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Abstract

Navigational path planning is a classical problem in
robotics. Traditional approaches use goal-directed
heuristic search of problem spaces defined by spatial
models of the navigation world. Case-based reasoning
offers an alternative approach. In the Router project,
we have combined the case-based method with the
model-based method. Since Router is a multistrategy
system, it provides an experimental testbed to study
some of the hypotheses of case-based reasoning. In
this paper, we report on a set of experiments that ex-
amine four hypotheses: (i) the case-based method is
more efficient than the model-based method, (ii) the
case-based method produces plans of quality equal to
those produced by the model-based method, (iii) the
case-based method requires less knowledge but has
the same problem-solving coverage as the model-based
method, and (iv) cases need to be decomposed into
partial cases for efficient and effective problem solv-
ing. We find that while hypothesis (i) is true, the
others are questionable.

Goals and Motivations

Navigational path planning is a classical problem in
autonomous mobile robotics. Qualitatively, a good
method for robot planning would obey the follow-
ing constraints: (1) since robots have access only
to bounded computational resources, the planning
method would require only limited processing and
memory, (2) since robots need to perform in close to
real time, it would (a) successfully form accurate plans
and (b) form them very efficiently; and (3) since robots
often operate in dynamic worlds, it would not assume
complete and correct knowledge of the world. The con-
tradictions between constraints 1 and 2, 2 and 3, 2(a)
and 2(b), make navigational path planning a challeng-
ing problem for AL

Most Al approaches to navigational planning use
goal-directed heuristic search of problem spaces de-
fined by spatial models of the navigation world [Fikes,
Hart, and Nilsson 1972; Kuipers and Levitt 1988; Mc-
Dermott and Davis 1984]. Since it employs a spatial
model, we will refer to this family of methods as model-

based planning. If the robot’s navigation world is static
and the robot planner has complete and correct knowl-
edge of this world, then model-based planning guaran-
tees both efficient processing and high-quality solutions
[Aho et. al 1974]. However, complete world models are
impossible to provide for operation in a dynamic envi-
ronment, and current limitations of robot sensors and
learning methods generally make it difficult to acquire
such knowledge directly.

Experience-based reasoning [Hammond 1989,
Kolodner and Simpson 1989, Riesbeck and Schank
1989, Sussman 1975, Winston 1982] offers an alterna-
tive approach to model-based navigational path plan-
ning. In this approach, the robot planner reuses pre-
viously formed plans to solve new planning problems:
given a planning problem, the planner retrieves a past
case of planning from its memory and adapts the plan
stored in the case to meet the specifications of the
current problem. This case-based family of methods
promises several advantages over the model-based fam-
ily [Kolodner 1993]: (i) since it relies on reusing specific
experiences for solving new problems rather than rea-
soning from a general model of the navigation world,
it provides for more efficient planning, and (ii) since it
can start with relatively few cases in memory and dy-
namically acquire new cases based on the reasoner’s
interactions with the world, it makes few assump-
tions about the completeness and correctness of world
knowledge. Note that, in theory, case-based planning
offers these benefits without incurring any significant
loss in the quality of solutions produced.

In the Router project, we have combined the case-
based method with the model-based method for navi-
gational planning. Since Router is a multistrategy sys-
tem, it provides an experimental testbed for studying
some trade-offs in multistrategy reasoning, and also
for studying some of the basic hyptheses of case-based
reasoning. In this paper, we report on a set of experi-
ments that examine four hypotheses: (i) the case-based
method is more efficient than the model-based method,
(ii) the case-based method produces plans of quality
equal to those produced by the model-based method,
(iii) the case-based method requires less knowledge but



has the same problem-solving coverage as the model-
based method, and (iv) cases need to be decomposed
into partial cases for efficient and effective problem
solving. We find that while hypothesis (i) is true,
the others are questionable. The goal of this paper
is to report on these experiments, draw some lessons
on the utility of the case-based and model-based meth-
ods for navigational planning, and the appropriateness
of a specific framework for multistrategy reasoning.

