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Abstract— In this paper we consider the output synchroniza-
tion problem for heterogeneous networks of linear agents. The
network provides each agent with a linear combination of its
own output relative to that of neighboring agents, and it allows
the agents to exchange information about their own internal
observer estimates. We design decentralized controllers based
on setting the control input of a single root agent to zero and
letting the remaining agents synchronize to the root agent.
A distinguishing feature of our work is that the agents are
assumed to be non-introspective, meaning that they possess no
knowledge about their own state or output separate from what
is received via the network.

I. INTRODUCTION

The problem of achieving synchronization among agents
in a network—that is, asymptotic agreement on the agents’
state or output trajectories—has received substantial attention
in recent years. The essential difficulty of the synchronization
problem is the lack of a central authority with the ability
to control the network as a whole. Instead, each agent
must implement a controller based on limited information
about itself and its surroundings—typically in the form of
measurements of its own state or output relative to that of
neighboring agents in the network.

Much of the attention has been directed toward state
synchronization in homogeneous networks (that is, networks
where the agents are described by identical models) where
each agent receives information about its own state relative
to that of neighboring agents [1]–[5]. Roy, Saberi, and
Herlugson [6], Tuna [7], and Yang, Roy, Wan, and Saberi
[8] considered more general observation topologies and more
complex identical agents than previously considered. Others
have studied the case where the agents receive relative
information about their own partial-state output [9]–[13]. In
this context, Li, Duan, Chen, and Huang [12] introduced the
idea of a distributed observer, which makes additional use of
the network by allowing the agents to exchange information
with their neighbors about their own internal estimates.

Many of the results on the synchronization problem are
rooted in the seminal work of Wu and Chua [14], [15].

A. Heterogeneous Networks and Output Synchronization

A limited amount of research has also been conducted
on heterogeneous networks (that is, networks where the
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agent models are non-identical). Ramírez and Femat [16]
presented a robust state-synchronization design for networks
of nonlinear systems with relative degree one, where each
agent implements a sufficiently strong feedback based on
the difference between its own state and that of a common
reference model. In the work of Xiang and Chen [17] it
is assumed that a common Lyapunov function candidate is
available, which is used to analyze stability with respect to a
common equilibrium point. Depending on the system, some
agents may also implement feedbacks to ensure stability,
based on the difference between those agents’ states and
the equilibrium point. Zhao, Hill, and Liu [18] analyzed
state synchronization in a network of nonlinear agents based
on the network topology and the existence of certain time-
varying matrices. Controllers can be designed based on
this analysis, to the extent that the available information
and actuation allows for the necessary manipulation of the
network topology.

In heterogeneous networks, the physical interpretation of
one agent’s internal state may be different from that of
another agent. Indeed, the agents may be governed by models
of different dimensions. In this case, comparing the agents’
internal states is not meaningful, and it is more natural to
aim for output synchronization—that is, agreement on some
partial-state output from each agent. Chopra and Spong [19]
focused on output synchronization for weakly minimum-
phase systems of relative degree one, using a pre-feedback
within each agent to create a single-integrator system with
decoupled zero dynamics. Pre-feedbacks were also used
by Bai, Arcak, and Wen [20] to facilitate passivity-based
designs. The authors have considered output synchronization
for right-invertible agents by using pre-compensators and an
observer-based pre-feedback within each agent to yield a
network of asymptotically identical agents [21].

Kim, Shim, and Seo [22] studied output synchronization
for uncertain single-input single-output, minimum-phase sys-
tems, by embedding an identical model within each agent,
the output of which is tracked by the actual agent output.
A similar approach was taken by Wieland, Sepulchre, and
Allgöwer [23], who showed that a necessary condition for
output synchronization in heterogeneous networks is the
existence of a virtual exosystem that produces a trajectory
to which all the agents asymptotically converge. If one
knows the model of an observable virtual exosystem without
exponentially unstable modes, which each agent is capable
of tracking, then it can be implemented within each agent



and synchronized via the network. The agent can then be
made to track the model with the help of a local observer
estimating the agent’s states.

