
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022 1

LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry
for Real-Time 3D Mapping

Andrzej Reinke1,2, Matteo Palieri1,3, Benjamin Morrell1, Yun Chang4, Kamak Ebadi1,
Luca Carlone4, Ali-akbar Agha-mohammadi1

Abstract—Lidar odometry has attracted considerable attention
as a robust localization method for autonomous robots operat-
ing in complex GNSS-denied environments. However, achieving
reliable and efficient performance on heterogeneous platforms
in large-scale environments remains an open challenge due to
the limitations of onboard computation and memory resources
needed for autonomous operation. In this work, we present
LOCUS 2.0, a robust and computationally-efficient lidar odom-
etry system for real-time underground 3D mapping. LOCUS
2.0 includes a novel normals-based Generalized Iterative Closest
Point (GICP) formulation that reduces the computation time of
point cloud alignment, an adaptive voxel grid filter that maintains
the desired computation load regardless of the environment’s
geometry, and a sliding-window map approach that bounds
the memory consumption. The proposed approach is shown to
be suitable to be deployed on heterogeneous robotic platforms
involved in large-scale explorations under severe computation
and memory constraints. We demonstrate LOCUS 2.0, a key
element of the CoSTAR team’s entry in the DARPA Subterranean
Challenge, across various underground scenarios.

We release LOCUS 2.0 as an open-source library and also
release a lidar-based odometry dataset in challenging and large-
scale underground environments. The dataset features legged and
wheeled platforms in multiple environments including fog, dust,
darkness, and geometrically degenerate surroundings with a total
of 11 h of operations and 16 km of distance traveled.

Index Terms—SLAM, Data Sets for SLAM, Robotics in Under-
Resourced Settings, Sensor Fusion

I. INTRODUCTION

L IDAR odometry has emerged as a key tool for robust
localization of autonomous robots operating in complex

GNSS-denied environments. Lidar sensors do not rely on
external light sources and provide accurate long-range 3D
measurements by emitting pulsed light waves to estimate
the range to surrounding obstacles, through time-of-flight-
based techniques. For these reasons, lidar has been often

Manuscript received: February, 24, 2022; Revised May, 13, 2022; Accepted
May, 19, 2022.

This paper was recommended for publication by Editor Javier Civera upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported by the Jet Propulsion Laboratory - California
Institute of Technology, under a contract with the National Aeronautics and
Space Administration (80NM0018D0004). This work was partially funded by
the Defense Advanced Research Projects Agency (DARPA). ©2022 All rights
reserved.

1Reinke, Palieri, Morrell, Ebadi and Agha-mohammadi are with NASA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,
USA benjamin.morrell@jpl.nasa.gov

2Reinke is with University of Bonn, Germany arein@uni-bonn.de
3Palieri is with the Department of Electrical And Information Engineering,

Polytechnic University of Bari, IT matteo.palieri@poliba.it
4Chang and Carlone are with the Department of Aeronautics and As-

tronautics, Massachusetts Institute of Technology, Cambridge, MA, USA.
lcarlone@mit.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1: Four examples from our large underground lidar-based SLAM
dataset consisting of over 16 km distance traveled and 11 h of operation
across diverse environments: (a) a large-scale Limestone Mine (Kentucky
Underground), (b) A 3-level urban environment with both large, open spaces
and tight passages (LA Subway), (c) lava tubes with large vertical changes,
and (d) lava tubes with narrow passages. LOCUS 2.0 performed successfully
in all these environments on computationally constrained robots.

preferred over visual sensors to achieve reliable ego-motion
estimation in cluttered environments with significant illumina-
tion variations (e.g., search, rescue, industrial inspection and
underground exploration).

Lidar odometry algorithms aim to recover the robot’s motion
between consecutive lidar acquisitions using scan registration.
Through repeated observations of fixed environmental fea-
tures, the robot can simultaneously estimate its movement,
construct a map of the unknown environment, and use this
map to keep track of its position within it.

While many lidar odometry algorithms can achieve remark-
able accuracy, their computational cost can still be prohibitive
for computationally-constrained platforms, reducing their field
of applicability in systems of heterogeneous robots, where
some of the robots may have very limited computational
resources. Moreover, many existing approaches maintain the
global map in memory for localization purposes, making them
unsuitable for large-scale explorations where the map size in
memory would significantly increase.

Our previous work [1] presents LOCUS 1.0, a multi-sensor
lidar-centric solution for high-precision odometry and 3D
mapping in real-time featuring a multi-stage scan match-
ing module, equipped with health-aware sensor integration

ar
X

iv
:2

20
5.

