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Abstract

In recent years, there have been significant strides in in-
creasing quality of range from stereo using global tech-
niques such as energy minimization. These methods can-
not yet achieve real-time performance. However, the need
to improve range quality for real-time applications persists.
All real-time stereo implementations rely on a simple cor-
relation step which employs some local similarity metric
between the left and right image. Typically, the correla-
tion takes place on an image pair modified in some way to
compensate for photometric variations between the left and
right cameras. Improvements and modifications to such al-
gorithms tend to fall into one of two broad categories: those
which address the correlation step itself (e.g., shiftablewin-
dows, adaptive windows) and those which address the pre-
processing of input imagery (e.g. band-pass filtering, Rank,
Census). Our efforts lie in the latter area. We present in
this paper a modification of the standard band-pass filter-
ing technique used by many SSD- and SAD-based corre-
lation algorithms. By using the bilateral filter of Tomasi
and Manduchi [1], we minimize blurring at the filtering
stage. We show that in conjunction with SAD correlation,
our new method improves stereo quality at range disconti-
nuities while maintaining real-time performance.

1. Introduction

Range from stereo is an area of ongoing interest and activity
in computer vision. It spans applications from autonomous
navigation and robotics to medical imaging and visualiza-
tion for virtual and augmented environments. It also un-
derlies many research areas such as large-baseline, omni-
directional and multi-view stereo. For each case we must
select from a large ensemble of stereo algorithms the one
which best balances the accuracy and fidelity of the range
estimate against its computational cost.

∗This research was carried out at the Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

In many areas such as medical imaging or generation
of digital elevation models (DEMs), there is a need for the
highest quality range possible; runtime is secondary or in-
consequential. Stereo algorithms with these goals tend to
favor optimization schemes that propagate global informa-
tion to refine range estimates which cannot be estimated ro-
bustly from local information. Examples include algorithms
based on graph cuts [2] and dynamic programming [3].

On the other hand, applications such as perception for
autonomous navigation (e.g., robotics, automotive industry)
and virtual reality require fast updates of the range estimate.
These applications require algorithms with low run-times.
They cannot afford the expense of a global optimization and
must fall back instead on the best possible analysis of local
information.

The key advantage of local approaches is speed and suit-
ability for hardware implementation. Global optimization
algorithms commonly require 2 to 3 orders of magnitude
more time than even the software versions of the local meth-
ods [4]. Our own SAD implementation runs at 16 fps on a
Pentium IV 2 GHz processor for images of size320 × 240
pixels. In general, if such an algorithm runs in the order of
tenths of seconds in software implementations, it can com-
fortably reach video rates using DSP and FPGA implemen-
tations [5, 6]. At the moment, there is no technique for
achieving simultaneously the high quality range obtained
from global optimization with the fast run-times of local
schemes.

This local analysis typically takes the form of correla-
tion based matching of blocks between the left and right
image. The two flavors of correlator generally employed
are SSD/SAD[7] and normalized cross correlation[8]. In
the former, the sum of squared or absolute differences1 of
image intensities between local windows is computed, and
the lowest such score corresponds to a match. In the lat-
ter, the cross correlation between the windows is highest at
a match. In general, SAD is easier to compute and is less
sensitive to outliers than both SSD and cross correlation.[9]

1In the case of the census algorithm, it is the Hamming distance rather
than difference in intensities that is summed.
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We validate this in Section 4 by showing that normalized
cross correlation produces weaker matches than SAD.

All such local techniques must account in some way for
photometric variation between cameras in the stereo rig.
One method commonly employed with cross correlation is
image normalization, in which each image is modified to
have local statistics with zero mean and standard deviation
equal to one. For SSD/SAD, some form of band-pass filter-
ing is typically used. This may take the form of a Laplacian
of Gaussian convolution, a difference of Gaussians or a dif-
ference of averaging filters. These amount to a spatial filter-
ing in which texture information is preserved while low fre-
quency background intensity and very high frequency noise
are suppressed. In practice, only the high pass component
which accounts for the photometric balance is needed. A
fundamentally different approach is found in the Rank and
Census algorithms [10]. Here the original image is replaced
by one which directly encodes local image statistics. In the
Rank case, each pixel is replaced by the number of neigh-
boring pixels of lower intensity. In the Census case, each
pixel is replaced by a bit string encoding the intensity of all
neighboring pixels relative to the central pixel.