B. Introspective Versus Non-Introspective Agents

The designs mentioned in the previous section rely—
explicitly or implicitly—on some sort of self-knowledge that
is separate from the information transmitted over the net-
work. In particular, the agents may be required to know their
own state, their own output, or their own state/output relative
to that of a reference trajectory. In this paper we shall refer
to agents that possess this type of self-knowledge as intro-
spective agents, to distinguish them from non-introspective
agents—that is, agents that have no knowledge of their
own state or output separate from what is received via the
network. This distinction is significant because introspective
agents have much greater freedom to manipulate their in-
ternal dynamics and thus change the way that they present
themselves to the rest of the network (e.g., through the use of
pre-compensators). The notion of a non-introspective agent
is also practically relevant; for example, two vehicles in close
proximity may be able to measure their relative distance
without either of them having knowledge of their absolute
position.

To the authors’ knowledge, the only result that solves the
output synchronization problem for a well-defined class of
heterogeneous networks with non-introspective agents is by
Zhao, Hill, and Liu [24]. In their work, the only information
available to each agent is a linear combination of outputs
received over the network. However, the agents are assumed
to be passive—a strict requirement that, among other things,
requires the agents to be weakly minimum-phase and of
relative degree one.

C. Contributions of This Paper

In this paper we consider heterogeneous networks of non-
introspective linear agents that receive, via the network’s
communication infrastructure, a linear combination of their
own output relative to that of neighboring agents. In the
spirit of Li et al. [12] we also assume that the agents can
exchange information about their internal estimates using the
same infrastructure. We design decentralized controllers that
achieve output synchronization under a set of straightforward
assumptions about the agents and the network topology.

D. Notation

For a matrix A, A0 denotes its transpose and A� denotes
its conjugate transpose. The Kronecker product between A
and B is denoted by A˝ B .

II. PROBLEM FORMULATION

We consider a network of n multiple-input multiple-output
agents on the form

Pxi D Aixi C Biui ; (1a)
yi D Cixi CDiui ; (1b)

where xi 2 Rni , ui 2 Rmi , and yi 2 Rp . Our goal is to
achieve output synchronization among the agents, meaning
that limt!1.yi � yj / D 0 for all i; j 2 f1; : : : ; ng.

The agents are non-introspective; hence, agent i does
not have access to its own output yi . The only available
information comes from the network, which provides each
agent with a linear combination of its own output relative to
that of the other agents. In particular, agent i has access to
the quantity

�i D
nX

jD1

aij .yi � yj /;

where aij � 0 and ai i D 0. The communication topology of
the network can be described by a directed graph (digraph) G

with nodes corresponding to the agents in the network and
edges given by the coefficients aij . In particular, aij > 0

implies that an edge exists from agent j to i . Agent j is
then called a parent of agent i , and agent i is called a child
of agent j . The weight of the edge equals the magnitude of
aij .

We shall frequently make use of the matrix G D Œgij �,
where gi i D

Pn
jD1 aij and gij D �aij for j ¤ i . This

matrix is known as the Laplacian matrix of G and has the
property that all the row sums are zero. In terms of the
coefficients of G, �i can be rewritten as

�i D
nX

jD1

gijyj :

We also assume that the agents can exchange information
about their internal estimates using the same communication
infrastructure. Specifically, agent i is presumed to have
access to the quantity

O�i D
nX

jD1

aij .�i � �j / D
nX

jD1

gij�j ;

where �j 2 Rp is a variable produced internally by agent
j . This variable will be specified as we proceed with the
design.

A. Assumptions

We make the following assumptions about the network
topology and the individual agents.

Assumption 1: The digraph G has a directed spanning
tree with root agent K 2 f1; : : : ; ng, such that for each
i 2 f1; : : : ; ng nK,

1) .Ai ; Bi / is stabilizable
2) .Ai ; Ci / is observable
3) .Ai ; Bi ; Ci ;Di / is right-invertible
4) .Ai ; Bi ; Ci ;Di / has no invariant zeros in the closed

right-half complex plane that coincide with the eigen-
values of AK

Remark 1: A directed spanning tree is a directed subgraph
of G , consisting of all the nodes and a subset of the edges,
such that every node has exactly one parent, except a single
root node with no parents. Furthermore, there must exist a
directed path from the root to every other agent. A digraph
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Fig. 1. The depicted digraph contains multiple directed spanning trees,
rooted at nodes 2, 3, 4, 8, and 9. One of these, with root node 2, is
illustrated by bold arrows.

may contain many directed spanning trees, and thus there
may be several choices of root agent K. Fig. 1 illustrates an
example digraph containing multiple directed spanning trees.