11
78

4v
2

 [
cs

.R
O

]
 1

3
Ju

n
20

22

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

that fuses additional sensing modalities in a loosely-coupled
scheme. While achieving remarkable accuracy and robustness
in perceptually degraded settings, the previous version of
LOCUS 1.0: i) had a more significant computational load, ii)
maintained the global map in memory, iii) was less robust
to more generalized sensor failures, e.g., failure of one of
lidar sensor. LOCUS 2.0 presents algorithmic and system-level
improvements to decrease the computational load and memory
demand, enabling the system to achieve accurate and real-time
ego-motion estimation in challenging perceptual conditions
over large-scale exploration under severe computation and
memory constraints.

The new features and contributions of this work include
(i) GICP from normals: a novel formulation of General-
ized Iterative Closest-Point (GICP) that leverages point cloud
normals to approximate the point covariance calculation for
enhanced computational efficiency, (ii) Adaptive voxel grid
filter that ensures deterministic and near-constant runtime,
independently of the surrounding environment and lidars, (iii)
improvement and evaluation of two sliding-window map
storage data structures: multi-threaded octree, ikd-tree [2],
and (iv) dataset release1 including in challenging, real-world
subterranean environments (urban, tunnel, cave), shown in
Fig. 1, collected by heterogeneous robot platforms. All these
features improve the computational and memory operation
while maintaining accuracy at the same level. The source code
of LOCUS 2.0 has been released as an open-source library2.

The paper is organized as follows. Sec. II reviews related
work on lidar odometry. Sec. III describes the proposed system
architecture with a focus on the updates made to the frame-
work to enhance its performance in terms of computational
load and memory usage. Sec. IV provides an ablation study of
the system on datasets collected by heterogeneous robots dur-
ing the three circuits of the DARPA Subterranean Challenges,
an international robotic competition where robots are tasked
to explore complex GNSS-denied underground environments
autonomously.

II. RELATED WORKS

Motivated by the need to enable real-time operation under
computation constraints and large-scale explorations under
memory constraints in perceptually-degraded settings, we re-
view the current state-of-the-art to assess whether any solution
can satisfy these requirements simultaneously.

A. Lidar Odometry

The work [3] proposes DILO, a lidar odometry technique
that projects a three-dimensional point cloud onto a two-
dimensional spherical image plane and exploits image-based
odometry techniques to recover the robot ego-motion in a
frame-to-frame fashion without requiring map generation. This
results in dramatic speed improvements, however, the method
does not fuse additional sensing modalities and is not open-
source. The work [4] presents BALM, a lidar odometry

1https://github.com/NeBula-Autonomy/nebula-odometry-dataset
2https://github.com/NeBula-Autonomy/LOCUS

solution exploiting bundle adjustment over a sliding window of
lidar scans for enhanced mapping accuracy. While the paper
claims nearly real-time operation, the method does not fuse
sensing modalities and maintains the entire map in memory.

B. Lidar-Inertial Odometry

General challenges encountered in pure lidar-based odome-
try estimators include degraded motion estimation in high-rate
motion scenarios [5], and degenerate motion observability in
geometrically-featureless areas (e.g. long corridors, tunnels)
[6], [7]. For these reasons, lidars are commonly fused with
additional sensing modalities to achieve enhanced accuracy in
perceptually-degraded settings [8], [9]. The work [10] presents
LIO-SAM, an accurate tightly-coupled lidar-inertial odometry
solution via smoothing and mapping that exploits a factor
graph for joint optimization of IMU and lidar constraints.
Scan-matching at a local scale instead of a global scale sig-
nificantly improves the real-time performance. The work [11]
presents LILI-OM, a tightly-coupled lidar-inertial odometry
solution with a lidar/IMU hierarchical keyframe-based sliding
window optimization back-end. The work [12] presents LINS,
a fast tightly-coupled fusion scheme of lidar and IMU with
error-state Kalman filter to recursively correct the estimated
state by generating new feature correspondences in each
iteration. The work [13] presents RTLIO, a tightly-coupled
lidar-inertial odometry pipeline that delivers accurate and high-
frequency estimation for the feedback control of UAVs by
solving a cost function consisting of lidar and IMU residuals.
The work [14] presents FAST-LIO, a computationally-efficient
lidar-inertial odometry pipeline that fuses lidar feature points
with IMU data in a tightly-coupled scheme with an iterated
extended Kalman filter. A novel formula for computing the
Kalman gain results in a considerable decrease of computa-
tional complexity with respect to the standard formulation,
translating into decreased computation time. The work [15]
presents DLIO, a lightweight loosely-coupled lidar-inertial
odometry solution for efficient operation over constrained
platforms. The work provides efficient derivation of local
submaps for global refinement constructed by concatenating
point clouds associated with historical key-frames, along with
a custom iterative closest point solver for fast and lightweight
point cloud registration with data structure recycling that
eliminates redundant calculations. While these methods are
computationally efficient, the methods maintain a global map
in memory, rendering it unsuitable for large-scale explorations
over memory constraints.

