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Introduction
The Europa Lander Mission Concept presents a number of challenges.  The 
current mission concept would land with a fixed amount of energy, an expected 
mission lifetime of approximately 30 days, and would be able to communicate 
with the Earth in less than 42 out of every 84 hours due to the Europa-Jupiter 
orbit.  Additionally, planned activities such as trenching and sampling, will 
interact significantly with a largely unknown environment and therefore may 
encounter failure  or highly variable duration or energy consumption when 
executing.  All of these factors present challenges for a conventional ground 
operations paradigm.  
 The Jet Propulsion Laboratory has completed a multi-year effort to 
prototype and study system level autonomy software for a Europa Lander 
Mission Concept. The goals of this effort are to:

• identify key risks and and assess maturity for such software for a potential 
future Europa Lander Mission; and
• identify liens on hardware (e.g. sensing, computing), mission concept and 
operations concept (degree of interaction) and how those affect the autonomy 
software.

As part of this prototyping, two execution systems were studied as part of the 
software effort: TRACE - an execution system, and Mexec an integrated 
planner/scheduler and execution system.
 TRACE (Traceable Robotic Activity Composer and Executive) is a tool 
designed to holistically address the modeling, verification, and execution of 
planned, opportunistic, and contingency activities during robotic missions from 
an event- driven execution perspective.
 TRACE tailors BPMN to the robotics domain. Automated tasks, like 
service tasks, correspond to robotic activities, like navigation or grasping an 
instrument with a robotic arm. Data-driven elements, like conditional events or 
exclusive gateways, use system data to allow the executive
to make decisions on how to flow through the mission.
 We are also prototyping system level autonomy using MEXEC, an 
integrated planner and executive originally built for NASA’s Europa Clipper 
mission. Using MEXEC we compare four approaches to planning on the Europa 
Lander problem similar to those used in prior missions: a static plan without 
failure recovery mechanisms, a static plan with ground input for failure recovery 
(similar to current Mars Rover operations), flexible execution without replanning, 
and flexible execution with replanning optimization. We explore the value of 
onboard autonomy: flexible execution and replanning with plan optimization, 
and examine these techniques’ effects on utility in these scenarios. We 
demonstrate that, true to our model’s prediction, each technique shows 
significant improvement in utility achievement in the Europa Lander domain.

Europa Lander Mission Overview
The primary goal of the Europa Lander mission concept is to excavate and 
sample the surface, analyze the sampled material for signs of biosignatures, and 
communicate that data back to Earth [Hand2017]. Additionally, there are 
secondary objectives to take panoramic imagery of the Europan surface and 
collect seismographic data. Lander operations are generally limited to the 
accomplishment of these two overarching goals. This provides significant 
structure to the problem, since the concept mission clearly defines the sequence 
of actions required to achieve these goals. Figure 1 displays the strong 
dependency structure inherent to the Europa Lander concept mission. In order 
to sample, the lander needs to have excavated a trench; in order to analyze, the 
lander needs to have collected a sample; etc. Critically, for a mission to achieve 
any actual utility, those data products must be communicated back to Earth.

TRACE models the Europa Lander Tasks and dependencies using 
Constraints, Events, Contingencies.

Figure 1. Europa Lander Mission Concept Basic Mission Task Network.  

Adaptation of TRACE for Europa Lander Adaptation of Mexec for Europa Lander (EL-Mexec)
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• Service tasks are activities to be 
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Modeled Basic Surface 
Mission 1 (BSM-1), which 
prototypes a simple mission 
focused on excavation, 
sampling, and downlink.

     Demonstrated handling 
multiple failure paths during 
excavation, such as material 
slumping, drill stuck, and not 
making enough progress.
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Thirteen (13) activities in the 
FSW were executable, including 
PrepArm and PrepHGA, to 
preheat the spacecraft prior to 
other activities.

     Model included boundary 
events to abort excavate or 
sampling prematurely if they 
exceeded energy use or if the 
communication window is 
closing.
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Decisions about excavation 
and sampling sites (i.e., 
selections) were made based on 
data in the state database.

       Secondary activities were 
initiated (seis/geo and 
panoramas) if excavation and 
sampling completed.
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Mexec uses an activity model for Europa Lander tasks and performs 
optimizing planning using Hierarchical Task Network (HTN) techniques 
and Flexible Execution (FE).  

• Hierarchical task network (HTN)
• Leverage domain knowledge and dependency 

structure
• Decompositions of high-level parent tasks.

• Utility maximization
• Assign potential utility to sampling tasks
• Assign lesser potential utility to 

seismograph/panorama tasks
• Primary Utility is only achieved after 

communication to ground

Cost bound = available energy
e.g. can expand plans downwards until all energy used

Value = plan utility
e.g. try to find plan that maximizes utility which is derived from 

downlinking science results to ground

Bound → prune plans that cannot possibly exceed utility of best 
solution so far.  Unfortunately this is not often clearly the case so 
search is close to exhaustive (rule out high utility, high energy chains 
that exceed remaining energy).

EL-Mexec uses branch and bound search to find high utility plans.

Flexible Execution
• Enables handling of minor variations in execution

• Activities can start early or run late within bounds
• Resource variations (e.g. energy) proceed if within bounds

• Operates at much lower computational cost and at higher frequency than 
replanning

Replanning with Plan Optimization
• Constructs search within HTN space to optimize utility
• Within Europa Lander scenario enables coordination of activities with

• Exogenous conditions such as Earth in view (required for communications)
• Resource limits (energy, thermal)

• Enables changing of excavation and sampling target
• In response to ground direction (utility updates)
• Onboard utility/cost estimates

• Site imaging to estimate time/energy to excavate/sample
• Estimation of “science promise” of site

• When to re-plan?  fixed cadence or event-based

Figure 4. Sample of a full mission schedule: 3 sites excavated, 9 samples 
collected over multiple sols, plus episodic imagery, fixed exogenous uplink 
windows, downlinks. Mission ends when battery depleted.

1.All samples positive (baseline)
2.All samples negative
3.Low starting battery state-of-charge
4.Ground input changes excavation order
5.First sample negative
6.Ground input changes mission model

Simulated Missions: Representative Scenarios (TRACE and Mexec)
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