Remark 2: Right-invertibility of a system on the form (1)
means that, given a reference output yr .t/ for t � 0, there
exist an initial condition xi .0/ and an input ui .t/ such that
yi .t/ D yr .t/ for all t � 0. For example, every single-input
single-output system is right-invertible, unless its transfer
function is identically zero.

We shall need the following result, which is proven in
Appendix I.

Lemma 1: Let NG be defined by removing theK’th column
and row from G. Then all the eigenvalues of NG are in the
open right-half complex plane.

III. CONTROL DESIGN

In this section we describe the construction of decentral-
ized controllers that achieve output synchronization. We shall
first describe the motivation behind the design.

The main idea is to set the control input of the root agent
K to zero (i.e., uK D 0), and to also select �K D 0. We
then design controllers for all the other agents such that their
outputs asymptotically synchronize with the trajectory yK.t/.
That is, for each i 2 f1; : : : ; ng nK we wish to regulate the
synchronization error variable

ei WD yi � yK
to zero, where the dynamics of ei is governed by� Pxi

PxK
�
D
�
Ai 0

0 AK

� �
xi
xK

�
C
�
Bi
0

�
ui ; (2a)

ei D
�
Ci �CK

� � xi
xK

�
CDiui : (2b)

To achieve our objective, we carry out the design for each
agent i 2 f1; : : : ; ng nK in three steps.

In Step 1 we construct a new state Nxi , via a transformation
of xi and xK , so that the dynamics of the synchronization
error variable ei can be described by the alternative equations

PNxi D NAi Nxi C NBiui WD
�
Ai NAi12
0 NAi22

�
Nxi C

�
Bi
0

�
ui ; (3a)

ei D NCi Nxi C NDiui WD
�
Ci � NCi2

� Nxi CDiui : (3b)

The purpose of this state transformation is to reduce the
dimension of the model underlying ei by removing redundant
modes that have no effect on ei . In particular, the model (2)
may be unobservable, but the model (3) is always observable.

The properties of the model (3) also allow us, in Step 2
of the design, to construct a controller that regulates ei to
zero by using state feedback from Nxi . This controller is not
directly implementable, however, because Nxi is not known
to agent i . This brings us to Step 3 of the design.

In Step 3 we construct a decentralized observer that makes
an estimate of Nxi available to agent i . The design of this
observer is based on previous results on distributed observer
design for homogeneous networks. Since our network is het-
erogeneous, we first perform a second state transformation,
from Nxi to �i , in order to obtain a set of dynamical models
that are substantially the same for all the agents. In particular,
the model differences now occur only in particular locations
where they can be suppressed by using high-gain observer
techniques. By combining the observer estimates with the
state-feedback controllers designed in Step 2, we achieve
output synchronization.

A. Preliminaries

Because we choose uK D 0, the trajectory yK.t/ is
the unforced response of agent K, consisting of a linear
combination of the observable modes of the pair .AK ; CK/.
Asymptotically stable modes vanish as t ! 1, and they
therefore play no role asymptotically. For simplicity of
presentation, we therefore assume without loss of generality
that all the eigenvalues of AK are in the closed right-half
plane and that .AK ; CK/ is observable.

Below we describe the three steps of the design procedure
that must be carried out for each agent i 2 f1; : : : ; ng n
K. In addition to agent i ’s system matrices .Ai ; Bi ; Ci ;Di /,
the information needed to carry out these three steps is as
follows:
� the matrices AK and CK of the root node
� an integer Nn such that Nn � ni C nK for all i 2
f1; : : : ; ng nK.

� a number � > 0 that is a lower bound on the real part
of the eigenvalues of the matrix NG defined in Lemma 1

� a common high-gain parameter " 2 .0; 1�

B. Design Procedure for Agents i 2 f1; : : : ; ng nK
Step 1: State Transformation: Let Oi be the observability

matrix corresponding to the system (2):

Oi D

264 Ci �CK
:::

:::

CiA
niCnK�1
i �CKAniCnK�1

K

375 : (4)

Let qi denote the dimension of the null space of Oi , and
define ri D nK � qi . Next, define ƒiu 2 Rni�qi and ˆiu 2
RnK�qi such that

Oi

�
ƒiu
ˆiu

�
D 0; rank

�
ƒiu
ˆiu

�
D qi : (5)