Real-time stereo can be improved by modifying the cor-
relator, by modifying the pre-processing step to supply the
correlator with better information, or by some combination
of the two. Various adaptations of the basic correlation
scheme have been proposed. These include shiftable [11],
overlapping [12] and adaptive [13] windows. However, any
of these techniques will benefit from a better pre-processing
of the image. We show this explicitly in Section 4.

We develop in this paper a technique for improved pre-
filtering of imagery for SAD-based stereo. The technique
consists of replacing the normal band-pass stage, which in-
troduces an inherent image smoothing, with an adaptive
process based on the bilateral filter (similar in concept to the
SUSAN smoother [14]), introduced by Tomasi and Man-
duchi [1]. We show that the results are superior to band-
pass filtering with SAD as well as to normalized cross cor-
relation. We do not compare directly to Rank or Census, but
these are known to suffer from the same problems at discon-
tinuities as SSD/SAD and normalized cross correlation. [6]
Furthermore, in our experience rank suffers from low infor-
mation content relative to the other algorithms and performs
poorly on fine structures. A fair comparison with Census
would require computation on imagery with bit-depth equal
to the size of a filter window. While this is ideal for hard-
ware implementations, it is less suitable for our software
based tests.

In Sec. 2 we discuss how the smoothing effect of the
standard SAD pre-filter is partially responsible for the low
quality at range discontinuities. In Sec. 3 we provide the
necessary background on the bilateral filter and describe our
adaptations for its use in real-time stereo. We also show

explicitly the effect of different pre-filtering schemes ona
synthetic image pair. In Sec. 4 we provide experimental
results with real data. Finally, we draw our conclusions in
Sec. 5.

2. Standard SSD/SAD Pre-Processing
Any stereo algorithm must compensate for photometric
variations between the cameras of the stereo rig. The usual
approach for SSD/SAD algorithms is to apply a Laplacian
of Gaussian filter, which suppresses high frequency noise
(intrinsic Gaussian smoothing) while simultaneously nor-
malizing the intensity information and preserving texture
information. This can be well approximated by a Difference
of Gaussians (DOG) [15] in which the original intensity im-
ageI is replaced byI ′, the difference of its convolution with
a large and small Gaussian kernel, i.e.

I ′ = I ∗ G(σsmall) − I ∗ G(σlarge)

In effect, the small Gaussian serves as a low pass filter and
the differencing serves as a high pass filter. For imagery
of good quality, the noise suppression provided by the low
pass filter is generally unnecessary. Thus, we only require a
high-pass filter, which can be achieved by background sub-
traction, i.e.,

I ′ = I − I ∗ G(σlarge) (1)

We have found the difference in stereo quality between
background subtraction, an averaging bandpass filter, and
convolution with a Laplacian of Gaussian to be negligible.
In the remainder of this paper, we will use background sub-
traction as the basis for comparison with our new approach.

Regardless of the variant used, any of the above methods
introduces a blurring across image discontinuities. The ef-
fect is a ringing around foreground objects which results in
a weakening of correlation match and a bleeding of range
across the discontinuity. We demonstrate this in Fig. 1 us-
ing a 15x15 kernel for background subtraction.2 Note the
ringing or halo effect near the trees. This does not corre-
spond to any real image content and is simply a side effect
of the background subtraction. However, it does result in
mis-estimation of disparity near the trees.

A pre-processing step that does not blur across range
discontinuities is an obvious step towards improved stereo.
However, until recently there has been no low-cost mech-
anism for smoothing in homogeneous image regions while
sharply preserving discontinuities. Complex schemes to ex-
tract this information would conflict with the real-time re-
quirement. In the next section, we show that the bilateral
filter solves this problem without incurring high computa-
tional costs.

