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Abstract— We present an observer for estimating position,
velocity, attitude, and gyro bias, by using inertial measure-
ments of accelerations and angular velocities, magnetometer
measurements, and satellite-based measurements of position
and (optionally) velocity. The design proceeds in two stages: in
Stage I, an attitude and gyro bias estimator is designed based
on an unmeasured signal. In Stage II, that design is recovered
using measured signals only, by combining it with a position
and velocity estimator. We prove global exponential stability of
the estimation error and test the design using realistic flight
simulation.

I. INTRODUCTION

Navigation is the task of determining an object’s position,
velocity, or attitude by combining information from different
sources. The available information varies depending on the
application; however, the combination of satellite receivers,
such as GPS, and inertial instruments (i.e., accelerometers and
rate gyroscopes) is found in many applications, often together
with additional sensors such as altimeters and magnetome-
ters. The integration of satellite and inertial measurements,
referred to as GNSS/INS integration, has been studied for
several decades [1]–[3]. Typically, the integration is based
on an extended Kalman filter (EKF).

Driven by advances in sensor technology, low-cost satellite
receivers and inertial instruments are appearing in an increas-
ingly wide range of products, including mobile phones, cars,
and small unmanned vehicles. This development has spurred
an interest in constructing observers with lower computa-
tional complexity than the EKF by using tools from nonlinear
control and estimation theory. An advantage of such designs
is that they often come with global or semiglobal stability
proofs.

Most of the effort on navigation observers has been di-
rected toward the problem of estimating the attitude, usually
based on an explicit attitude measurement or the comparison
of body-fixed vector measurements with reference vectors in
a reference coordinate system [4]–[9]. A survey of attitude
estimation methods is given by Crassidis, Markley, and
Cheng [10]. Vik and Fossen [11] studied the GNSS/INS
integration problem including attitude, position, velocity, and
inertial sensor bias, with the assumption that the attitude
could be measured independently from the position and
velocity. Hua [12] did not make this assumption, and con-
structed two algorithms for estimating attitude and velocity
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based only on GNSS velocity together with inertial and
magnetometer measurements.

A. Topics of This Paper

In this paper we consider a problem similar to that of
Hua [12]—specifically, the estimation of attitude, position,
and velocity by integrating GNSS, inertial, and magnetometer
data. Unlike Hua, however, we also consider estimation of
gyro bias, which is prevalent in low-cost inertial sensors
and typically included in EKF-based solutions. Moreover,
we present stability results that guarantee global exponen-
tial convergence. To the authors’ knowledge, the literature
contains no similarly strong stability results for GNSS/INS
integration with gyro bias estimation.

The attitude that we seek to estimate is represented by a
rotation matrix R, which belongs to the special orthogonal
group SO(3). Nevertheless, we do not restrict our estimate R̂
to SO(3), but rather allow it to develop with nine degrees of
freedom in the transient phase before it converges to R. This
type of over-parameterization avoids well-known topological
obstructions that prevent global results on SO(3), but it has
the drawback of not guaranteeing an orthogonal attitude
estimate at all times. This drawback can be addressed by
post-orthogonalizing and regularizing the estimate, a strategy
that is discussed, for example, by Batista, Silvestre, and
Oliveira [13], [14], who considered globally exponentially
stable attitude estimation using observers similar to the
attitude part of our observer.

Our overall design is based on a general design methodol-
ogy for interconnected nonlinear and linear systems, recently
presented by the some of the authors [15], [16]. In these
papers, a simplified version of the GNSS/INS integration
algorithm, without gyro bias estimation, was used as an
application example.

B. Notation and Preliminaries

For a vector or matrix X , X ′ denotes its transpose. The
operator ‖ · ‖ denotes the Euclidean norm for vectors and
the Frobenius norm for matrices. For a symmetric positive-
semidefinite matrix A, the minimum eigenvalue is denoted
by λmin(A). The skew-symmetric part of a square matrix A
is denoted by Pa(A) = 1

2 (A−A′). For a vector x ∈ R3, S(x)
denotes the skew-symmetric matrix

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 .



The linear function vex(A) such that S(vex(A)) = A and
vex(S(x)) = x is well-defined for all 3× 3 skew-symmetric
matrix arguments. The function sat(·) denotes a component-
wise saturation of its vector or matrix argument to the interval
[−1,1]. We denote by In the n×n identity matrix and by 0m×n
the m×n matrix with zero elements.