Because .Ai ; Ci / and .AK ; CK/ are observable, it is easy to
show that ƒiu and ˆiu have full column rank. Let therefore
ƒio and ˆio be defined such that ƒi WD Œƒiu; ƒio� 2 Rni�ni

and ˆi WD Œˆiu; ˆio� 2 RnK�nK are nonsingular.
We define a new state variable Nxi 2 RniCri as

Nxi D
�
xi �ƒiMiˆ

�1
i xK

�Niˆ�1i xK
�
:

where Mi 2 Rni�nK and Ni 2 Rri�nK are defined as

Mi D
�
Iqi

0

0 0

�
; Ni D

�
0 Iri

�
:

The following lemma, which is proven in Appendix I, shows
how the synchronization error ei is given in terms of Nxi .

Lemma 2: The synchronization error variable ei is gov-
erned by dynamical equations of the form (3), where . NAi ; NCi /
is observable and the eigenvalues of NAi22 are a subset of the
eigenvalues of AK .

Step 2: State-Feedback Control Design: We now design a
controller as a function of Nxi to regulate ei to zero. Consider
the following equations with unknowns …i 2 Rni�ri and
�i 2 Rmi�ri , commonly known as the regulator equations:

…i
NAi22 D Ai…i C NAi12 C Bi�i ; (6a)

Ci…i � NCi2 CDi�i D 0: (6b)

Based on …i and �i , we define a matrix

NFi D
�
Fi �i � Fi…i

�
; (7)

where Fi is chosen such that Ai C BiFi is Hurwitz. The
following lemma, which is proven in Appendix I, shows that
the regulator equations (6) are always solvable and that the
matrix NFi can be used to define a state-feedback controller.

Lemma 3: The regulator equations (6) are solvable, and
the state-feedback controller ui D NFi Nxi ensures that
limt!1 ei D 0.

Step 3: Observer-Based Implementation: Our last step is
to design an observer to produce an estimate of Nxi , denoted
by ONxi . To this end, define �i D Ti Nxi , where

Ti D

264 NCi
:::

NCi NA Nn�1i

375 :
Note that Ti is generally not a square matrix; however, due
to observability of . NAi ; NCi /, Ti is injective, which implies
that T 0i Ti is nonsingular. In terms of the new state �i , we
can write the system equations as

P�i D .ACLi /�i CBiui ; (8a)
ei D C�i CDiui ; (8b)

where

A D
�
0 Ip. Nn�1/
0 0

�
; C D �Ip 0

�
;

Li D
�
0

Li

�
; Bi D Ti

�
Bi
0

�
; Di D Di ;

for some matrix Li 2 Rp�Nnp . Note that the matrices A

and C are the same for all the agents, and the special
form of these matrices imply that .A;C/ is observable. Let
P D P 0 > 0 be the unique solution of the algebraic Riccati
equation

AP CP A0 � 2�P C 0CP C I Nnp D 0: (9)

We construct the observer

PO�i D .ACLi / O�i CBiui C S."/P C 0.�i � O�i /; (10a)
ONxi D .T 0i Ti /�1T 0i O�i ; (10b)

where S."/ D blkdiag.Ip"�1; : : : ; Ip"�Nn/. Based on the
observer estimate, we define the quantity

�i D C O�i CDiui

to be shared with the other agents via the network’s com-
munication infrastructure (as described in Section II) and the
observer-based control law

ui D NFi ONxi : (11)

Together, the observers for agents i 2 f1; : : : ; ngnK form
a distributed observer parameterized by a common high-
gain parameter ". The following lemma, which is proven
in Appendix I, shows that all the observation errors vanish
asymptotically if " is chosen sufficiently small.

Lemma 4: There exists an "� 2 .0; 1� such that, if " is
chosen such that " 2 .0; "��, then for each i 2 f1; : : : ; ngnK,
limt!1. Nxi � ONxi / D 0.

C. Main Result

By using the observer-based control law (11) for each
agent i 2 f1; : : : ; ngnK, we achieve output synchronization.
The following theorem formalizes this result.

Theorem 1: There exists an "� 2 .0; 1� such that, if " is
chosen such that " 2 .0; "��, then output synchronization is
achieved.

Proof: Since the systems are linear, the result follows
from Lemmas 3 and 4 and the separation principle.