C. Lidar-Visual-Inertial Odometry

The work [9] presents Super Odometry, a robust, IMU-
centric multi-sensor fusion framework that achieves accu-
rate operation in perceptually-degraded environments. The
approach divides the sensor data processing into several sub-
factor-graphs where each sub-factor-graph receives the predic-
tion from an IMU pre-integration factor, recovering the motion
from a coarse to fine manner and enhancing the real-time
performance. The approach also adopts a dynamic octree data
structure to organize the 3D points, making the scan-matching

https://github.com/NeBula-Autonomy/nebula-odometry-dataset
https://github.com/NeBula-Autonomy/LOCUS

REINKE et al.: LOCUS 2.0 3

process very efficient and reducing the overall computational
demand. However, the method maintains the global map in
memory.

The work [8] presents LVI-SAM, a real-time tightly-coupled
lidar-visual-inertial odometry solution via smoothing and map-
ping built atop a factor graph, comprising a visual-inertial sub-
system (VIS) and a lidar-inertial subsystem (LIS). However,
the method maintains the global map in memory, which it not
unsuitable for large-scale explorations with memory limited
processing units. The work [16] proposes R2LIVE, an accurate
and computationally-efficient sensor fusion framework for
lidar, camera, and IMU that exhibits extreme robustness to
various failures of individual sensing modalities through filter-
based odometry. While not explicitly mentioned in the paper,
the open-source implementation of this method features the
integration of an ikd-tree data structure for map storage which
could be exploited to keep in memory only a robot-centered
submap.

III. SYSTEM DESCRIPTION

LOCUS 2.0 provides an accurate Generalized Iterative
Closest Point (GICP) algorithm [17] based multi-stage scan
matching unit and a health-aware sensor integration module
for robust fusion of additional sensing modalities in a loosely
coupled scheme. The architecture, shown in Fig. 2, contains
three main components: i) point cloud preprocessor, ii) scan
matching unit, iii) sensor integration module. The point cloud
preprocessor is responsible for the management of multiple-
input lidar streams to produce a unified 3D data product that
can be efficiently processed by the scan matching unit. The
preprocessor module consists of Motion Distortion Correction
(MDC) of the point clouds. This module corrects the distortion
in the point cloud from sensor rotation during a scan due to
robot movement using IMU measurements.

Next, the Point Cloud Merger enlarges the robot field-of-
view by combining point clouds from different lidar sensors
in the robot body frame using their known extrinsic transfor-
mation. To enable resilient merging of multiple lidar feeds,
we introduce an external timeout-based health monitor that
dynamically updates which lidars should be combined in the
Point Cloud Merger (i.e. a lidar is ignored if its messages
are too delayed). The health monitoring makes the submodule
robust to lags and failures of individual lidars so that an output
product is always provided to the downstream pipeline. Then,
the Body Filter removes the 3D points that belong to the
robot. Next, the Adaptive Voxel Grid Filter maintains a fixed
number of voxelized points to manage CPU load and to ensure
deterministic behavior. It allows the robot to have consistent
computational load regardless of the size of the environment
or the number of lidars (or if potential lidar failures). In
comparison to LOCUS 1.0, the Adaptive Voxel Grid Filter
changes the strategy of point cloud reduction from a blind
voxelization strategy with fixed leaf size and random filter
to an adaptive system (Sec. III-B). The Normal Computation
module calculates normals from the voxelized point cloud.
The scan matching unit performs a GICP scan-to-scan and
scan-to-submap registration to estimate the 6-DOF motion of

Odom

Lidar 1

Lidar 2

Lidar N MDC

MDC

MDC
Point
Cloud
Merger

Body
Filter

Adaptive
Voxel
Grid
Filter

Normal
Computation

Scan-to-
Scan

Space
Monitor

Scan-to-
Submap

Odom

IMU

Sensor
Integration

Module

Point Cloud
Mapper

Inital
Guess

Lidar
Map

Point Cloud Preprocessor

Scan Matching Unit

Fig. 2: LOCUS 2.0 architecture.

the robot. LOCUS 2.0, in comparison to its predecessor, does
not recalculate covariances but instead leverages a novel GICP
formulation to use normals, which only need to be computed
once and stored in the map (Sec. III-A).