Throughout the paper, we consider all dynamical systems
to be initialized at time t = 0. All time-varying signals
are assumed to be at least piecewise continuous. We omit
function arguments when possible without confusion.

II. PROBLEM FORMULATION

We operate with two different coordinate frames, namely,
the Earth-fixed North-East-Down frame (NED), and the body-
fixed frame (BODY). The superscripts n and b are used
to distinguish between these frames. The dynamics of the
position, velocity, and attitude is described by the equations

ṗn = vn, (1a)
v̇n = an +gn, (1b)

Ṙ = RS(ωb), (1c)

where pn and vn are position and velocity vectors in NED;
R ∈ SO(3) is a rotation matrix from BODY to NED; ωb is
the angular velocity of the BODY frame relative to the NED
frame, decomposed in BODY coordinates; gn is the gravity
vector in NED; and an is the proper acceleration in NED.1

Our goal is to estimate the position pn, velocity vn, and
attitude R with exponential convergence rate. To achieve this
goal, we shall also introduce an auxiliary bias estimate.

A. Measurements

We assume that the sensor suite consists of a GNSS
receiver, 6-axis inertial instruments, and a 3-axis magne-
tometer (or another equivalent vector measurement). These
instruments provide the following information:
• measurements of the NED position pn and velocity vn

(in Section III-D we consider the case when only pn is
available)

• a biased angular velocity measurement ωb
m = ωb + b,

where b represents the bias
• an acceleration measurement ab, which is related to an

by an = Rab

• a magnetometer measurement mb, which is related to
the Earth’s magnetic field mn at the current location by
mn = Rmb

Although we will not perform any explicit differentiations,
we assume that the derivative ȧb of the BODY acceleration is
well-defined and bounded. Naturally, we can also assume that
ab, mb, and ωb are bounded, and that ‖mb‖ is lower-bounded
by a positive constant. We make the following assumption
regarding the gyro bias.

Assumption 1: The gyro bias b is constant, and there
exists a known constant Mb > 0 such that ‖b‖ ≤Mb.

1In this paper we assume that the NED frame is an inertial coordinate
frame. In high-precision applications, the rotation of the Earth must also be
accounted for in the kinematic equations.

We make the following standard assumption to ensure
uniform observability (see, e.g., [6], [12]).

Assumption 2: There exists a constant cobs > 0 such that,
for all t ≥ 0, ‖mb×ab‖ ≥ cobs.

III. OBSERVER

Our design strategy is divided into two stages. In the first
stage, we construct an observer for R and b (but not pn

and vn), which is based on comparing vector measurements
in the BODY coordinate system with reference vectors in
the NED coordinate system; specifically, mb is compared to
mn, and ab is compared to an. This observer is not directly
implementable because an is not available as a measurement.
In the second stage, we therefore recover the design using
only measured signals, by constructing an observer for pn

and vn, as well as an, that is combined with the observer
designed in the first stage. This two-stage technique is based
on the theory of Grip, Saberi, and Johansen on observer
design for interconnected systems [15], [16].

A. Stage I: Observer for R and b

Let us consider the problem of estimating the attitude R
and gyro bias b, assuming for the time being that an is
available as a measurement. Since mn = Rmb and an = Rab,
we can base the design on comparing mb with mn and ab

with an. Specifically, we design an observer

˙̂R = R̂S(ωb
m− b̂)+σKPJ, (2a)

˙̂b = Proj(b̂,−kI vex(Pa(R̂′sKPJ))). (2b)

where R̂s = sat(R̂). In the observer (2), J is a stabilizing
output injection term inspired by the TRIAD algorithm [17],
defined as

J(ab,an,mb,mn, R̂) = AnA′b− R̂AbA′b, (3a)

Ab =
[
mb mb×ab mb× (mb×ab)

]
, (3b)

An =
[
mn mn×an mn× (mn×an)

]
. (3c)

The matrix KP is a symmetric positive-definite gain matrix,
and kI is a positive scalar gain. The scalar σ ≥ 1 is a scaling
factor that will be tuned in order to achieve stability. Finally,
Proj(·, ·) denotes a parameter projection [18, App. E], which
ensures that ‖b̂‖ remains smaller than some design constant
Mb̂ > Mb. The details of the parameter projection are given
in the Appendix.