IV. REMARKS ON THE DESIGN PROCEDURE

As described in Section III, the purpose of Step 1 is
to reduce the dimension of the model (2) by removing
redundant modes that cannot be observed from ei . Such
modes exist if agent i and agent K share particular unforced
solutions. Consider, for example, the case where Ai D AK
and Ci D CK . Then the states xi and xK cannot be
individually observed from ei D yi � yK , since there are
infinitely many initial conditions that yield the unforced
solution ei D 0. If, on the other hand, we define the state
Nxi D xi � xK , then we obtain the model PNxi D Ai Nxi CBiui ,
ei D Ci Nxi CDiui , which is observable. Indeed, it is easily
verified that in our design procedure, identical agents yield
qi D ni D nK and ri D 0, and that ƒi D ˆi D Ini

is a
valid choice; thus, one obtains precisely Nxi D xi�xK . In the
general case, Step 1 yields a model (3) that incorporates the
difference between modes that are shared between agents i



and K, in addition to the modes from both agent i and K
that are not shared.

Step 2 consists of solving an output regulation problem,
where the matrices …i 2 Rni�ri and �i 2 Rmi�ri must be
found from the regulator equations (6). A special situation
arises when ri D 0, which implies that NAi22, NAi12, and
NCi2 are empty matrices. In this case, …i and �i are also

empty matrices, and the need to solve the regulator equations
vanishes. This situation occurs, in particular, if agent i and
agent K are identical.

In Step 3, we introduce a state transformation from Nxi to
�i , where all the �i ’s have the same dimension p Nn. Since the
dimension of Nxi may be less than p Nn, the transformation to
�i may involve an over-parameterization. In this case, (8) is
not the only possible dynamical model of �i , but it is always
one of the possible representations. Consider, for example,
the scalar model PNxi D �Nxi C ui , ei D Nxi together with
Nn D 2. Then �i D Œ Nxi ;� Nxi �0, and two possible dynamical
models are

P�i D
�
0 1

1 0

�
�i C

�
1

�1
�
ui ; ei D

�
1 0

�
�i ;

and

P�i D
��1 0

1 0

�
�i C

�
1

�1
�
ui ; ei D

�
1 0

�
�i :

Whereas the first model matches (8), the second one does
not.

V. EXAMPLE

We illustrate the results from Section III on a network of
ten agents. Agents 1 and 2 are composed as the cascade of
a second-order oscillator and a single integrator:

Ai D
240 1 0

0 0 1

0 �1 0

35 ; Bi D
2400
1

35 ;
Ci D

�
1 0 0

�
; Di D 0:

Agents 3, 4, and 5 are double integrators:

Ai D
�
0 1

0 0

�
; Bi D

�
0

1

�
; Ci D

�
1 0

�
; Di D 0:

Agents 6, 7, and 8 are single integrators:

Ai D 0; Bi D 1; Ci D 1; Di D 0:
Finally, agents 9 and 10 are second-order mass-spring-
damper systems:

Ai D
�
0 1

�2 �2
�
; Bi D

�
0

1

�
; Ci D

�
1 0

�
; Di D 0:

The communication topology of the network is given
by the digraph depicted in Fig. 1, which contains multiple
directed spanning trees. One of these is rooted at node 2, and
we therefore choose K D 2 for our design. The real part of
the eigenvalues of the matrix NG, constructed by removing
row and column 2 from the Laplacian of the digraph in Fig.
1, are lower bounded by approximately 0:33. We assume that
a bound � D 0:3 is known during the design process. We also

assume that a bound Nn D 6 on ni C n2, i 2 f1; : : : ; 10g n 2,
is known. Following the design procedure in Section III-B,
we set u2 D 0 and proceed with Steps 1–3 for each of the
other agents.

Step 1: For illustrative purposes, we give the details for
agent 3. Computing O3, we get

O3 D

266664
1 0 �1 0 0

0 1 0 �1 0

0 0 0 0 �1
0 0 0 1 0

0 0 0 0 1

377775 H) q3 D 1; r3 D 2:

We may choose ƒ3u D Œ1; 0�0 and ˆ3u D Œ1; 0; 0�0, and
hence we can set ƒ3 D I2 and ˆ3 D I3. It follows that

Nx3 D

2664
1 0

0 1

0 0

0 0

3775 x3 �
2664
1 0 0

0 0 0

0 1 0

0 0 1

3775 x2:
It can be confirmed that the dynamics of Nxi with output ei
takes the form of (3) with

NA312 D
�
1 0

0 0

�
; NA322 D

�
0 1

�1 0

�
; NC32 D

�
0 0

�
:

Step 2: The regulator equations (6) are easily found to
have the solution

…3 D
�
0 0

�1 0

�
; �3 D

�
0 �1� :

We select the matrix F3 D Œ�2 � 3� to place the poles of
A3CB3F3 at �1 and �2. Thus, we obtain the matrix NF3 D
Œ�2;�3;�3;�1�.