In robots with multi-modal sensing, when available, LOCUS
2.0 uses an initial estimate from a non-lidar source (from
Sensor Integration Module) to ease the convergence of the
GICP in the scan-to-scan matching stage, by initializing the
optimization with a near-optimal seed that improves accuracy
and reduces computation, enhancing real-time performance, as
explained in [1].

LOCUS 2.0 also includes a more efficient technique for map
storage. The system uses a sliding-window approach because
large-scale areas are not feasible to be maintained in memory.
For example, in one of the cave datasets presented here, a
global map at 1 cm resolution requires 50 GB of memory,
far exceeding the typically available memory on small mobile
robots. This approach demands efficient computational solu-
tions for insertion, deletion, and search.

A. GICP from normals
LOCUS 2.0 uses GICP for scan-to-scan and scan-to-submap

matching. GICP generalizes the point-to-point and point-to-
plane ICP registration by using a probabilistic model for
the registration problem [17]. To do this, GICP requires the
availability of covariances for each point in the point clouds
to be aligned. Covariances are usually calculated based on
the distributions of neighboring points around a given point.
Segal et al. [17] presents plane-to-plane application with the
assumption that real-world surfaces are at least locally planar.
In this formulation, points on surfaces are locally represented
by a covariance matrix, where the point is known to belong
to a plane with high-confidence, but its exact location in the
plane has higher uncertainty.

Here, we show how plane-to-plane covariance calculation
is equivalent to calculating covariances from pre-computed
normals. The fact that only the normal is needed is especially
important for scan-to-submap alignment since the map would
otherwise require recomputing point covariances, which is an
expensive operation involving the creation of a kd-tree and
nearest neighbors search. By instead using normals, the co-
variance computation is only performed once (since it is not
influenced by the addition of extra points), and the result can
be stored and reused.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

The most common implementations of GICP [18], [19] rely
on computing the covariances CB

i and CA
i for each point i

in two scans. That calculation of covariances in GICP takes
place as a pre-processing step whenever two scans have to
be registered. In the following, we describe how to obtain
the covariances, without recomputing them every time a scan
is collected. Any well-defined covariance matrix C can be
eigendecomposed to eigenvalues and eigenvectors [20], C =
λ1 u1 ·u1

T +λ2 u2 ·u2
T +λ3 u3 ·u3

T where λ1, λ2, λ3 are
the eigenvalues of matrix C, and u1, u2, u3 are eigenvectors
of matrix C. Two eigenvalues with the same value can be
interpreted and visualized as eigenvectors that span equally
2D planar surface with the same distribution in each direction.
This allows the covariance computation problem to be thought
of geometrically.

In the plane-to-plane metric, for a point ai from scan A we
know the position along the normal with very high confidence,
but we are less sure about its location in the plane. To represent
this, we set u1 = n, and assign λ1 = ε as the variance in the
normal direction, where ε is a small constant. We can then
choose the other eigenvectors to be arbitrary vectors in the
plane orthogonal to n and assign them comparatively large
eigenvalues λ2 = λ3 = 1, indicating that we are unsure about
location in the plane.

Let us take any vector that lies on the plane and is
perpendicular to the normal. The vector needs to satisfy
the plane equation (that it is perpendicular to the normal
vector) and cross the origin: nxx + nyy + nzz = 0. Then
z = − nx·x+ny·y

nz
, therefore the family of vectors on

the plane is u2 =
(x,y,−(nx·x+ny·y)/nz)
‖(x,y,−(nx·x+ny·y)/nz‖ , where nz and nx

corresponds to the component z and x of a normal vector n
and nz = 0 means the horizontal vector. The third vector u3

needs to simultaneously be perpendicular to u1 and u2 since
eigenvectors need to span the whole 3D space. Therefore,
u3 = n×u2. If we know the eigenvectors and eigenvalues of
matrix C, we have C = ε u1·u1

T+1.0 u2·u2
T+1.0 u3·u3

T .
Substituting from above, we get:

C =ε n · nT + 1.0 u2 · u2
T + 1.0 (n× u2) · (n× u2

T)
(1)

Then, if we take arbitrarily x = 1 and y = 0 then z = −nx

nz
,

and the covariance simplifies to:

C =ε n · nT +
(1, 0,−nx/nz)
‖(1, 0,−nx/nz)‖

· (1, 0,−nx/nz)
‖(1, 0,−nx/nz)‖

T

(2)

+n× (1, 0,−nx/nz)
‖(1, 0,−nx/nz)‖

· n× (1, 0,−nx/nz)
‖(1, 0,−nx/nz)‖

T

The results mean that the covariance can be purely expressed
via precomputed normals at each point.