Defining the estimation errors R̃ = R− R̂ and b̃ = b− b̂,
we obtain the error dynamics

˙̃R = RS(ωb)− R̂S(ωb
m− b̂)−σKPJ, (4a)

˙̃b =−Proj(b̂,−kI vex(Pa(R̂′sKPJ))), (4b)

which satisfies the following preliminary lemma.
Lemma 1: For any given choice of KP and kI , there exists

a σ∗ ≥ 1 such that, for all σ ≥ σ∗, the origin of the error
dynamics (4) is exponentially stable with all initial conditions
satisfying ‖b̂(0)‖ ≤Mb̂ contained in the region of attraction.

Proof: Noting that

RS(ωb)− R̂S(ωb
m− b̂) = R̃S(ωb)−RS(b̃)+ R̃S(b̃),



we can rewrite the error dynamics as

˙̃R = R̃S(ωb + b̃)−RS(b̃)−σKPJ, (5a)
˙̃b =−Proj(b̂,−kI vex(Pa(R̂′sKPJ))), (5b)

which is locally Lipschitz, uniformly in time (see Lemma
3 in the Appendix regarding the projection). Define the
function P = 1

2‖b̂‖2. The derivative along the trajectories of
the system is Ṗ = b̂′Proj(b̂,−kI vex(Pa(R̂′sKPJ))), for which
we have that ‖b̂‖ ≥ Mb̂ =⇒ Ṗ ≤ 0 (see Lemma 3 in the
Appendix). Hence, ‖b̂‖ cannot escape the region defined by
‖b̂‖ ≤Mb̂ for any solution of the system. We shall study the
trajectories of the function

V (t, R̃, b̃) =
1
2
‖R̃‖2− ` tr(S(b̃)R′R̃)+

`σ
kI
‖b̃‖2,

where 0<`≤ 1 is yet to be determined, using the knowledge
that ‖b̂‖ ≤Mb̂, which implies ‖b̃‖ ≤Mb̃ := Mb +Mb̂. Using
the properties that (for arbitrary X ∈ R3×3 and x ∈ R3)
| tr(X)| ≤

√
3‖X‖, ‖RX‖ = ‖X‖, and ‖S(x)‖ =

√
2‖x‖, we

have
V ≥ 1

2
‖R̃‖2− `

√
6‖b̃‖‖R̃‖+ `

kI
‖b̃‖2,

and hence V is positive definite if ` < 1/(3kI). It follows that
there are positive constants α1 and α2 such that α1(‖R̃‖2 +
‖b̃‖2)≤V ≤ α2(‖R̃‖2+‖b̃‖2). The derivative of V along the
trajectories of (5) satisfies

V̇ = tr(R̃′ ˙̃R)− ` tr(S( ˙̃b)R′R̃)− ` tr(S(b̃)Ṙ′R̃)

− ` tr(S(b̃)R′ ˙̃R)+
2`σ
kI

b̃′ ˙̃b

= tr(R̃′(R̃S(ωb + b̃)−RS(b̃)))−σ tr(R̃′KPJ)

+ ` tr(S(Proj(b̂,−kI vex(Pa(R̂′sKPJ))))R′R̃)

− ` tr(S(b̃)S′(ωb)R′R̃)

− ` tr(S(b̃)R′R̃S(ωb + b̃))

+ ` tr(S(b̃)R′RS(b̃))+ `σ tr(S(b̃)R′KPJ)

− 2`σ
kI

b̃′Proj(b̂,−kI vex(Pa(R̂′sKPJ))).

We consider the terms above more closely, starting
with the second term. Since An = RAb, we can write
J = R̃AbA′b. We then have tr(R̃′KPJ) = tr(R̃′KPR̃AbA′b) ≥
λmin(AbA′b) tr(R̃′KPR̃) = λmin(AbA′b) tr(R̃R̃′KP) ≥
λmin(AbA′b)λmin(KP)‖R̃‖2 (see, e.g., [19]). Using
Assumption 2 it can be shown that there is a c > 0
such that λmin(AbA′b) ≥ c2 (see [15], [16]). Hence,
tr(R̃′KPJ)≥ λmin(KP)c2‖R̃‖2.

