obvious

advantages in being able to transform these systems to the

SCB symbolically, without having to insert numerical values

Håvard Fjær Grip is with the Department of Engineering Cybernetics,
Norwegian University of Science and Technology, NO-7491 Trondheim,
Norway. Ali Saberi is with the School of Electrical Engineering and
Computer Science, Washington State University, Pullman, WA 99164-2752.

The work of Håvard Fjær Grip is supported by the Research Council
of Norway. The work of Ali Saberi is partially supported by NAVY grants
ONR KKK777SB001 and ONR KKK760SB0012, and National Aeronautics
and Space Administration grant NNA06CN26A.

in place of symbolic variables. Furthermore, the numerical

algorithms are based on inherently inaccurate floating-point

operations that make them prone to numerical errors. Ideally,

if the elements of the system matrices are represented by

symbols and exact fractions, one would be able to obtain

an exact SCB representation of that system, also represented

by symbols and exact fractions. To address these issues, we

have developed a procedure for symbolic transformation of

multivariable LTI systems to the SCB, using the commercial

mathematics software suite Maple. The procedure is based on

the modified Silverman algorithm from [1], with an extension

to SCB for non-strictly proper systems [10]. The purpose

of this article is to introduce this procedure, and to explain

how it is implemented using Maple and the LinearAlgebra

package.

We believe that our procedure serves as a useful comple-

ment to available numerical tools. Symbolic transformation

to the SCB makes it possible to work directly on the SCB

representation of a system without first inserting numerical

values, thereby removing an obstacle to more widespread

use.

II. THE SPECIAL COORDINATE BASIS

In this section we give a review of the SCB. For readers

unfamiliar with the topic, the complexities of the SCB may

initially appear overwhelming. This is only a reflection,

however, of the inherent complexities that exist in general

multivariable LTI systems. For a less technical introduction

to the SCB, we recommend [11]. In the following exposition,

significant complexity is added to accommodate non-strictly

proper systems. To get an initial overview of the SCB, we

recommend ignoring the non-strictly proper case and the

complexities that follow from it.

Consider the LTI system

˙̂x = Âx̂+ B̂û, ŷ = Ĉx̂+ D̂û. (1)

where x̂ ∈ R
n is the state, û ∈ R

m is the input, and ŷ ∈ R
p

is the output. We assume without loss of generality that the

matrices [B̂T, D̂T]T and [Ĉ, D̂] are of full rank.

For simplicity in the non-strictly proper case (i.e., D̂ 6=
0), we assume in this section that the input and output are

partitioned as û = [uT0 , û
T

1]
T, and ŷ = [yT0 , ŷ

T

1]
T, where u0 and

y0 are of dimension m0, and furthermore that D̂ has the form

D̂ = diag(Im0
,0). Then we may write

ŷ =

[

y0

ŷ1

]

=

[

C0x̂+u0

Ĉ1x̂

]

, (2)

where C0 consists of the upper m0 rows of Ĉ, and Ĉ1 consists

of the remaining rows of Ĉ. The special form in (2) means

that the input-output map is partitioned to separate the direct-

feedthrough part from the rest. Note that by substituting u0 =
y0−C0x̂, we can write the system (1) in the alternative form

˙̂x = (Â−B0C0)x̂+ B̂
[

yT0 ûT1
]

T
, ŷ = Ĉx̂+ D̂û. (3)

where B0 consists of the left m0 columns of B̂. In the strictly

proper case, B0 and C0 are nonexistent.

By nonsingular transformation of the state, output, and

input, the system (1) can be transformed to the SCB. We use

the symbols x, y, and u to denote the state, output, and input

of the system transformed to SCB form. The transformations

between the original system (1) and the SCB are called Γ1,

Γ2, and Γ3, and we write x̂ = Γ1x, ŷ = Γ2y, and û = Γ3u.

The state x is partitioned as x = col(xa,xb,xc,xd), where

each component represents a particular subsystem described

in the next section. The output is partitioned as y =
col(y0,yd ,yb), where y0 is the original output y0 from (1),

yd is the output from the xd subsystem, and yb is the

output from the xb subsystem. The input is partitioned as

u = col(u0,ud ,uc), where u0 is the original input u0 from

(1), ud is the input to the xd subsystem, and uc is the input

to the xc subsystem. Because u0 appears first in both û and

u, Γ3 is on the form diag(Im0
, Γ̄3), for some nonsingular Γ̄3.

A. Structure of the SCB

Consider first the case when (1) is strictly proper. The

meaning of the four subsystems can be explained as follows:

• The xa subsystem represents the zero dynamics. This part

of the system is not directly affected by any inputs, nor does

it affect any outputs directly. It may be affected, however,

by the outputs yb and yd from xb and xd subsystems.