B. Adaptive Voxel Grid Filter

To manage the computation load of lidar odometry, regard-
less of the environment and lidar configuration (in terms of
number of lidars and types), we propose an adaptive voxel grid
filter. In this approach, the goal is to maintain the voxelized
number of points at a fixed level (desired by the user) rather
than specifying the voxel leaf size and exposing the system to

Fig. 3: Illustration of our our sliding map approach. All points are maintained
until the robot reaches the boundary of the original window (step 3). Then, a
new window is set, and points outside that window are deleted.

the variability of the input points that stems from different
sensors configurations and cross-sectional geometry of the
environment. This design goal comes from the fact that almost
all computations in the registration stages are dependent on
a number of points N . Therefore the idea is to keep the
voxelized number of 3D points fixed to have approximately
fixed computation time per scan. The approach is as follows:
let us take any size of the initial voxel size dinit and set
dleaf = dinit, where dleaf is the size of the voxel leaf in the
current time stamp. We propose the following control scheme:
dleaft+1

= dleaft
Nscan

Ndesired
. The formula describes how much

should the current voxel size change dleaft+1
in comparison

to what the current size is dleaft based on the ratio on the
number of points in the current input scan Nscan to the points
that are desired for computation for given robot Ndesired. This
simple technique maintains the number of points on the fixed
level, while avoiding any large jumps in the numbers of points,
having too few points (e.g. a faulty scan) or having too many
points. The result is an improvement in the efficiency and
reduction of the computational load of the system.

C. Sliding-window Map

LOCUS 1.0 [1] stored the global map in memory through
an octree data structure. The native octree implementation
does not have an efficient way to prune data out. While a
possible workaround is to filter the points around the robot and
rebuild the octree accordingly, this might be computationally
expensive and lead to long refreshing times.

To account for these challenges, and enable large-scale
explorations under memory constraints, LOCUS 2.0 provides
two map sliding-window approaches (Fig. 3): i) multi-threaded
octree, ii) incremental k-dtree [21] (ikd-tree).

Multi-Threaded Octree approach maintains only a robot-
centered submap of the environment in memory. Two parallel
threads (threada and threadb) each working on dedicated
data structures (mapa/octreea and mapb/octreeb) are respon-
sible to dynamically filter the point cloud map around the
current robot position through a box-filter, and rebuild the
octree accordingly with the updated map, while accounting
for robot motions between parallel worker processes.

Ikd-tree [21] is a binary search tree that dynamically stores
3D points by merging new scans. Ikd-tree does not maintain
3D points only in the leaf nodes: they have points in the

REINKE et al.: LOCUS 2.0 5

TABLE I: Dataset summary.

ID Place Robot Distance
(m)

Duration
(min) Characteristic lidars

A
power plant
Elma, WA

(Urban)
Husky 631.53 59:56 feature-poor corridors,

large open spaces 3

B
power plant
Elma, WA

(Urban)
Spot 664.27 32:26

2-level,
stairs,

feature-poor corridors,
large & narrow spaces

1

C
power plant
Elma, WA

(Urban)
Husky 757.40 24:21 feature-poor corridors,

large & narrow spaces 3*

D
Bruceton Mine
Pittsburgh, PA

(Tunnel)
Husky 1795.88 65:36 self-similar

self-repetitive geometries 3*

E
Lava Beds National

Monument, CA
(Cave)

Spot 590.85 25:20
lava tubes and pools,

non-uniform environment,
degraded lightning

1

F
Bruceton Mine
Pittsburgh, PA

(Tunnel)
Husky 1569.73 49:13 self-similar

self-repetitive geometries 3*

G
power plant
Elma, WA

(Urban)
Husky 877.21 93:10 feature-poor corridors,

large & narrow spaces 3

H
Subway Station

Los Angeles, CA
(Urban)

Spot 1777.45 46:57

3-level,
multiple stairs,

feature-poor corridors,
large & narrow spaces

3

I
Kentucky Underground
Limestone Mine, KY

(Cave)
Spot 768.82 19:28

large area,
non-uniform environment,

degraded lightning
1

J
Kentucky Underground
Limestone Mine, KY

(Cave)
Husky 2339.81 57:55

large area,
non-uniform environment,

degraded lightning
3

* For our experiments we use only two lidars.

internal nodes as well. This structure allows dynamic insertion
and deletion capabilities and relies on lazy labels storage
across the whole data structure. Initial building of an ikd-tree is
similar to a kd-tree, where space is split at the median point
along the longest dimension recursively. Points that are moved
out of the boundaries of the ikd-tree data structure are not
deleted immediately, but they are labeled as deleted = True
and maintain information until a rebalancing procedure is
triggered.