Using the property that tr(R̃′R̃S(x)) = 0 (due to symmetry
of R̃′R̃; see, e.g., [6]), we can bound the first term by√

6‖R̃‖‖b̃‖. Similarly, we can bound the fourth term by
2
√

3`Mω‖R̃‖‖b̃‖, where Mω is a bound on ‖ωb‖, and the
fifth term by 2

√
3`(Mω +Mb̃)‖R̃‖‖b̃‖. Using the additional

properties that ‖Proj(b̂,x)‖ ≤ ‖x‖ (Lemma 3 in the Ap-
pendix), ‖vex(Pa(X))‖ ≤ 1√

2
‖X‖, ‖R̂s‖ ≤ 3, and ‖J‖ =

‖R̃AbA′b‖ ≤ ‖R̃‖‖Ab‖2, we can bound the third term by
3
√

3`kI‖KP‖M2
A‖R̃‖2, where MA is a bound on ‖Ab‖.

For the sixth term, we have that tr(S(b̃)R′RS(b̃)) =
− tr(S′(b̃)S(b̃)) = −2‖b̃‖2, where we have used the
property that tr(S′(x)S(y)) = 2x′y (e.g., [6]). For the eight
term, we have that −b̃′Proj(b̂,−kI vex(Pa(R̂′sKPJ))) ≤
kI b̃′ vex(Pa(R̂′sKPJ)) = 1

2 kI tr(S′(b̃)Pa(R̂′sKPJ)) =
1
2 kI tr(S′(b̃)R̂′sKPJ) = − 1

2 kI tr(S(b̃)R̂′sKPJ), where we
have used the properties that −b̃′Proj(b̂,x) ≤ −b̃′x
(Lemma 3 of the Appendix) and tr(S(x)X) =
tr(S(x)Pa(X)) (e.g., [6]). Considering the seventh
and eight term together, and using the fact that
‖R − R̂s‖ ≤ ‖R̃‖ we therefore have `σ tr(S(b̃)R′KPJ) −
2`σ/kI b̃′Proj(b̂,−kI vex(Pa(R̂′sKPJ))) ≤ `σ tr(S(b̃)R′KPJ)−
`σ tr(S(b̃)R̂′sKPJ)≤

√
6`σ‖KP‖Mb̃M2

A‖R̃‖2.
Taking all these inequalities together, we can write

V̇ ≤−σλmin(KP)c2‖R̃‖2 +
√

6‖R̃‖‖b̃‖
+2
√

3`Mω‖R̃‖‖b̃‖+2
√

3`(Mω +Mb̃)‖R̃‖‖b̃‖
+3
√

3`kI‖KP‖M2
A‖R̃‖2−2`‖b̃‖2

+
√

6`σ‖KP‖Mb̃M2
A‖R̃‖2

=−
[
‖R̃‖
‖b̃‖

]′ [σq1− `q2− `σq3 −q4− `q5
−q4− `q5 2`

][
‖R̃‖
‖b̃‖

]
,

for some constants q1, . . . ,q5 that are independent of ` and σ .
Let ` be sufficiently small that q1−`q3 ≥ r1 for some r1 > 0,
and note that ` is chosen independently from σ . Then

V̇ ≤−
[
‖R̃‖
‖b̃‖

]′ [σr1− `q2 −q4− `q5
−q4− `q5 2`

][
‖R̃‖
‖b̃‖

]
.

The first-order principal minor of the above matrix is positive
if σ is chosen large enough that σ > `q2/r1. The second-
order principal minor is positive if σ is chosen large enough
that σ > ((q4+`q5)

2+2`2q2)/(2`r1). Hence, for sufficiently
large σ , there exists an α3 > 0 such that V̇ ≤ −α3(‖R̃‖2 +
‖b̃‖2). By invoking the comparison lemma [20, Lemma 3.4],
the exponential stability result follows.