2This is a kernel size we frequently use for real applicationsand is not
intended solely to highlight the ringing phenomenon.
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a) b) c)

Figure 1:a) Image of outdoor scene. b) Averaging with 15x15 filter. c) Background subtracted image. Note the ringing artifact around
the trees.

a) b) c)

Figure 2:a) Result of applying 15x15 bilateral filter withσd = 5 andσd = 10 to Fig. 1.a. Note that homogeneous areas such as the
ground are blurred, but fine detail and edges are preserved. b) Bilateral background subtraction. Texture is evident, but ringing is less
prominent. c) Detail of Fig. 1.c and Fig. 2.b. illustrates removal of ringing artifact

Note that correlation itself introduces an additional error
at range discontinuities. Since the correlation window has
non-zero extent, it will span objects at two different depths
if they are adjacent in the image. The result is an averaging
of correlation scores across boundaries. Larger correlation
windows result in greater density in the range image be-
cause they provide a larger support for the correlation func-
tion. However, this increased density is at the expense of
accuracy, especially at range discontinuities. Since our goal
is to analyze improvements in the pre-filtering stage, We
wish to minimize this effect as much as possible and, there-
fore, restrict ourselves to 7x7 correlation windows.

We now introduce the bilateral filter and show how it can
be applied to stereo.

3 The bilateral filter and its applica-
tion to stereo

The bilateral filter[1] computes the weighted average of the
pixels within a neighborhood with the weights depending
on both the spatial and intensity difference between the cen-
tral pixel and its neighbors. Expressed formally, the filter
takes a signalf(x) and returns

h(x) =

∫

Ω
f(ξ) c(ξ, x) s(f(ξ), f(x)) dξ
∫

Ω
c(ξ, x) s(f(ξ), f(x)) dξ

(2)

whereΩ is the filter support. The weight functionsc ands

are typically Gaussian distributions of the form

c(ξ, x) = e
−

1
2

(

|ξ−x|
σd

)2

(3)

s(f(ξ), f(x)) = e−
1
2 (

|f(ξ)−f(x)|
σr

)
2

(4)

For the case of images,f(x) is the intensity at pixelx, σd

is the standard deviation of the spatial component of the
blurring function andσr is the standard deviation of the in-
tensity component.

The bilateral filter can be used as an edge-preserving
smoother, removing high-frequency components of an im-
age without blurring its edges. We can control the the spa-
tial support of the filter, and thus the level of blurring, by
varyingσd. By varyingσr, we can adapt the sensitivity of
the filter to changes in image intensity. In Fig. 2, we show
the same greyscale image of an outdoor scene as in Fig. 1,
but now using a 15x15 bilateral filter withσr = 5, σd = 10.
Observe that tree edges are preserved by the bilateral filter
while homogeneous regions are blurred. In the background
subtracted image, texture is apparent without the noticeable
ringing of the standard background subtraction.

For stereo, the bilateral filter takes the place of Gaussian
averaging in the background subtraction step. Thus, if the
original intensity image isI and its bilaterally filtered ver-
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Figure 3: Left image of stereogram of pillar in front of back-
ground plane.
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Figure 4: Stereo results averaged over all rows of Fig. 3. Dis-
played are ground truth(red), background subtraction(green), bi-
lateral filtering(blue) and normalized cross correlation(black). Ob-
serve that bilateral filtering and cross correlation are closer to
ground truth near the column edges.

sion isB, we replace the image withI ′ subject to

I ′ = I − B

The resulting process achieves the same normalization ef-
fect as background subtraction in homogeneous areas, but
minimizes the blurring artifact at discontinuities.

We study the effect on stereo with a synthetic example
which allows us to control ground truth and which is ex-
plicitly designed to illustrate the effect of the new prefilter
on edges. In Fig. 3 we show the left image

of a stereogram consisting of uniform random noise. The
image is of an 11 pixel wide column in front of a back-
ground plane. The background has a disparity of 1 pixel
from left to right image and the column has a disparity of
10 pixels. The column is on average brighter than the back-
ground. We compute stereo using background subtraction
and bilateral filtering, both with 15x15 kernels. In the case
of the bilateral filter, we useσd = 5, andσr is computed
by a heuristic described below. For comparison, we also
compute stereo using normalized cross correlation. In all
cases, a 7x7 window is used for correlation, and left-right
line of sight checking is enabled. In Fig. 4, we show the
result of averaging computed disparities over all rows (re-

Figure 5: “Separable” bilateral filter consisting of two passes of
1d bilateral filter (vertical and horizontal) applied to image in Fig.
1.a. Observe that the result is very similar to the 2d filter.