• The xb subsystem has a direct effect on the output yb, but

it is not directly affected by any inputs. It may be affected,

however, by the output yd from the xd subsystem. The xb

subsystem is observable from yb.

• The xc subsystem is directly affected by the input uc,

but it does not have a direct effect on any outputs. It may

also be affected by the outputs yb and yd from the xb and

xd subsystems, as well as the state xa. The xc subsystem is

controllable from uc.

• The xd subsystem represents the infinite zero structure.

This part of the system is directly affected by the input ud ,

and it also affects the output yd directly. The xd subsystem

can be further partitioned into md single-input single-output

(SISO) subsystems xi for i = 1, . . . ,md . Each of these subsys-

tems consist of a chain of integrators of length qi, from the

i’th element of ud to the i’th element of yd . Each integrator

chain may be affected at each stage by the output yd from

the xd subsystem, and at the lowest level of the integrator

chain (where the input appears), it may be affected by all the

states of the system. The xd subsystem is observable from

yd and controllable from ud .

For non-strictly proper systems the structure is the same,

except for the existence of the direct-feedthrough output y0,

which is directly affected by the input u0, and can be affected

by any of the states of the system. It can also affect all the

states of the system.

B. SCB Equations

The SCB representation of the system (1) is given by

ẋa = Aaaxa +Ba0y0 +Ladyd +Labyb, (4a)

ẋb = Abbxb +Bb0y0 +Lbdyd , (4b)

ẋc = Accxc +Bc0y0 +Lcdyd +Lcbyb +Acaxa +Bcuc, (4c)

ẋi = Aqi
xi +Bd0y0 +Lidyd

+Bqi
(ui +Eiaxa +Eibxb +Eicxc +Eidxd), (4d)

where i = 1, . . . ,md . The outputs are given by

y0 =C0axa +C0bxb +C0cxc +C0dxd +u0, (5a)

yi =Cqi
xi, i = 1, . . . ,md , (5b)

yb =Cbxb. (5c)

The qi-dimensional states xi make up the state xd =
col(x1, . . . ,xmd

); the scalar outputs yi make up the output

yd = col(y1, . . . ,ymd
); and the scalar inputs ui make up the

input ud = col(u1, . . . ,umd
). The matrices Aqi

, Bqi
, and Cqi

have the special structure

Aqi
=











0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 0











,Bqi
=











0
...

0

1











,Cqi
=
[

1 0 · · · 0
]

.

The pair (Abb,Cb) is observable, and the pair (Acc,Bc) is

controllable. In the strictly proper case, the input u0 and

output y0 are nonexistent, as are the matrices Ba0, Bb0, Bc0,

Bd0, C0a, C0b, C0c, and C0d .

C. Compact Form

We may write (4) as

ẋ = Ax+B
[

yT0 uTd uTc
]

T
, y =Cx+Du, (6)

with the SCB system matrices A, B, C, and D defined as

A =









Aaa LabCb 0 LadCd

0 Abb 0 LbdCd

Aca LcbCb Acc LcdCd

BdEda BdEdb BdEdc Add









B =









Ba0 0 0

Bb0 0 0

Bc0 0 Bc

Bd0 Bd 0









C =





C0a C0b C0c C0d

0 0 0 Cd

0 Cb 0 0



 D =





Im0
0 0

0 0 0

0 0 0



,

where Add = diag(Aq1
, . . . ,Aqmd

) + LddCd + BdEdd ,

Bd = diag(Bq1
, . . . ,Bqmd

), Cd = diag(Cq1
, . . . ,Cqmd

),

Ldd = [LT

1d , . . . ,L
T

mdd]
T, Eda = [ET

1a, . . . ,E
T

mda]
T, and similar

for Edb, Edc, and Edd .

To see the relationship between the system matrices Â, B̂,

Ĉ, and D̂ from (6) and the SCB matrices A, B, C, and D,

substitute x̂ = Γ1x, ŷ = Γ2y, and û = Γ3u in equation (3).

Also, note that since Γ3 is of the form diag(Im0
, Γ̄3), we can

make the substitution col(y0, û1) = Γ3col(y0,ud ,uc). We then

obtain the equations

ẋ = Γ−1
1 (Â−B0C0)Γ1x+Γ−1

1 B̂Γ3

[

yT0 uTd uTc
]

T
,

y = Γ−1
2 ĈΓ1x+Γ−1

2 D̂Γ3u.

Comparison with (6) then shows that A = Γ−1
1 (Â−B0C0)Γ1,

B = Γ−1
1 B̂Γ3, C = Γ−1

2 ĈΓ1, and D = Γ−1
2 D̂Γ3. In the strictly

proper case, the expression for A reduces to A = Γ−1
1 ÂΓ1.