B. Stage II: Recovery Using Measured Signals

As discussed above, the observer (2) cannot be directly
implemented, because it depends on the unmeasured variable
an. However, according to (1a) and (1b), an can be viewed
as an input to a linear system with states vn and pn, from
which the outputs pn and vn are available. This results in
a cascaded system structure, illustrated in Fig. 1, that has
previously been studied by Grip et al. in a general context
[15], [16]. Following the design methodology of Grip et al.,
we obtain an observer for pn and vn, as well as the NED
acceleration an, given by

˙̂pn = v̂n +Kpp(pn− p̂n)+Kpv(vn− v̂n), (6a)
˙̂vn = ân +gn +Kvp(pn− p̂n)+Kvv(vn− v̂n), (6b)

ξ̇ =−σKPĴab +Kξ p(pn− p̂n)+Kξ v(v
n− v̂n), (6c)

ân = R̂ab +ξ , (6d)

where Ĵ = J(ab, ân,mb,mn, R̂), and where Kpp, Kpv, Kvp, Kvv,
Kξ p, and Kξ v are observer gains yet to be determined. The



Ṙ = RS(w)

ḃ = 0

ṗn = vn

v̇n = an +gn

an = Rab (pn,vn)

Fig. 1. Illustration of system structure

observer (2) is implemented with J replaced by Ĵ:

˙̂R = R̂S(ωb
m− b̂)+σKPĴ, (7a)

˙̂b = Proj(b̂,−kI vex(Pa(R̂′sKPĴ))). (7b)

The observer (6), (7) depends only on known quantities.

C. Main Result

In this section we present our main stability result for the
observer (6), (7). Defining the error variables p̃n = pn− p̂n

and ṽn = vn− v̂n, we obtain the error dynamics

˙̃pn = ṽn−Kpp p̃n−Kpvṽn, (8a)
˙̃vn = ãn−Kvp p̃n−Kvvṽn, (8b)

where ãn = an− ân. To find the dynamics of ãn, we note that
ȧn = Ṙab +Rȧb = RS(ωb)ab +Rȧb and that

˙̂an = ˙̂Rab + R̂ȧb + ξ̇
= (R̂S(ωb

m− b̂)+σKPĴ)ab + R̂ȧb

−σKPĴab +Kξ p(pn− p̂n)+Kξ v(v
n− v̂n)

= R̂S(ωb
m− b̂)ab + R̂ȧb +Kξ p(pn− p̂n)+Kξ v(v

n− v̂n).

Hence,
˙̃an =−Kξ p p̃n−Kξ vṽn + d̃, (9)

where d̃ = (RS(ωb)− R̂S(ωb
m− b̂))ab +(R− R̂)ȧb. Defining

the error variable w̃ = [(p̃n)′,(ṽn)′,(ãn)′]′, we can write the
error dynamics (8), (9) more compactly as

˙̃w = (A−KC)w̃+Bd̃, (10)

where

A =

[
06×3 I6
03×3 03×6

]
, B =

[
06×3

I3

]
,

C =
[
I6 06×3

]
, K =

Kpp Kpv
Kvp Kvv
Kξ p Kξ v

 .
The dynamics of the errors R̃ and b̃ becomes the same as
(4), with J replaced by Ĵ:

˙̃R = RS(ωb)− R̂S(ωb
m− b̂)−σKPĴ, (11a)

˙̃b =−Proj(b̂,−kI vex(Pa(R̂′sKPĴ))). (11b)

The following theorem shows that by properly selecting
the gain matrix K, the origin of the error dynamics can be
rendered exponentially stable.

Lemma 2: Let σ be chosen to ensure stability according
to Lemma 1 and define HK(s) = (Is−A+KC)−1B. There
exists a γ > 0 such that, if the gain matrix K is chosen such
that A−KC is Hurwitz and ‖HK(s)‖∞ < γ , then the origin

of the error dynamics (10), (11) is exponentially stable with
all initial conditions satisfying ‖b̂(0)‖ ≤Mb̂ contained in the
region of attraction. Moreover, K can always be chosen to
satisfy these conditions.

Proof: It is straightforward to verify that the pair (A,C)
is observable and that the triple (A,B,C) is left-invertible
and minimum-phase. It therefore follows from Theorem 2
of Grip et al. [16] that K can always be chosen to satisfy the
requirements of Lemma 2. As in the proof of Lemma 1, we
know that the solutions cannot escape the region defined by
‖b̂‖ ≤Mb̂.