Step 3: In Step 3 we design the observer that allows
the controller (11) to be implemented based on observer
estimates. We obtain

A D
�
0 I5
0 0

�
; C D �1 0 � � � 0

�
;

L3 D

26666664
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0:5 0 �0:5 0

37777775 ; B3 D

26666664
0

1

0

0

0

0

37777775 :

We construct the observer according to the procedure in
Section III-B, with the high-gain parameter " D 0:3.

We perform the same procedure for the other agents. For
agent 1, we obtain qi D 3 and ri D 0; for agents 6, 7, and
8, we obtain qi D 1 and ri D 2; and for agents 9 and 10,
we obtain qi D 0 and ri D 3. Fig. 2 shows the resulting
simulated output of all ten agents.

VI. CONCLUDING REMARKS

The designs presented in this paper rely on a set of
conditions about the agents and the network that are straight-
forward to verify. However, they are not all strictly necessary.
Inspecting the proofs of our results we see, for example, that
the condition on the invariant zeros in Assumption 1 is used
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Fig. 2. Outputs from the simulation example

only in the proof of Lemma 3 to guarantee that no invariant
zeros of .Ai ; Bi ; Ci ;Di / coincide with the eigenvalues of
NAi22. Since the eigenvalues of NAi22 are only a subset of the

eigenvalues of AK , the quadruple .Ai ; Bi ; Ci ;Di / can be
allowed to contain certain invariant zeros of AK . Indeed, in
the special case of identical agents, the matrix NAi22 vanishes,
so the condition on the invariant zeros is not needed.

Similarly, the condition of right-invertibility is used only
to guarantee solvability of the regulator equations (6), which
vanish for identical agents. Hence, if agent i is identical to
agent K, then it does not need to be right-invertible. It is
likely that, in the general case, the right-invertibility condi-
tion can be replaced with a relaxed invertibility condition for
parts of the system. The development of such a condition is
a topic of future research.

In this paper we have only been concerned with achieving
output synchronization, without regard to the properties of
the synchronization trajectory. Under conditions similar to
Assumption 1 it is also possible to regulate the synchroniza-
tion trajectory according to a reference model. The details
of such a design will be included in an upcoming journal
version of this paper.
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APPENDIX I
PROOFS OF LEMMAS 1–4

Proof of Lemma 1: The set of nodes f1; : : : ; ngnK can be
grouped into directed subgraphs G1; : : : ;GM , each of which
has a directed spanning tree rooted at a child of node K. We
can assume that there are no edges from Gk to Gj if k > j



(if such an edge exists, then the child node in Gj can be
moved to Gk). With this permutation, the matrix NG takes the
block-triangular form

NG D

264 NG1 � � � 0
:::

: : :
:::

NGM1 � � � NGM

375 :
Each submatrix NGi , i 2 1; : : : ;M , can be written as NGi D
GiCDi , where Gi is the Laplacian of Gi andDi is a diagonal
matrix whose j ’th entry is the total weight of all the edges
to node j of Gi from nodes outside of Gi . Since Gi contains
a directed spanning tree whose root is the child of node
K, the diagonal element in Di corresponding to that root is
positive. It therefore follows from a version of Lemma 5 of
Li et al. [12], given as Lemma 5 in Appendix II, that all the
eigenvalues of NGi are in the open right-half complex plane.
The same is true for NG, due to its block-triangular form.