D. Pre-Transformation of Non-Strictly Proper Systems

We assumed initially that the input and output vectors û

and ŷ have a special partitioning that separates the direct-

feedthrough part from the rest, as shown in (2). A strictly

proper system already has this form, but given a general

non-strictly proper system, a pre-transformation may have to

be applied to put the system in the required form. Suppose

that the we initially have a system with input ũ, output ỹ,

input matrix B̃, and output matrices C̃ and D̃. Then there

are nonsingular transformations U and Y such that ũ = Uû

and ỹ = Y ŷ, where û and ŷ have the structure required in

(2). The dimension m0 of u0 and y0 is the rank of D̃. The

matrices B̂, Ĉ, and D̂ are obtained from B̃, C̃, and D̃ by B̂ =
B̃U , Ĉ = Y−1C̃, and D̂ = Y−1D̃U . Our Maple procedure, in

addition to returning the matrices A, B, C, and D of the SCB

system, the transformations Γ1, Γ2, and Γ3 to transform (1)

to SCB form, and the dimension of each subsystem, returns

the transformations U and Y , to take a general non-strictly

proper system to the form required in (1).

E. Some Properties of the SCB

Some simple properties of the SCB that we shall refer to

later are the following: (i) The invariant zeros of the system

(1) are the eigenvalues of the matrix Aaa. Hence, the system

is minimum-phase if, and only if, the eigenvalues of Aaa are

located in the open left-half complex plane. (ii) The system

(1) is right-invertible if, and only if, the subsystem xb is non-

existent. (iii) The system (1) is left-invertible if, and only if,

the subsystem xc is non-existent. For a much more detailed

treatment of the properties of the SCB, see [6, Ch. 3].

III. MAPLE PROCEDURE

Our Maple procedure is invoked as follows:

A, B, C, D, G1, G2, G3, U, Y, dim := scb(Ai, Bi, Ci, Di);

The inputs Ai, Bi, Ci, and Di are system matrices describing

a general multivariable LTI system. The outputs A, B, C, and

D are the system matrices describing a corresponding SCB

system. The outputs G1, G2, and G3 are the transformation

matrices Γ1, Γ2, and Γ3 between the system (1) and the SCB.

The outputs U and Y are the pre-transformations that must

be applied to the system to put it in the form required of

(1), as described in Section II-D. Finally, the output dim is

a list of four integers representing the dimensions of the xa,

xb, xc, and xd subsystems, in that order. The Maple source

code is available from [12].

The modified Silverman algorithm for transformation to

the SCB is much too long to be presented in this article. For

the details of the algorithm, we refer to [1]. In the following

we shall present a broad outline of the steps of the algorithm,

and discuss issues that require particular attention in a

symbolic implementation. Much of the algorithm consists of

tedious but straightforward manipulation of matrices, which

is not discussed in this article.

Throughout the algorithm, we identify a large number of

variables that are linear transformations of the original state.

We keep track of these by storing the matrices that transform

the original state to the new variables. For example, the

temporary variable yi0, given by the expression yi0 =Cix̂, is

represented internally by a Matrix data structure containing

Ci. The procedure is not written to perform well on floating-

point data. For this reason, all floating-point elements of

the matrices passed to the procedure are converted to exact

fractions before any other operations are performed, using

Maple’s convert function.

A. Strictly Proper Case

The algorithm for strictly proper systems is implemented

as scbSP. The first part of this algorithm identifies the two

subsystems that directly influence the outputs, namely the

xb and xd subsystems, through a series of steps that are

repeated until the outputs are exhausted. The algorithm works

by identifying transformed input and output spaces such

that each input channel is directly connected to one output

channel by a specific number of inherent integrations.

Let the strictly proper system passed to the scbSP proce-

dure be represented by the state equations ˙̂x = Âx̂+ B̂û, ŷ =
Ĉx̂. In the first iteration we start with the output y10 = Ĉx̂, and

determine whether its derivative ẏ10 = ĈÂx̂+ ĈB̂û depends

on any part of the input û. If so, we use a transformation

S̄1 to separate out a linear combination of outputs and

inputs that are separated by one integration in a linearly

independent manner. This will create an integrator chain of

length one, as part of the xd subsystem. A transformed part

of the output derivative that is not directly influenced by

the input is denoted C̃1x̂, and is processed further. We use

a transformation φ̄1 to separate out any part of C̃1x̂ that is

linearly dependent on y10. This will create states that are part

of the xb subsystem. After the linearly dependent components

are separated out, the remaining part of the output derivative

is given the name y20. In the next iteration we process y20 in

the same fashion as y10, to identify integrator chains of length

two, and possibly further additions to the xb subsystem.