IV. EXPERIMENTAL RESULTS

A. Dataset

Over the last 3 years, Team CoSTAR [22] has intensively
tested our lidar odometry system in real world environment
such as caves, tunnels and abandoned factories. Each dataset
(Tab. I) is selected to contain components that are challenging
for lidar odometry. The dataset provides lidar scans, IMU
and wheeled inertial odometry (WIO) measurements, as well
cameras stream. All datasets have been recorded on differ-
ent robotics platforms, e.g., Husky and Spot (Fig. 4) with
vibrations and large accelerations as is characteristic of both a
skid-steer wheeled robot traversing rough terrain and a legged
robot that slips and acts dynamically in rough terrain. The
Husky robot is equipped with 3 on-board VLP16 lidar sensors
extrinsic calibrated (one flat, one pitched forward 30 deg, one
pitched backward 30 deg). The Spot robot is equipped with
one on-board lidar sensor extrinsic calibrated. Spot out-of-
the-box implements (kinematic inertial odometry) KIO and
(visual inertial odometry) V IO, therefore the data records
those readouts as well. Lidar scans are recorded at 10 Hz.
WIO and IMU are recorded at 50 Hz. To determine the
ground truth of the robot in the environment, a survey-grade

(a) NeBula Spot robot (b) NeBula Husky robot

Fig. 4: Type of robots for heterogeneous robotic system in Nebula framework
for DARPA Subterranean Challenge

3D map (provided by DARPA in the Subterranean Challenge
or produced by the team) is used. The ground-truth trajectory
is produced by running LOCUS 1.0 against the survey-grade
map (i.e. scan-to-map is scan-to-survey-map). In this mode,
LOCUS 1.0 is tuned for maximum accuracy at the cost of com-
putational efficiency, as it does not need to be run in real-time.
The ground truth trajectory of the robot is determined based on
LOCUS 1.0 and its multi-stage registration technique: scan-
to-scan and scan-to-map (with high computational parameters
and slower pace of data processing) and some manual post-
processing work. These datasets have been made open-source
to promote further research on lidar odometry and SLAM
in underground environments: github.com/NeBula-Autonomy/
nebula-odometry-dataset.

B. Metrics

For CPU and memory profiling, a cross-platform library for
retrieving information on running processes and system utiliza-
tion is used [23]. The library is used for system monitoring
and profiling. The CPU represents the percentage value of
the current system-wide CPU utilization, where 100% means
1 core is used. The memory represents statistics by summing
different memory values depending on the platform. Odometry
delay measures the difference between odometry message
creation and the current timestamp of the system. The system
is implemented in Robot Operating System (ROS) framework.
This work considers maximum delay and mean delay since
those two metrics more directly impact the performance of
the modules using the odometry result, e.g., controllers and
path planners. Lidar callback time measures the duration time
for a scan at the time stamp tk to go through a pipeline of
processing from the queue of the lidar scans. Scan-to-scan
time measures the duration time for a scan at time tk to align
with a scan at time tk−1 in GICP registration stage. Scan-to-
submap time measures the duration time for a pre-aligned scan
from scan-to-scan at time tk to align with a reference local
map in GICP registration.

C. Computation time

1) GICP from normals: The experiments presented in this
section are designed to show the benefit of GICP from normals
over GICP and support the claim that this reformulation yields
better computation performance without sacrificing accuracy.
For each dataset, we compute statistics over 5 runs. The
GICP parameters for this experiment are chosen based on
[24]. The parameters for scan-to-scan and scan-to-submap are

github.com/NeBula-Autonomy/nebula-odometry-dataset
github.com/NeBula-Autonomy/nebula-odometry-dataset

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

the same: optimization step 1e−10, maximum corresponding
distances for associations 0.3, maximum number of iterations
in optimization 20, rotational fitness score threshold 0.005.
Husky computation runs in 4 threads, while Spot uses only 1
thread due to CPU limitations. The octree stores the map with
a leaf size 0.001 m.