Proof of Lemma 2: The definitions of ƒiu and ˆiu
imply that the columns of Œƒ0iu; ˆ

0
iu�
0 span the unobservable

subspace of the model (2), which is invariant with respect to
blkdiag.Ai ; AK/. Hence, there exists a matrix Ui 2 Rqi�qi

such that �
Ai 0

0 AK

� �
ƒiu
ˆiu

�
D
�
ƒiu
ˆiu

�
Ui ;�

Ci �CK
� �ƒiu
ˆiu

�
D 0:

(12)

Let Nxi be partitioned as Nxi D Œ Nx0i1; Nx0i2�0, where

Nxi1 D xi �ƒiMiˆ
�1
i xK ; Nxi2 D �Niˆ�1i xK :

Using the equality Ciƒiu D CKˆiu, derived from (12), we
calculate ei in terms of Nxi1 and Nxi2:

ei D Cixi � CKxK CDiui
D Cixi � CK

�
ˆiu ˆio

�
ˆ�1i xK CDiui

D Cixi �
�
Ciƒiu CKˆio

�
ˆ�1i xK CDiui

D Cixi � .CiƒiMi C CKˆiN 0iNi /ˆ�1i xK CDiui
D Ci .xi �ƒiMiˆ

�1
i xK/ � CKˆiN 0iNiˆ�1i xK CDiui

D Ci Nxi1 C CKˆiN 0i Nxi2 CDiui :
From (12), we also have that Aiƒiu D ƒiuUi and AKˆiu D
ˆiuUi . We therefore easily derive that there exist matrices
Qi and Ri on the form

Qi D
�
Ui Qi12
0 Qi22

�
; Ri D

�
Ui Ri12
0 Ri22

�
;

such that Aiƒi D ƒiQi and AKˆi D ˆiRi . For Nxi1 we
can now calculate the state equations as

PNxi1 D Aixi �ƒiMiˆ
�1
i AKxK C Biui

D Aixi �ƒiMiRiˆ
�1
i xK C Biui

D Aixi �ƒi
�
Ui Ri12
0 0

�
ˆ�1i xK C Biui

D Aixi �ƒi
�
Ui 0

0 0

�
ˆ�1i xK

�ƒi
�
0 Ri12
0 0

�
ˆ�1i xK C Biui

D Aixi �ƒiQiMiˆ
�1
i xK

�ƒi
�
Ri12
0

�
Niˆ

�1
i xK C Biui

D Ai
�
xi �ƒiMiˆ

�1
i xK

�
�ƒi

�
Ri12
0

�
Niˆ

�1
i xK C Biui

D Ai Nxi1 Cƒi
�
Ri12
0

�
Nxi2 C Biui :

For Nxi2 we have

PNxi2 D �Niˆ�1i AKxK D �NiRiˆ�1i xK
D �Ri22Niˆ�1i xK D Ri22 Nxi2:

Defining NAi12 D ƒi
�
Ri12
0

�
, NAi22 D Ri22, and NCi2 D

�CKˆiN 0i , we see that ei is governed by the dynamical
equations (3). To see that . NAi ; NCi / is observable, note that
the observability matrix Oi of the system (2) has rank niCri ,
which is precisely the order of the system (3). To see that
the eigenvalues of NAi22 are a subset of the eigenvalues of
AK , note that, due to the block-triangular form of Ri , the
eigenvalues of NAi22 D Ri22 are a subset of the eigenvalues
of Ri . Since Ri is obtained via a similarity transform of AK ,
Ri D ˆ�1i AKˆi , it has the same eigenvalues as AK .

Proof of Lemma 3: Using the notation of the proof of
Lemma 2, the task of achieving limt!1 ei D 0 can be
viewed as an output regulation problem, where the subsystem
PNxi2 D NAi22 Nxi2 is the exosystem and PNxi1 D Ai Nxi1 CNAi12 Nxi2CBiui is the system to be regulated to achieve ei D
Ci Nxi1 � NCi2 Nxi2 C Diui D 0. Since .Ai ; Bi / is stabilizable
and the eigenvalues of NAi22 are in the closed right-half plane,
the state-feedback controller ui D NFi Nxi solves the regulation
problem, assuming the regulator equations (6) are solvable
[25, Theorem 2.3.1]. The regulator equations are solvable if,
for each � that is an eigenvalue of NAi22, the Rosenbrock
system matrix

h
Ai��I Bi

Ci Di

i
is of full rank ni C p [25,

Corollary 2.5.1]. This matrix has normal rank ni Cp due to
right-invertibility [26, Property 3.1.6]. Since .Ai ; Bi ; Ci ;Di /
has no invariant zeros coinciding with eigenvalues of AK and
the eigenvalues of NAi22 are a subset of the eigenvalues of AK ,
it follows that the rank of the Rosenbrock system matrix is
equal to the normal rank for each � that is an eigenvalue of
NAi22.