The algorithm continues in this fashion until the outputs are

exhausted.

1) Constructing Transformation Matrices: When imple-

menting these steps in Maple, the main part of each iteration

consists of constructing transformation matrices S̄i and φ̄i. In

particular, we are faced with the following problem at step i:

given a matrix Ci of dimension pi ×n and a matrix D̄i−1 of

dimension q̄i−1 ×m of maximal rank q̄i−1, let q̄i be the rank

of [D̄T

i−1,(CiB̂)
T]T, and let qi = q̄i − q̄i−1. Find a nonsingular

matrix S̄i such that

S̄i

[

D̄i−1

CiB̂

]

=





D̄i−1

D̂i

0



 , S̄i =

[

Iq̄i−1 0

Sia Si

]

,Sia =

[

0

Sib

]

,Si =

[

Si1

Si2

]

,

where D̂i is a qi ×m matrix of maximal rank, and where

Si1, Si2, and Sib are of dimensions qi × pi, (pi −qi)× pi, and

(pi −qi)× q̄i−1. The meaning of the various dimensions are

not important in this context. In general, S̄i is not unique.

The rank of the matrix [D̄T

i−1,(CiB̂)
T]T can be obtained

with the Rank procedure in the LinearAlgebra package. To

construct the matrix S̄i, the first observation we make is that,

since SibD̄i−1 + Si2CiB̂ = 0, the rows of the matrix [Sib,Si2]
must belong to the left null space of [D̄T

i−1,(CiB̂)
T]T. If

[D̄T

i−1,(CiB̂)
T]T has full rank q̄i−1 + pi, then Sib and Si2 are

empty matrices, and we may select Sia = 0 and Si1 = Ipi
.

Otherwise, we can obtain a set of linearly independent

basis vectors for the left null space of [D̄T

i−1,(CiB̂)
T]T, or

equivalently, for the right null space of its transpose, using

the NullSpace procedure of the LinearAlgebra package. The

transpose of the basis vectors can then be stacked to form

the matrix [Sib,Si2], which can be split up to form Sib

and Si2. However, the null space basis is not unique and,

moreover, the order in which the basis vectors are returned

by Maple is not consistent. This may cause our procedure

to produce different results on different executions with the

same matrices, which is undesirable. To avoid this, we first

stack the transpose of the basis vectors, and then transform

the resulting matrix to the unique reduced-row echelon

form, by using the ReducedRowEchelonForm procedure of the

LinearAlgebra package. Since the transformation involves a

finite number of row operations, the rows of the matrix in

reduced-row echelon form remain in the left null space.

Since S̄i should be a nonsingular matrix, the submatrix

Si must be nonsingular. This requires that Si2 has maximal

rank, which is confirmed as follows: if any of the rows of

Si2 are linearly dependent, a linear combination of rows in

[Sib,Si2] can be constructed to create a row vector v such

that v[D̄T

i−1,(CiB̂)
T]T = 0, where the rightmost pi columns

of v are zero. However, since the rows of D̄i−1 are linearly

independent, this implies that v = 0, which in turn implies

that [Sib,Si2] must have linearly dependent rows. Since this

is not the case, Si2 must have maximal rank.

We continue by constructing the matrix Si1. Nonsingu-

larity of Si requires that the rows of Si1 must be linearly

independent of the rows of Si2. One way to produce Si1 is to

choose its rows to be orthogonal to the rows of Si2, which

can be achieved by using a basis for the right null space of

Si2. However, since the matrix S̄i will be used to transform

the state of the original system, it is generally desirable

for this matrix to have the simplest possible structure. This

helps avoids unnecessary changes to the original states, and

thus it generally produces more appealing solutions. We

therefore construct Si1 by the following procedure: we start

by initializing Si1 as the identity matrix of dimension pi× pi.

We then create a reduced-row echelon form of Si2, and

iterate backwards over the rows of this matrix. For each

row, we search along the columns from the left until we

reach the leading 1 on that row. We then delete the row

in Si1 corresponding to the column with the leading 1. This

ensures that Si = [ST

i1,S
T

i2]
T is nonsingular, with Si1 consisting

of zeros except for a single element equal to 1 on each row.

The construction of S̄i is now easily completed.