The Fig. 5.a-e present the comparison results between GICP
from normals and GICP across datasets, while Fig. 5.f shows
the average percentage change across all dataset for each
metric with respect to the GICP method. GICP from normals
reduces all the computational metrics in LOCUS 2.0: mean
and max CPU usage, mean and max odometry delay, scan-
to-scan, scan-to-submap, lidar callback duration and their
maximum times. The computation burden is, on average,
reduced by 18.57% for all those metrics and datasets. This
reduction benefits the odometry update rate since frequency
increases by 11.10% that is beneficial for another part of
the system, i.e. for path planning and control algorithms.
The lidar callback is generally higher for datasets I and J
largely due to the consistently large cross-section of Kentucky
Underground making GICP take longer. One drawback of
this method leads to slight increase in the mean and max
APE errors. The reason is that normals are calculated from
sparse point clouds, and those normals are stored in the map
without any further recomputation. In GICP, the covariances
are recalculated from dense map point clouds. The mean
and max APE error increases across all datasets on average
10.82%, but the increase is not for all datasets. Without
including the tunnel dataset (F) the average APE error is only
5.23%. The rotational APE errors do not change much since
max APE decreases 0.94%, while mean APE increases 0.1%.

2) Adaptive Voxel Grid Filter: The second experiment
presented in this section shows LOCUS 2.0 adaptive behavior.
The experiments are run across all datasets with GICP from
normals and the same parameters as in Sec. IV-C1 with an
ikd-tree data structure for map maintenance with a box size
50 m, and Ndesired ranging from 1000 to 10000. Fig. 6.a
shows how the adaptive voxel grid filter keeps the number of
points relatively consistent across a 1 hour dataset, no matter
what the input Ndesired is.

There is still some variability in the computation time across
a dataset, though. Nonetheless, as shown in Fig. 8, the ap-
proach produces a consistent average computation time across
different environments and sensor configurations, without any
large spikes in computation time. This performance gives
more predictable computational loads, regardless of robot or
environment, as further reinforced in Fig. 7, where the average
callback time and CPU load are similar for all datasets at the
same adaptive voxelization setting.

D. Memory

1) Map maintenance: The third experiment presented in
this section presents the benefit of sliding-window maps in
real-time systems compared to classic, static octree-based
structures. In these experiments, LOCUS 2.0 uses: ikd-tree
and multi-threaded octree (mto). The octree with leaf size

TABLE II: Relative memory and CPU change.

ikd-tree mto 0.001 mto 0.01 mto 0.1 octree 0.001

Memory −68.09% −38.88% −62.15% −87.76% X

CPU 9.36% 50.42% 44.36% 19.61% X

0.001 m is the baseline used in LOCUS 1.0 to maintain full
map information. To assess different parameters mto runs with
leaf size 0.1 m, 0.01 m, and 0.001 m.

For sliding-window approaches, the map size is 50 m
since it is the maximum range of lidars. For scan-to-scan
and scan-to-submap stage GICP from normals is used with
the parameters chosen based on previous experiments. Fig. 9
presents the maximum memory use for F and I dataset
and how memory occupation evolves over time. The largest
memory occupancy is for octree and mto version for 0.001 m
leaf size. The ikd-tree achieves similar performance in terms
of memory and CPU usage as the mto with leaf size 0.01m.
Tab. II shows how sliding-window map approaches reduce the
memory usage while increasing the CPU usage in comparison
to the reference method from LOCUS 1.0.

Fig. 6.b shows the deletion, insertion and searching proce-
dure timings for different mapping strategies. Ikd-tree has the
most time-consuming procedures for searching, deletion, and
insertion across all datasets. For insertion, ikd-tree uses on
average 222% more computation time than the octree data
structure as new points need to be stored in a particular
manner. For search, ikd-tree gives on average 140% more
computation than the octree data structure.

2) Map size: These experiments show that the size of
the sliding map is an important parameter to consider while
trading off the computational, memory load and accuracy of
the result. The sliding-window map allows the system to be
bounded by the maximal memory that the robot allocates,
following the paradigms of Real-Time Operating System re-
quirements. Fig. 10 shows the max APE, CPU and memory
metrics for ikd-tree and mto in terms of map size. The smaller
map size gives the robot a lower upper bound for the memory,
but on the other hand, instances with larger maps have lower
APE as there is more overlap between scan and map. Other
than memory, these larger maps also see larger the mean and
max CPU load.