General System Design

Router is a goal-directed multistrategy navigational
path planning system. It operates in two kinds of
navigation worlds: representations of office buildings
such as the College of Computing Building (CoC) at
Georgia Tech (GT), and representations of urban ar-
eas such as the Georgia Tech campus in Atlanta. In
both worlds, the input to Router is a pair of spatial lo-
cations representing the initial and goal positions that
the path should connect. The initial and goal locations
are among the intersections between the pathways in
the world; the pathways are the streets in the Georgia
Tech domain and the corridors and hallways in the Col-
lege of Computing domain. The output produced by
the system is an ordered set of path segments (streets,
hallways) between the initial and the goal locations.
In addition, Router accepts as input feedback on the
execution on a plan it produces and attempts to learn
from both its successes and failures.

Router combines the model-based and case-based
methods for planning navigation paths in these do-
mains. It integrates these two methods in three di-
mensions: planning, memory, and learning. In the
following subsections we briefly characterize the main
components of Router in these three dimensions.

Planning Strategies

As in traditional robot planners, Router’s model-
based method performs a heuristic search of prob-
lem spaces defined by a spatial model of the naviga-
tion world. Unlike many traditional robot planners,
however, Router’s spatial model is only qualitative:
it contains no quantitative information such as dis-
tances between locations. Further, the spatial model
is organized in a neighborhood-subneighborhood hier-
archy where a neighborhood pertains to a spatial re-
gion in the navigation world. The representation of a
neighborhood contains information about the impor-
tant pathways (streets, corridors) in the neighborhood,
the directions of the pathways, the intersections be-
tween the pathways, the super- and subneighborhoods,
and the relative locations of the subneighborhoods. A
lower-level neighborhood in the hierarchy contains in-
formation about additional pathways and intersections
but in a smaller region of space than a higher-level
neighborhood. The model-based planner forms plans
by a heuristic search with top-down control: it starts
from the top-level neighborhood, uses direction as a

heuristic, forms a high-level plan, and then sets up the
subtask of plan refinement to fill in lower-level details.

Router’s case-based method forms path plans by re-
trieving and adapting past planning cases. A case con-
tains information about the initial and goal locations
in a planning episode, the spatial neighborhoods to
which the two locations belong, the path connecting
the two locations, and whether the plan succeeded or
failed upon execution in the world. It is indexed both
by the initial and goal locations of the stored plan and
by the neighborhoods to which the two locations be-
long. Given a planning problem, i.e., given the specifi-
cation of the initial and goal locations in a navigation
world, the case-based method uses the problem as a
probe into its case memory. If the case memory con-
tains a successful case whose initial and goal locations
are the same as in the given problem, then the case
directly provides the desired plan. If the case memory
does not contain that a case that exactly matches the
given problem, but contains a successful case such that
the initial and goal locations of the case and the given
problem are in the same neighborhoods, then the case
is retrived and adapted. Case adaptation in Router
consists of appending paths to one or both ends of a
retrieved case.

Memory Organization

As indicated above, the hierarchically-organized spa-
tial model of the navigation world in Router serves
two purposes. First, it defines and decomposes prob-
lem spaces for search as described above. Second, it
provides a scheme for organizing the case memory. The
planning cases are organized around the neighborhood-
subneighborhood hierarchy. Each case is indexed by
the end locations of the path it contains, which serves
as its primary index, and by the spatial neighborhoods
of the end locations, which acts as its secondary index.
In this way, the semantic and episodic knowledge in
Router’s memory are closely linked, with the seman-
tic knowledge in the form of the spatial model provid-
ing the indexing scheme for organizing the memory of
planning episodes or cases.

Multistrategy Planning

Given a planning task (or subtask), the model-based
and the case-based methods offer alternative plan-
ning strategies. Router contains a simple introspective
strategy selector that opportunistically selects a spe-
cific strategy for a given task. Note that the task may
be the overall planning problem of a subtask set up by
the model-based method (e.g., finding a top-level plan)
or by the case-based method (e.g., adapting a case).