At each step, we must also construct a nonsingular matrix

φ̄i. The problem of finding this matrix is analogous to

the problem of finding S̄i, and we therefore use the same

procedure. Finding the transformations S̄i and φ̄i constitute

the most important part of finding the states xb and xd .

After xb and xd are identified, finding the input and output

transformations Γ3 and Γ2 is straightforward, based on [1].

B. Constructing the xa and xc States

After finding the transformations from the original states

to the xb and xd states, and the transformations Γ3 and Γ2,

the next step is to find a transformation to a temporary state

vector xs that will be further decomposed into the states xa

and xc. The requirements on xs is that it must be linearly

independent of the already identified states xb and xd , so

that xs, xb, and xd together span the entire state space; and

that its derivative ẋs must only depend on xs itself, plus yb,

yd , and uc, because those are the only quantities allowed in

the derivatives of xa and xc in the strictly proper case.

Suppose that col(xb,xd) = Γbd x̂. The procedure for finding

xs is to start with a temporary state vector x0
s = Γ0

s x̂ that

is linearly independent of xb and xd . Hence, we select Γ0
s

such that [Γ0T
s ,ΓT

bd]
T is nonsingular. To do so in our Maple

procedure, we use the same technique as for finding Si1 based

on Si2 in Section III-A.1.

The derivative of x0
s , written in terms of the states x0

s , xb,

and xd , and the inputs uc and ud , can be written as

ẋ0
s = A0

[

x0T
s xTb xTd

]T
+B0

[

uTd uTc
]

T

= A0
s x0

s +A0
bxb +A0

dxd +B0
dud +B0

cuc,

for some matrices A0 = [A0
s ,A

0
b,A

0
d] and B0 = [B0

d ,B
0
c].

In our Maple procedure, we can easily calculate A0 =
Γ0

s Â([Γ0T
s ,ΓT

bd]
T)−1 and B0 = Γ0

s B̂Γ3, and then extract the

matrices A0
s , A0

b, A0
c , B0

d , and B0
c . To do so, we use the

MatrixInverse procedure of the LinearAlgebra package.

To conform with the SCB, we need to modify x0
s to

eliminate the input ud in ẋ0
s . To eliminate ud , we create a tem-

porary state vector xd0 = Γd0x̂, consisting of the lowermost

level of each integrator chain in the xd subsystem (that is, the

point where the input enters the integrator chain). According

to (4), we then have ẋd0 = ud +Ad0[x
0T
s ,xTb ,x

T

d]
T, for some

matrix Ad0. Therefore, by defining a new temporary state

x1
s = x0

s −B0
dxd0, we have ẋ1

s = (A0 −B0
dAd0)[x

0T
s ,xTb ,x

T

d] +
B0

cuc. Hence, the derivative of the new temporary state vector

x1
s is independent of ud , bringing us one step closer to

obtaining xs. The elimination procedure is continued in a

similar fashion, as described in [1], until we obtain a state

xs such that ẋs depends only on xs, yb, yd , and uc.

The final step is to decompose xs into a subsystem xa

that is unaffected by the input uc, and a subsystem xc

that is controllable from uc. We do this by transforming

xs to the Kalman controllable canonical form. First, we

find the derivative ẋs = Assxs + Asbxb + Asdxd + Bscuc, for

some matrices Ass, Asb, Asd , and Bsc. We then compute the

controllability matrix Cctr = [Bsc,AssBsc, . . . ,A
ns−1
ss Bsc], where

ns is the dimension of xs. To transform xs to the Kalman con-

trollable canonical form, we define col(xa,xc) = [T2,T1]
−1xs,

where the columns of T1 span the column space of Cctr and

the columns of T2 are orthogonal to the columns of T1. We

obtain a set of linearly independent basis vectors for the

column space of Cctr using the ColumnSpace procedure from

the LinearAlgebra package. To create T1, we first create a

matrix by stacking the transpose of the basis vectors. T1 is

then chosen as the transpose of the reduced-row echelon form

of that matrix. We create T2 in a similar fashion, based on

a linearly independent set of basis vectors for the left null

space of Cctr, which is orthogonal to the column space of

Cctr. We can now compute the transformation matrix Γ1.