The error dynamics (11) can be written as

˙̃R = RS(ωb)− R̂S(ωb
m− b̂)−σKPJ+σKPJ̃,

˙̃b =−Proj(b̂,τ(J))+Proj(b̂,τ(J))−Proj(b̂,τ(Ĵ)),

where J̃ = J − Ĵ and τ(J) = −kI vex(Pa(R̂′sKPJ)). We can
write J̃ = (An− Ân)A′b, where Ân is defined like An with an

replaced by ân. Since An is linear in an and Ab is bounded,
it follows that ‖σKPJ̃‖ ≤ s1‖ãn‖ for some s1 > 0. Using the
techniques of the proof of Lemma 1, we can easily show that
there is an s2 > 0 such that ‖τ(J)− τ(Ĵ)‖ ≤ s2‖ãn‖. It can
therefore be verified that ‖Proj(b̂,τ(J))− Proj(b̂,τ(Ĵ))‖ ≤
s3‖ãn‖ for some s3 > 0. Considering again the function V
from the proof of Lemma 1, we therefore have

V̇ ≤−α3(‖R̃‖2 +‖b̃‖2)+ tr(R̃′σKPJ̃)

− ` tr(S(Proj(b̂,τ(J))−Proj(b̂,τ(Ĵ)))R′R̃)
− ` tr(S(b̃)R′σKPJ̃)

+
2σ`

kI
b̃′(Proj(b̂,τ(J))−Proj(b̂,τ(Ĵ)))

≤−α3(‖R̃‖2 +‖b̃‖2)+
√

3s1‖R̃‖‖ãn‖

+
√

6`s3‖R̃‖‖ãn‖+
√

6`s1‖b̃‖‖ãn‖+ 2σ`s3

kI
‖b̃‖‖ãn‖

≤ −α3ζ 2 + p1ζ‖w̃‖,

for some p1 > 0, where ζ := (‖R̃‖2 +‖b̃‖2)1/2.
Next, from following the proof Theorem 1 of Grip et

al. [16], there is a function W = w̃′Pw̃, for some positive-
definite matrix P, such that Ẇ ≤−‖w̃‖2+γ2‖d̃‖2. Using the
expression at the beginning of the proof of Lemma 1, we
can rewrite d̃ as (R̃S(ωb)−RS(b̃)+ R̃S(b̃))ab+ R̃ȧb, which is
bounded by

√
2(Mω Ma‖R̃‖+Ma‖b̃‖+Mb̃Ma‖R̃‖)+Mȧ‖R̃‖,

where Ma and Mȧ are bounds on ‖ab‖ and ȧb. Hence,
Ẇ ≤−‖w̃‖2 + γ2 p2

2ζ 2 for some p2 > 0.
Consider now the function U = W + γV , for which we

have

U̇ ≤−
[
‖w̃‖ ζ

][ 1 − 1
2 γ p1

− 1
2 γ p1 γα3− γ2 p2

2

][
‖w̃‖

ζ

]
.

The first-order principal minor of the above matrix is pos-
itive, and the second-order principal minor is positive if
γ < 4α3/(p2

1+4p2
2). By invoking the comparison lemma [20,

Lemma 3.4], we obtain the desired stability result.
The result of Lemma 2 is, for all practical purposes, a

global exponential stability result. The only restriction on
the initial conditions is that ‖b̂(0)‖ ≤ Mb̂. Any choice of



initial conditions that does not satisfy this restriction is
meaningless, since the actual bias b is known to satisfy
‖b‖≤Mb <Mb̂. Nevertheless, in order to state a formal result
of exponential convergence from arbitrary initial conditions,
we introduce the following resetting rule:

If at any time t ≥ 0, ‖b̂(t)‖> Mb̂, then b̂ is reset to

b(t+) = Mb̂
b̂(t)
‖b̂(t)‖

. (12)

The following result then follows immediately.
Theorem 1: Let σ be chosen to ensure stability according

to Lemma 1. There exists a γ > 0 such that, if the gain matrix
K is chosen such that A−KC is Hurwitz and ‖HK(s)‖∞ < γ ,
then the origin of the error dynamics (10), (11) with resetting
is globally exponentially stable. Moreover, K can always be
chosen to satisfy these conditions.

D. No Velocity Measurement

So far we have assumed that the GNSS receiver provides
measurements of both position and velocity. Depending on
the receiver, however, a high-quality velocity measurement
may not be available. The lack of a velocity measurement
vn implies that we cannot use terms of the form vn− v̂n in
(6). Calculating the error dynamics in this case, we find that
it is still given by (10), (11), but with the matrices C and
K replaced by C̄ := [I3,03×6] and K̄ := [K′pp,K

′
vp,K

′
ξ p]
′. We

can state an equally strong result for this case, which follows
verbatim from the proof of Lemma 2 with C and K replaced
by C̄ and K̄.