Learning

Router performs two kinds of learning. First, it ac-
quires and stores new cases as it forms new plans and
receives reports on their execution. A new case is au-
tomatically indexed both by the end locations of the



path it contains and by the neighborhoods of the end
locations as described above. Note that a case may
contain a successful plan or a failed one depending
on the feedback on the execution of the plan. Router
keeps both successful and failed cases as in [Hammond
1989]. Note also that once a path is known, all of its
constituent subpaths are also known, and so they too
can be stored for their potential reuse in the future.
In Router’s domain, the decomposition of a case into
sub-cases is obvious, and, if desired, the sub-cases can
easily stored along with the cases.

Second, Router uses the new cases to learn the spa-
tial model of its navigation world. For example, given
a failed plan, it revises its world model to reflect the
cause of the failure. In this paper, we focus only on
speed-up learning in Router.

General Experiment Design

In order to evaluate the many dimensions, aspects and
features of the theory behind Router, we conducted
a series of ablation experiments. [Cohen and Howe
1988]. Although Router runs on a real robot called
Stimpy, the experiments reported here were conducted
on a simulated version of the robot so as to avoid the
influence of new variables pertaining to perception and
action. This allows us to focus on the theory behind
Router.

Design of Experiment 1: The first set of exper-
iments was designed to test two related hypotheses
regarding the computational efficiency of case-based
reasoning and multistrategy reasoning: H[1(i)] case-
based reasoning is computationally more efficient than
model-based reasoning, and, hence, H[1(ii)] integrated
case-based and model-based reasoning is more efficient
than model-based reasoning.

Design of Experiment 2: The second set of experi-
ments was designed to test two related hypotheses re-
garding the quality of solutions produced by case-based
reasoning and multistrategy reasoning: H[2(i)] case-
based reasoning produces solutions of quality equal to
those produced by model-based reasoning, and, hence,
H[2(ii)] intergated case-based and model-based reason-
ing produces solutions of quality equal to those pro-
duced by model-based reasoning. Testing these hy-
potheses raises the issue of how to measure the qual-
ity of a solution. In the domain of navigational path
planning, the logical answer is that a shorter naviga-
tion plan is better than a longer one. However, since
Router contains no quantitative information (such as
distances between locations), the issue becomes how to
measure the shortness of a navigation plan. We used
the number of path segments in a navigation plan for
this purpose, where a path segment is defined as the
path between two consecutive street changes in the
overall path.

Design of Experiment 3: The third set of experi-
ments was designed to test a hypothesis about the de-
composition of cases into partial cases: H[3] the decom-

position of cases into partial cases (at storage time) re-
sults in more efficient problem solving (on future prob-
lems). The prima facie justification for this hypothesis
is that in general storing partial cases enables the re-
trieval of a case more appropriate to a given problem,
and the retrieval of an appropriate case reduces the
computational cost of adapting it to meet the specifi-
cations of the problem. Testing this hypothesis raises
the issue of what is a reasonable partial case. In the do-
main of navigational path planning, the logical answer
is that partial cases correspond to the path segments
in a navigation plan (where, again, a path segment
is defined as the path between two consecutive street
changes).

Design of Experiment 4: The fourth set of ex-
periments was designed to test two related hypothe-
ses about the problem-solving coverage and knowledge
requirements of case-based reasoning: HI[4(i)] case-
based reasoning can be bootstrapped with relatively
few cases in memory, and H[4(ii)] case-based reasoning
has the same problem-solving coverage as model-based
reasoning even though its knowledge requirements are
much smaller.

Router’s two domains of GT campus and CoC build-
ing admit about 10000 and 1000 problems respectively.
We conducted most of the above experiments with
Router using 10 sets of 50 path planning problems
each, where the problems and their order within a
problem set were generated randomly. Since 50 prob-
lems may be too small a number for testing some of the
above hypotheses, we conducted some experiments on
a larger set of 1000 problems. All experiments were
conducted on both the Georgia Tech domain and the
College of Computing domain.