C. Non-Strictly Proper Case

To handle the non-strictly proper case, the first step is to

find the pre-transformation matrices U and Y , described in

Section II-D. Suppose that the matrices passed to the proce-

dure scb are Â, B̃, C̃, and D̃. We need to find nonsingular

U and Y such that, according to Section II-D, B̂ = B̃U , Ĉ =
Y−1C̃, and D̂ =Y−1D̃U , where D̂ is of the form diag(Im0

,0).
The rank m0 of D̃ is found using the Rank procedure. Let

Y−1 = [YT

1 ,YT

2]T, where Y1 has m0 rows. Then we have the

equations Y−1D̃U = [(Y1D̃U)T,(Y2D̃U)T]T, where Y1D̃U =
[Im0

,0] and Y2D̃U = 0. To solve these equations, we choose

the rows of Y2 from the left null space of D̃, using NullSpace

and ReducedRowEchelonForm as before; and we select Y1

such that [YT

1 ,YT

2]T is nonsingular, using the same procedure

as for finding Si1 given Si2 in Section III-A.1. This leaves

us to solve the equation Y1D̃U = [Im0
,0] with respect to

some nonsingular U . Let U−1 = [UT

1 ,UT

2]T such that U1 has

m0 rows. We select U1 = Y1D̃, and we select U2 such that

[UT

1 ,UT

2]T is nonsingular, by the same procedure as before. It

is then straightforward to confirm that Y1D̃U = [Im0
,0]. We

can now calculate the matrices B̂, Ĉ, and D̂ that conform

with the required structure of (1).
Let B0 consist of the left m0 columns of B̂, and let B̂1

consist of the remaining columns of B̂. Similar to (3), we

can write the system equations (1) as

˙̂x = (Â−B0C0)x̂+B0y0 + B̂1û1, (7a)

y0 =C0x̂+u0, ŷ1 = Ĉ1x̂. (7b)

Suppose we obtain the SCB form of the strictly proper

system described by the matrices (Â−B0C0), B̂1, and Ĉ1,

by invoking the procedure scbSP, and suppose the transfor-

mation matrices returned for this system are Γ̄1, Γ̄2, and Γ̄3.

Substituting x̂ = Γ̄1x, ŷ1 = Γ̄2[y
T

d ,y
T

b]
T, and û1 = Γ̄3[u

T

d ,u
T

c]
T

in (7) yields

ẋ = Γ̄−1
1 (Â−B0C0)Γ̄1x+ Γ̄−1

1 B0y0 + Γ̄−1
1 B̂1Γ̄3

[

uTd uTc
]

T
,

y0 =C0Γ̄1x+u0,
[

yTd yTb
]

T
= Γ̄−1

2 Ĉ1Γ̄1x.

It is easily confirmed that this system conforms to the

SCB, by defining A = Γ̄−1
1 (Â−B0C0)Γ̄1, B = Γ̄−1

1 [B0, B̂1Γ̄3],
C = [CT

0 ,(Γ̄
−1
2 Ĉ1)

T]TΓ̄1, and D = diag(Im0
,0). Defining the

transformations for the non-strictly proper system as Γ1 =
Γ̄1, Γ2 = diag(Im0

, Γ̄2), and Γ3 = diag(Im0
, Γ̄3), we obtain

A = Γ−1
1 (Â−B0C0)Γ1, B = Γ−1

1 B̂Γ3, C = Γ−1
2 ĈΓ1, and D =

Γ−1
2 D̂Γ3, which are the proper expressions relating the ma-

trices Â, B̂, Ĉ, and D̂ to the SCB matrices (see Section II-C).

IV. EXAMPLE: LINEAR SINGLE-TRACK MODEL

A widely used model for the lateral dynamics of a car

is the linear single-track model (see, e.g., [13]). For a car

on a horizontal surface, this model is described by the

equations v̇y =
1
m
(Ff +Fr)− rvx, ṙ = 1

J
(lfFf − lrFr), where vy

is the lateral velocity at the center of gravity; r is the yaw

rate (angular rate around the vertical axis); m is the mass;

J is the moment of inertia; lf and lr are the longitudinal

distances from the center of gravity to the front and rear

axles; and Ff and Fr are the lateral road-tire friction forces

on the front and rear axles. The longitudinal velocity vx is

assumed to be positive and to vary slowly enough compared

to the lateral dynamics that it can be considered a constant.

The friction forces can be modeled by the equations Ḟf =
cf
Tr
(δf−

vy

vx
− lf

r
vx
)− 1

Tr
Ff and Ḟr =

cr
Tr
(−

vy

vx
+ lr

r
vx
)− 1

Tr
Fr, where

δf is the front-axle steering angle; cf and cr are the front- and

rear-axle cornering stiffnesses; and Tr is a speed-dependent

tire relaxation constant (see, e.g., [14]). In modern cars

with electronic stability control, the main measurements that

describe the lateral dynamics are the yaw rate r and the

lateral acceleration ay =
1
m
(Ff +Fr). Considering δf as the

input, the system is described by

Â =











0 −vx
1
m

1
m

0 0
lf
J

− lr
J

− cf
Trvx

− lfcf
Trvx

− 1
Tr

0

− cr
Trvx

lrcr
Trvx

0 − 1
Tr











, B̂ =









0

0
cf
Tr

0









,

Ĉ =

[

0 1 0 0

0 0 1
m

1
m

]

, D̂ =

[

0

0

]

.