Figure 6:Left image of cones with ground truth disparity.

call that they should be equal) using the three algorithms
just mentioned. We also show ground truth. Observe that
both bilateral pre-filtering with SAD and normalized cross
correlation are less susceptible to edge effects than the stan-
dard background subtraction. We will show in Section 4
that the bilateral approach also preserves the range density
typical of SAD and performs better than cross correlation
on homogeneous regions.

We now address the crucial issue of runtime. The bilat-
eral filter is not a filter in the traditional sense because the
kernel actually depends on the functionf in Eqn. 2. In par-
ticular, this complicates computation because the bilateral
filtering process is not separable. However, we have found
that approximating with a separable filter is adequate. In
Fig. 5, we show the result of applying a separable approxi-
mations consisting of a pair of 1d bilateral filters, one hori-
zontal and one vertical, to the image in 2. Observe that the
results are quite similar to the true 2d filter. With this “sep-
arable” version of the filter, our real-time system runs at 10
fps on 320x240 imagery using a 2 GHz P4 processor. We
anticipate that further optimization is possible.

Selection ofσd, the standard deviation of the spatial dis-
tribution, is dictated in part by the correlation window size
and is largely independent of image content. However,σr

necessarily depends on the image. We offer a simple heuris-
tic. For each pixel, we compute local image variance. We
then take the mode of this variance over the whole image as
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a) b) c)

Figure 7:Stereo results on Fig. 6 using a) 11x11 background subtraction. b) 11x11 bilateral filter c) normalized cross correlation. Edges
are more faithfully reproduced using both bilateral filtering and normalized cross correlation. However, there is greater loss of valid range
using cross correlation.

a reasonable candidate forσ2
r .

4. Experimental results
We show for real stereo imagery that the use of bilateral fil-
tering with SAD has advantages over both background sub-
traction with SAD and normalized cross correlation3. We
will also examine the effect of varying the filter size and
show that bilateral filtering is consistently better than back-
ground subtraction. In all cases, we use 7x7 correlation win-
dows with left-right line of sight checking enabled and set
σd in the bilateral filter to1

3
the kernel size. We use our

separable approximation of the bilateral filter throughout.
In Fig. 6 we see the left image of a stereo pair as well as

ground truth disparity. This image is taken from the recent
work of Scharstein and Szeliski[16] and used with permis-
sion. We begin with a comparison of stereo using back-
ground subtraction, bilateral filtering and normalized cross
correlation using 11x11 kernels for the pre-filters. For the
bilateral filter, we useσr = 50. Note that the filter size is
irrelevant for the cross correlation approach. The resultsin
Fig. 7 show sharper definition near edges for both the bilat-
eral and cross correlation approaches. However, the latteris
missing more valid range in homogeneous areas. Separate
diagnostic tools indicate that most of this loss is due to fail-
ure of the left-right check, most likely arising from shallow
extrema in the correlation scores.

In Fig. 8 we show that this improvement occurs primar-
ily We make these observations more concrete in Table 1.
We accept as accurate those estimates which are within0.5
pixel of the subpixel ground truth shown in Fig. 6.

at the boundaries of objects and accounts for gross errors
rather than subpixel errors. The figure shows a false color
image of the absolute difference of disparities between stan-
dard SAD and SAD with bilateral filtering. Notice that the

3Note that for normalized cross correlation we adapt local image statis-
tics (within a correlation window) to have zero mean and standard devia-
tion equal to one. This corresponds to metricC4 in [8]. Furthermore, the
image is not pre-filtered in any way.
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Figure 8:Absolute difference of disparity images from standard
and bilaterally filtered SAD stereo. The colorbar on the right
(ranging from 0 to 55) indicates the magnitude of the errors.

% Detected % Correct % Incorrect

Bck. Sub. 78.3 68.5 9.8
Bilat. 80.4 72.4 8.0
Cross Corr. 73.7 66.2 7.5

Table 1: Percentage of detected, correctly detected and incor-
rectly detected range.

difference is typically on the order of 10s of pixels dispar-
ity. The majority of pixels corrected by bilateral filtering
as reported in Table. 1 are accounted for in this difference
image. Notice also that more usable range is recovered at
the extreme ends of the image. This error in the standard
SAD algorithm results from the background subtraction av-
eraging over the usable edge of the rectified image. We now
show that the improvement of the bilateral filter pre-process
over background subtraction is independent of kernel size.
In Fig. 9 we show both filters for kernel sizes of 7x7, 11x11
and 15x15. In each case, the bilateral filter (second row)
produces better stereo at edges and on fine structures.