Theorem 2: Let σ be chosen to ensure stability according
to Lemma 1 and define H̄K̄(s) = (Is−A+ K̄C̄)−1B. There
exists a γ > 0 such that, if the gain matrix K̄ is chosen such
that A− K̄C̄ is Hurwitz and ‖H̄K̄(s)‖∞ < γ , then the origin
of the error dynamics (10), (11) with resetting is globally
exponentially stable. Moreover, K̄ can always be chosen to
satisfy these conditions.

IV. GAIN SELECTION AND TUNING

According to above results, the different parts of the
observer can be tuned sequentially, by first choosing KP, kI ,
and σ according to Lemma 1 and then choosing K (or K̄)
to ensure stability of the overall error dynamics.

The requirements of Lemma 1 can be met by choosing
arbitrary gains KP and kI and gradually increasing σ until
stability is achieved. In practice, KP, kI , and σ should be
chosen through careful tuning; for example, by the use of
simulations. The parameter σ can be absorbed in KP, which
can in turn be chosen as a diagonal matrix. In this case,
one is left with four tuning parameters. The gain matrix
K (or K̄) can be chosen using any preferred gain selection
technique, as long as one is able to reduce the H∞ norm
of HK(s) (or H̄K̄(s)) as necessary to achieve stability. One
particular possibility is to use LMIs, which allows for easy
incorporation of additional performance requirements while
bounding the H∞ norm as desired [21], [22]. Additional
discussion of gain selection using LMIs is given by Grip
et al. [15], [16].

D
(m

)

E (m)

N (m)

−2500 −2000 −1500 −1000 −500 0

−2000

−1000

0

1000

−600

−400

−200

0

Fig. 2. True (blue, dashed) and estimated (red, solid) position in local
North-East-Down coordinates (ground track at zero altitude shown in gray)

V. SIMULATION

The design is verified by simulating a takeoff, climb and
two steep turns in a Cessna 172, using the flight simulator
X-Plane®. Inertial measurements are available at a rate of
100Hz, and GNSS position and velocity measurements are
available at 5Hz. Noise is added to all the measurements.

The attitude and gyro bias observer is tuned with the gains
KP = diag(10,0.1,0.1), kI = 0.02, and σ = 1. We assume
that the gyro bias is limited by ‖b‖ ≤ Mb = 2◦/s, and use
Mb̂ = 2.1◦/s for the projection. With the help of an LMI
formulation that allows ‖HK(s)‖∞ to be reduced as necessary,
we choose Kpp ≈ 128.9I, Kpv ≈ 17.5I, Kvp ≈ 15.7I, Kvv ≈
2.4I, Kξ p ≈ 1.3I, and Kξ v ≈ 0.2I.

Applying the resulting observer to the simulated measure-
ment data, we obtain the results shown in Figs. 2–5. The
estimated Euler angles shown in Fig. 4 are derived from R̂
by inverse trigonometry.

VI. CONCLUDING REMARKS

Although the design presented in this paper has been
verified using realistic flight simulation, many potential error
sources (such as accelerometer bias, magnetic disturbances,
GNSS failure, and mounting errors) are not included in the
simulation. The focus of current research is on effectively
handling such errors, and on evaluating and expanding the
design based on actual flight tests.
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APPENDIX

The parameter projection Proj(·, ·) used for the gyro bias
estimation is defined as

Proj(b̂,τ) =

{(
I− c(b̂)

‖b̂‖2 b̂b̂′
)

τ, ‖b̂‖ ≥Mb, b̂′τ > 0,

τ, otherwise,

where c(b̂) = min{1,(‖b̂‖2 −M2
b)/(M

2
b̂
−M2

b)}. This is a
special case of the parameter projection from Appendix E
of Krstić, Kanellakopoulos, and Kokotović [18]. We recall
some useful properties in the following lemma, which we
state without proof.

Lemma 3: The following properties hold for the param-
eter projection: (i) Proj(·, ·) is locally Lipschitz continuous;
(ii) ‖b̂‖ ≥Mb̂ =⇒ b̂′Proj(b̂,τ)≤ 0; (iii) ‖Proj(b̂,τ)‖ ≤ ‖τ‖;
and (iv) −b̃′Proj(b̂,τ)≤−b̃′τ .