If we pass these matrices to our Maple procedure, we obtain

SCB system matrices

A =













− 1
Tr

1 0
Trlfm

cr(lf+lr)

− lrcr(lf+lr)
vxTrJ

0 1
lfm

cr(lf+lr)

− cr(lf+lr)
TrJ

0 0 1
vx

cr(lrcr−lfcf)(lf+lr)
mT 2

r vxJ
0 − cf+cr

mTr
− 1

Tr













, B =









0

0

0

1









,

C =

[

0 0 0 1

1 0 0 0

]

, D =

[

0

0

]

.

The dimension list dim returned by the procedure is 0,3,0,1,

meaning that the first three states belong to the xb sub-

system, and the last state is an integrator chain of length

1, belonging to the xd subsystem. Inspection of the SCB

matrices immediately reveals that the system is observable,

since both the xb and xd subsystems are always observable.

The system is left-invertible, since the state xc is non-existent,

meaning that the steering angle can be identified from the

outputs. The system is not right-invertible, since it has an xb

subsystem, reflecting the obvious fact that the yaw rate and

lateral acceleration cannot be independently controlled from

a single steering angle. There exists no state feedback that

keeps the outputs identically zero, since the system has no

zero dynamics subsystem xa.

If we add rear-axle steering by augmenting the B̂ matrix

with a column [0,0,0, cr
Tr
]T, the Maple procedure returns the

SCB system matrices

A =











0 1 −vx 0

− cf+cr

mTrvx
− 1

Tr

lrcr−lfcf
mTrvx

0

0 0 0 1
lrcr−lfcf

JTrvx
0

l2
f cf+l2

r cr

JTrvx
− 1

Tr











, B =









0 0

1 0

0 0

0 1









,

C =

[

0 1 0 0

0 0 1 0

]

, D =

[

0 0

0 0

]

,

with dimensions 1,0,0,3. This means that the first state of the

system belongs to the zero dynamics xa, and the remaining

three states belong to the xd subsystem. The xd subsystem

consists of two integrator chains; one of dimension one,

and one of dimension two. We conclude that the system is

both right- and left-invertible, due to the lack of xb and xc

subsystems. Because Aaa = 0, we see that the system has a

zero at the origin. Hence, the relationship between the inputs

and the outputs is non-minimum phase.

V. EXAMPLE: DC MOTOR WITH FRICTION

According to [15], a DC motor process can be described

by the equations Ω̇ = ω , Jω̇ = u − F , where Ω is the

shaft angular position, ω is the angular rate, u is the DC

motor torque, F is a friction torque, and J = 0.0023kgm2

is the motor and load inertia. The friction torque can

be modeled by the dynamic LuGre friction model F =
σ0z + σ1ż + α2ω , ż = ω − σ0z|ω|/ζ (ω), where ζ (ω) =
α0 +α1 exp(−(ω/ω0)

2). Numerical values for the friction

parameters are σ0 = 260.0Nm/rad, σ1 = 0.6Nms/rad, α0 =
0.28Nm, α1 = 0.05Nm, α2 = 0.176Nms/rad, and ω0 =
0.01rad/s. The system can be viewed as consisting of

a linear part with a nonlinear perturbation σ0z|ω|/ζ (ω).
Assuming that only the shaft position Ω is measured, a

nonlinear observer can be designed for this system by using

the time-scale assignment techniques from [16]. To do so,

it is necessary to find the SCB form of the system, with the

nonlinear perturbation σ0z|ω|/ζ (ω) considered as the sole

input. The original system is described by the matrices

Â =





0 1 0

0 − 1
J
(α2 +σ1) − 1

J
σ0

0 1 0



 , B̂ =





0
1
J
σ1

−1



 , (8)

Ĉ = [1,0,0], and D̂ = 0. Inserting numerical values and using

the Linear Systems Toolkit [9] yields the SCB matrices

A ≈





−433.3 −592.7 0

0 0 1

−1.1 ·105 −1.5 ·105 95.9



 , B =





0

0

1



 ,

C = [0,1,0], and D = 0, where the first state belongs to

the zero dynamics subsystem xa, and the remaining two

states consist of an integrator chain of length two, in the

xd subsystem. As suggested by the large elements in the

system matrices, the problem is poorly conditioned, and we

find that we require very large gains to stabilize the system.