We turn now to the real scene in Fig. 1 taken from a
vehicle during an autonomous navigation trial. Unlike the
artificial image of the cones, this image presents a scenario
more likely to be encountered by a system for which real-
time stereo is crucial. The near trees present a challenge to
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a) b) c)

d) e) f)

Figure 9: Stereo results on Fig. 6 using background subtraction and a)7x7, b) 11x11 and c) 15x15 kernels. Same image and stereo
parameters using bilateral filtering with e) 7x7, e) 11x11 and e) 15x15 filter. In each case, the bilateral results are better near discontinuities
and for fine objects.

conventional SAD stereo. Unlike the cone example, ground
truth is not available. However, because of the larger dispar-
ity differences involved and the sharper intensity variations
between foreground and background, the advantages of the
bilateral filter are, nevertheless, apparent. We show in Fig.
10 that bilateral filtering and normalized cross correlation
reproduce the trees more accurately, but as with the cone
example, cross correlation suffers from greater loss of tex-
ture in uniform regions. We use 15x15 kernels for the rel-
evant filters to match our real-time system in this scenario.
The bilateral filter and especially the normalized cross cor-
relation lose some disparity data on the ground and in the
background trees. In both cases, this is due to a weaken-
ing of the correlation match with respect to standard SAD.
We illustrate this in Fig. 10 by showing histograms of the
absolute subpixel curvature for each algorithm. While raw
correlation scores for the different algorithms are not com-
parable, the curvatures of quadratic fits to the correlation
scores are. They represent the sharpness of the fit and can
be used directly as a confidence measure on correlation. We
see that of the three variants pictured, normalized cross cor-
relation has the weakest correlation peaks, and SAD with
background subtraction the strongest. The bilateral filter
represents a trade-off. It reproduces the near trees at least
as faithfully as normalized cross correlation while minimiz-
ing the loss of texture on the ground. Note that the result
pictured is typical of the whole sequence from which the
current image is taken. A portion of this processed sequence
is available at http://robotics.jpl.nasa.gov/∼aiansar/bifilt.

Finally, we prove the claim made in the introduction that
bilateral pre-processing can benefit not only simple SAD
correlation but modified correlators as well. We illustrate
this fact by using shiftable windows with a 3 pixel horizon-
tal shift in conjunction with both background subtraction
and bilateral filtering. The results are pictured in Fig. 11.
As with the standard SAD correlator, the shiftable window
correlator also shows better definition of the near trees using
bilateral filtering.

5. Summary and Conclusions
Real-time stereo algorithms typically rely on a simple cor-
relation mechanism applied to imagery processed in some
way to account for photometric variations between cameras.
Improvements to such algorithms address either the corre-
lation step or, as with our work, the preprocessing step. As
we have shown, those modifications which target the latter
are likely to also benefit the former. We have presented in
this paper an improvement to the filtering step employed by
most SAD based correlation algorithms which replaces the
conventional bandpass filters with background subtraction
of a bilaterally filtered image. The result suppresses pho-
tometric variation between cameras, much like other band-
pass filters, while maintaining much greater fidelity of data
at discontinuities in intensity, hence in most discontinuities
in range. This produces better stereo at these range discon-
tinuities. We have also shown that our solution has some
advantages over the alternative cross correlation approach
in that it has less loss of range in uniform regions. Further-
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Figure 10:Stereo result on scene in a) using b) background subtractionc) bilateral filtering and d) normalized cross correlation.Tree
edges are more faithfully reproduced using both bilateral filtering and normalized cross correlation. However, there is greater loss of
valid range, particularly on the ground, using cross correlation. This is explained by examining the curvatures of the subpixel fit. We see
histograms of these for e) background subtraction f) bilateral filtering and g) normalized cross correlation. Observe that the mode is highest
for e) and lowest for g).

more, our method does not sacrifice the real-time perfor-
mance which drives current correlation based algorithms.
We are currently working to compensate for the loss of data
in the background seen in Fig. 10. We believe that a hybrid
approach, using bilateral subtraction only in certain regions
dictated by image statistics and normal background subtrac-
tion elsewhere, will solve this problem.
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