In all experiments involving multistrategy reason-
ing, the case memory was empty at the beginning of
the experiment, but it grew as subsequent problem-
solving cases were stored in it. In the experiments in-
volving the exclusive use of case-based reasoning, the
case memory had to be primed by adding (randomly
formed) cases to the memory before conducting the
experiments. Since we chose to generate the cases ran-
domly, we did not make sure that there was a case
going from each neighborhood to every other neigh-
borhood. However, since we used a random method
for generating the cases, in the runs with a large num-
ber of cases in memory at the start, the chances of
there being a case going from a neighborhood to every
other neighborhood were high. All experiments were
conducted on a dedicated Sun workstation.
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Figure 1: Comparison of average problem solving times for different strategies.

Experimental Data and Results

Results of Experiment 1: The data from exper-
iment 1 confirms hypothesis H[1(i)]: it shows that
when appropriate cases can be found in memory to
perform (pure) case-based planning, case-based rea-
soning indeed is more efficient than either model-based
planning or multistrategy planning (see Figure 1). In
addition, this data shows that hypothesis H[1(ii)] is
false: when the number of cases in memory is small
(not shown in the figure), model-based planning per-
formed faster than multistrategy reasoning most (ap-
proximately 92%) of the time while case-based plan-
ning typically fails to produce a solution at all.

When we repeated this experiment on a larger prob-

lem set of 1000 problems, we found that, for multistrat-
egy reasoning, at the beginning the average problem-
solving time increases as more problems are solved and
more cases are stored in the case memory. In partic-
ular, the problem-solving time increased by approxi-
mately two hundredths of a second per problem for
the first 1000 problems.
Results of Experiment 2: The data from experi-
ment 2 shows that both hypotheses H[2(i)] and H[2(ii)]
are false: in general, the case-based method produced
solutions that were worse than the solutions produced
by the model-based method, and, as a result, the inter-
gated system also produced solutions of inferior qual-
ity. The model-based planner always produced paths
with a smaller or equal number of path segments than
the case-based planner.

Results of Experiment 3: The data from exper-
iment 3 shows that hypothesis H[3] is false: the de-
composition of cases into partial cases and the stor-
age of partial cases increased the problem-solving time.
On average, the problem-solving time for the entire
path-planning process, including the storage of partial
paths, was 1.7 times more than the problem-solving
time without storage of partial paths (see Figure 2).
(Because of this result, all other experiments were con-
ducted without storing partial cases.)

Results of Experiment 4: The data from exper-
iment 4 shows that while hypothesis H[4(i)] is true,
hypothesis H[4(ii)] is false: while the case-based plan-
ner can indeed solve some problems with relatively few
initial cases in the case memory, it covers fewer prob-
lems than can model-based reasoning. This data shows
that the number of problems that can be solved by the
case-based planner increases linearly with the initial
number of cases in memory (see Figure 3). In partic-
ular, we needed to seed the case-based planner with
approximately 16% of all the possible problems in our
domain before it could solve approximately half (500f
the problems given to it.

Theoretical Implications

The main theoretical implications of this work can be
categorized along the lines of the four hypotheses we
studied experimentally.

Problem Coverage and Knowledge Require-
ments: The result that we least expected from our
experiments with Router is that the problem-solving
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Figure 2: Effects of partial cases.

coverage of case-based reasoning increases only lin-
early with the number of cases in memory. We fully
expected that the coverage of case-based planning will
strongly depend on the number of cases in memory.
However, initially we thought that as the case-based
planner acquires new cases, the number of problems
it can successfully solve will increase very rapidly —
much more rapidly than the number of cases available
in its memory. Clearly, this did not happen. Instead,
we found that the case-based planner needed about
16% of all possible problems in its domain before it
started working effectively in that it could solve a good
fraction of the problems given to it, and even then it
could solve only about half of all problems given to it.
In general, it seems that for a domain with N elemen-
tary components and N(N-1)/2 possible problems, it
is necessary to have 10*N cases in memory before the
case-based planner can start working effectively.

As we argued in the introduction to this paper,
model-based methods assume complete and correct
knowledge of the world, and this assumption is not
quite valid in many situations such as navigational
path planning. However, it appears that the success
of case-based methods is similarly dependent on the
assumption that a large number of cases is available in
memory. In fact, it seems that the problem-solving
coverage of case-based reasoning is directly propor-
tional to the number of available cases.
Computational Efficiency of Reasoning: The
case-based method for planning appears to be compu-
tationally more efficient than the model-based method.
This is because the case-based method reuses old plans

rather than forming new ones.