Using our Maple procedure, we obtain the SCB matrix

A =

[

−σ0/σ1 −σ0(σ0J−σ1α2)/σ3
1 0

0 0 1
−σ0/J −σ0(σ0J−σ1α2)/(Jσ2

1) (σ0J−σ1α2−σ2
1)/(Jσ1)

]

.

This reveals that a source of the conditioning problem is

powers of the small parameter σ1 appearing in the denomi-

nators, even though it does not appear in any denominators

in (8). In particular, we see that σ1 acts as a small regular

perturbation that results in singularly perturbed zero dynam-

ics, which happens when a regular perturbation reduces a

system’s relative degree [17]. Setting σ1 = 0 results in a

dramatically different structure, with the SCB consisting of a

single integrator chain of length three. Proceeding with the

observer gain selection based on this system, we obtain good

results without using high gains.

VI. CONCLUDING REMARKS

The preceding example shows that the symbolic form of

the SCB can be used to reveal structural bifurcations in linear

systems due to parameter changes. Systematic ways of using

symbolic representations of the SCB for this purpose is a

topic of future research. Future research will also investigate

application of symbolic SCB representations to topics where

the SCB has previously been applied, such as squaring down

of non-square systems and asymptotic time-scale assignment.

It is possible to transform the xc subsystem so that the

influence of xa is matched with the input uc. Future versions

will perform the extra step necessary to achieve this.

REFERENCES

[1] P. Sannuti and A. Saberi, “Special coordinate basis for multivariable
linear systems—finite and infinite zero structure, squaring down and
decoupling,” Int. J. Contr., vol. 45, no. 5, pp. 1655–1704, 1987.

[2] A. Saberi, B. M. Chen, and P. Sannuti, Loop Transfer Recovery:

Analysis and Design. London: Springer, 1993.
[3] A. Saberi, P. Sannuti, and B. M. Chen, H2 Optimal Control. Prentice

Hall, 1995.
[4] B. M. Chen, Robust and H∞ Control. London: Springer, 2000.
[5] B. M. Chen, Z. Lin, and Y. Shamash, Linear Systems Theory: A

Structural Decomposition Approach. Boston: Birkhäuser, 2004.
[6] A. Saberi, A. A. Stoorvogel, and P. Sannuti, Filtering Theory. Boston:

Birkhäuser, 2006.
[7] L. M. Silverman, “Inversion of multivariable linear systems,” IEEE

Trans. Automat. Contr., vol. 14, no. 3, pp. 270–276, 1969.
[8] D. Chu, X. Liu, and R. C. E. Tan, “On the numerical computation

of structural decomposition in systems and control,” IEEE Trans.

Automat. Contr., vol. 47, no. 11, pp. 1786–1799, 2002.
[9] X. Liu, B. M. Chen, and Z. Lin, “Linear systems toolkit in Matlab:

structural decompositions and their applications,” J. Contr. Theor.

Appl., vol. 3, pp. 287–294, 2005.
[10] A. Saberi and P. Sannuti, “Squaring down of non-strictly proper

systems,” Int. J. Contr., vol. 51, no. 3, pp. 621–629, 1990.
[11] M. C. Berg, “Introduction to a special coordinate basis for multivari-

able linear systems,” IEE Proc. Contr. Theor. Appl., vol. 145, no. 2,
pp. 204–210, 1998.

[12] H. F. Grip and A. Saberi, “Maple source code for structural decomposi-
tion of linear multivariable systems, version 0.1,” 2009, available from:
http://www.itk.ntnu.no/ansatte/Grip Havard.Fjar/sw/scb v01.mpl.

[13] U. Kiencke and L. Nielsen, Automotive Control Systems. Springer,
2000.

[14] H. B. Pacejka, Tire and Vehicle Dynamics, 2nd ed. Butterworth-
Heinemann, 2006.

[15] C. Canudas de Wit and P. Lischinsky, “Adaptive friction compensation
with partially known dynamic friction model,” Int. J. Adapt. Contr.

Signal Process., vol. 11, pp. 65–80, 1997.
[16] A. Saberi and P. Sannuti, “Observer design for loop transfer recovery

and for uncertain dynamical systems,” IEEE Trans. Automat. Contr.,
vol. 35, no. 8, pp. 878–897, 1990.

[17] S. Sastry, J. Hauser, and P. Kokotovic, “Zero dynamics of regularly
perturbed systems may be singularly perturbed,” Syst. Contr. Lett.,
vol. 13, no. 4, pp. 299–314, 1989.