Proof of Lemma 4: Let Q�i D �i � O�i . Then

PQ�i D .ACLi / Q�i � S."/P C 0.�i � O�i /:

Noting that for each i 2 f1; : : : ; ng, Pn
jD1 gij D 0, we have

�i D
nX

jD1

gijyj D
nX

jD1

gij .yj � yK/

D
X

j2f1;:::;ngnK

gij ej D
X

j2f1;:::;ngnK

gij .C�j CDjuj /:



Also, since �K D 0, we have O�i D
P
j2f1;:::;ngnK gij .C O�j C

Djuj /. It follows that

PQ�i D .ACLi / Q�i � S."/
X

j2f1;:::;ngnK

gijP C 0C Q�j :

Introducing the state transformation �i D "�1S�1."/ Q�i , it
can be confirmed that

" P�i D .ACLi"/�i �
X

j2f1;:::;ngnK

gijP C 0C�j ;

where Li" D
h

0
" NnC1LiS."/

i
. Define � D

Œ� 01; : : : ; �
0
K�1; �

0
KC1; : : : ; �

0
n�
0, and L" D

blkdiag.L1"; : : : ;L.K�1/";L.KC1/"; : : : ;Ln"/, and note
that kL"k D O."/. The overall dynamics of � is

" P� D .In�1 ˝ACL" � NG ˝ .P C 0C//�:

Following the methodology of Wu and Chua [14], we
define U such that J D U�1 NGU , where J is the Jordan
form of NG. Then, using the matrix U ˝ Ip Nn to perform a
similarity transform of the matrix .In�1˝A� NG˝.P C 0C//,
we obtain

.U�1 ˝ Ip Nn/.In�1 ˝A � NG ˝ .P C 0C//.U ˝ Ip Nn/
D In�1 ˝A � J ˝ .P C 0C/:

Since the resulting matrix is upper block-triangular, we see
that .In�1 ˝A � NG ˝ .P C 0C// is Hurwitz if A � �P C 0C

is Hurwitz for each � that is an eigenvalue of NG. To see
that the latter holds we follow the results of Yang et al. [13],
noting that from (9),

.A � �P C 0C/P CP .A � �P C 0C/�

D AP CP A0 � 2Re.�/P C 0CP

D APCP A0�2�P C 0CP�2.Re.�/��/P C 0CP � �Ip Nn:

Let therefore P D P 0 > 0 be the solution of the Lyapunov
equation P.In�1 ˝A� NG ˝ .P C 0C//C .In�1 ˝A� NG ˝
.P C 0C//0P D �Ip Nn.n�1/, and define the Lyapunov function
candidate V D "� 0P� . We then have

PV D �k�k2 C 2� 0PL"� � �.1 � 2kPL"k/k�k2:
Since kL"k D O."/, PV is negative definite for sufficiently
small ", which implies limt!1 � D 0. This in turn implies
that O�i converges to �i D Ti Nxi , and hence ONxi converges to
.T 0i Ti /

�1T 0i Ti Nxi D Nxi .
APPENDIX II

A USEFUL LEMMA

We here give a version of Lemma 5 of Li et al. [12]
taylored to this paper.

Lemma 5: Suppose that G is a weighted digraph with n
nodes, containing a directed spanning tree with root node
K 2 f1; : : : ; ng. Let G be the Laplacian of G and let
D D diag.d1; : : : ; dn/ be a diagonal matrix with non-
negative elements. If dK > 0, then all the eigenvalues of
NG WD G CD are in the open right-half complex plane.

Proof: Let OG denote an expanded digraph constructed
from G by adding a node 0 and edges from node 0 to
node i 2 f1; : : : ; ng with weigth di , whenever di > 0.
Then the Laplacian of OG is given by OG D �

0 0
�d NG

�
, where

d D Œd1; : : : ; dn�
0. Since G contains an edge from node 0

to node K, OG contains a directed spanning tree rooted at
node 0. Hence, from Lemma 3.3 of Ren and Beard [27],
OG has a simple eigenvalue at the origin, and all the other

eigenvalues are in the open right-half complex plane. Due
to the block-triangular form of OG, its eigenvalues consist of
the zero element .1; 1/ and the eigenvalues of NG. Hence, the
eigenvalues of NG must be in the open right-half complex
plane.