However, integrated case-based and model-based

planning can be computationally less efficient than ei-
ther case-based or model-based planning. This ap-
pears to contradict the result reported by Veloso based
on her work on the Prodigy system [Veloso 1992].
Prodigy integrates the methods of non-linear planning
and derivational analogy. In her experiments with
Prodigy in the domain of transport (logistic) planning,
Veloso found that the combination of non-linear plan-
ning and derivational analogy was more efficient than
the method of non-linear planning alone. We believe
that this contradiction could be due to a number of
factors: the differences between the derivational case-
based reasoning used in Prodigy and transformational
case-based reasoning used in Router, the differences
between the non-linear planner in Prodigy and the
model-based planner in Router, and the differences be-
tween the mechanisms for strategy selection in the two
systems.
Quality of Solutions: In general, model-based rea-
soning appears to produce plans of a quality higher
than does case-based reasoning. This contradicts the
result reported by Koton based on her experiments
with the Casey system [1988]. Casey performs med-
ical diagnosis. It contains a global causal model of the
heart as well as past cases of diagnosing some kinds of
heart problems. It combines case-based reasoning and
model-based reasoning for solving new heart-related
problems. Koton reports that the combination of case-
based and model-based reasoning produced solutions
that were as accurate as those produced by the
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model-based method alone.

Given a diagnostic problem, Casey first uses its
model of the heart to validate the apparently relevant
cases in its memory, and then works with only the
model-validated cases. Thus the quality of its solutions
is due to its use of the model of the heart even when
it is apparently using the case-based method for diag-
nosis. Therefore, the results from Casey should not be
interpreted as implying that the use of the case-based
method alone produces solutions of equal quality to
those produced by the model-based method.

In a different version of our Router system, we have

used Router’s spatial model of its navigation world to
(1) validate the cases retrieved from its memory, and
(ii) validate the solutions produced by the case-based
method by a kind of spatial simulation. The problem
with this kind of model-based case validation is that it
(again) assumes that the model is complete and cor-
rect. Kritik [Goel 1991] offers an alternative approach.
It combines case-based and model-based reasoning for
designing a class of engineering devices. Instead of
using a global domain model, however, it uses case-
specific device models. Its approach for integrating
case-based and model-based reasoning offers the bene-
fit of combining the efficiency of case-based reasoning
with the accuracy of model-based reasoning without
requiring global domain models.
Partial Cases: On the surface, the decomposition of
cases into partial cases at storage time has the poten-
tial of retrieving more appropriate cases when a new
problem is presented to the case-based planner at a
later time. In turn, the retrieval of a case that more

closely matches the new problem can help to re-
duce the computational cost of adapting the old plan
to solve the problem. Qur experiments with Router,
however, clearly demonstrate that in general the use
of partial cases significantly increases the cost of case-
based reasoning. We fully expected that the use of
partial cases will add to the cost of retrieving appro-
priate cases from memory because the memory would
contain more cases. Qur analysis of the Router ex-
periments, however, indicates that the added cost of
retrieval is small in relation to the added cost of de-
composing the case into partial cases and storing the
partial cases in memory.

An alternative design strategy might be to decom-
pose a case into partial cases at case-adaptation time
if so needed for problem solving. If a partial case is
extracted during the process of modifying a retrieved
case, then the partial case can be stored in the case
memory without incurring the additional cost of case
decomposition.

The above discussion leads us to the conclusion that
at least for navigational path planning, an integration
of case-based and model-based reasoning is the best
strategy. An integrated approach would be able to
combine the advantages of both methods in a com-
plementary manner. In particular, such an integrated
approach would combine the efficiency of cased-based
planning and the robustness of model-based planning.
However, it seems clear from our experiments that
in order to fully exploit the advantages of the inte-
grated approach for designing practical robot planners,
Router’s mechanism for strategy selection would need



to be smarter.
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