E. Comparison to the state-of-the-art

Tab. III shows the comparison study for LOCUS 2.0
against the state-of-the-art methods FAST-LIO [14] and LINS
[12] for different environment domains: urban, tunnel, cave
(A,C,F,H,I,J). The table shows that LOCUS 2.0 presents a
state-of-the-art performance in terms of max and mean APE
error metrics and achieves the smallest errors in 5 out of 6
presented datasets. In addition, LOCUS 2.0 is the only method
that does not fail in the tunnel type of the environment (dataset
F) where lidar slip occurs. In terms of computation, LOCUS
2.0 achieves equivalent performance to FAST-LIO. Memory
usage for LOCUS 2.0 is slightly larger, yet this is likely
related to the resolution of the map chosen by default in all
the systems.

REINKE et al.: LOCUS 2.0 7

Fig. 5: Results of GICP from normals and GICP comparison in LOCUS 2.0. For the meaning of the labels A-J see Tab. I

Fig. 6: (a) Number of points after the adaptive voxel grid filter for different
set-points (on dataset I). (b) Timeplots for deleting, adding, searching for
different map storage mechanisms.

Fig. 7: The figure presents comparison between adaptive voxelization
1000− 10000 points and constant leaf size 0.25 (our previously used static
voxel size). For 0.25 voxel the average number points for each dataset (A,
C, D, F, G, J) is 8423, 5658, 2967, 2368, 8511, 15901.

V. CONCLUSIONS

This work presents LOCUS 2.0, a robust and computational
efficient lidar odometry system for real-time, large-scale explo-
rations under severe computation and memory constraints suit-
able to be deployed over heterogeneous robotic platforms. This
work reformulates GICP covariance calculations from precom-
puted normals that improves the computational performance of
GICP. LOCUS 2.0 uses an adaptive voxel grid filter and makes

(a) Husky urban dataset (A). (b) Husky cave dataset (J).

Fig. 8: A comparison of the consistency of computation time for adaptive
voxelization with 3000 points and constant leaf size 0.25 (our previously
used static voxel size). a) Urban dataset using 2 lidars. b) Cave dataset using
3 lidars.

TABLE III: Comparison of LOCUS 2.0 to the state-of-the art methods
FAST-LIO [14] and LINS [12] for different environment domains.

Dataset Algorithms APE CPU [%] max memory

max [m] mean [%] max mean [GB]

LOCUS 2.0 0.19 0.09 102.38 185.50 1.06
A FAST-LIO 0.79 0.30 89.11 126.40 0.36

LINS 0.43 0.18 40.84 81.50 0.42

LOCUS 2.0 0.16 0.24 114.79 198.00 1.30
C FAST-LIO 2.21 4.22 76.46 307.20 0.99

LINS 0.43 0.60 38.43 75.30 0.47
LOCUS 2.0 0.67 0.45 119.00 229.20 1.98

F FAST-LIO 48555.33 9268.71 156.73 401.30 11.31
LINS 52.73 23.35 28.10 52.30 0.47

LOCUS 2.0 0.57 0.23 61.05 169.90 2.42
H FAST-LIO 5.92 5.69 75.15 160.80 0.62

LINS 12.11 8.05 39.19 97.90 0.61
LOCUS 2.0 1.39 1.95 72.11 141.60 1.01

I FAST-LIO 0.99 1.44 117.87 167.80 0.80
LINS 0.86 0.85 75.90 101.40 0.85

LOCUS 2.0 2.42 3.88 107.72 185.00 2.13
J FAST-LIO 1.72 2.60 126.72 332.50 2.54

LINS 3.56 5.79 73.76 176.50 1.85

the computational load independent on the environment and
sensor configuration. Adaptive behavior keeps the number of
points from the lidar consistent while keeping the voxelized

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

(a) Husky tunnel (F).

(b) Spot cave (I).

(c) Memory in time for (F). (d) Memory in time for (I).
Fig. 9: The plots show the metrics for different datasets relative to the
number of fixed voxelized points.

structure of the environment, which stabilizes and improves
the computational load. We evaluate two sliding map strategies
for reducing memory use: multi-threaded octree and ikd-tree,
and show both their computational cost, and improvement in
memory usage. We open-source both LOCUS 2.0, and our
dataset for challenging and large-scale underground environ-
ments that features various real-world conditions such as fog,
dust, darkness, and geometrically degenerate environments
that restrict mobility. Overall the datasets include 11 h of
operations and 16 km distance traveled.

REFERENCES

[1] M. Palieri, B. Morrell, A. Thakur, K. Ebadi, J. Nash, A. Chatterjee,
C. Kanellakis, L. Carlone, C. Guaragnella, and A.-a. Agha-Mohammadi,
“Locus: A multi-sensor lidar-centric solution for high-precision odome-
try and 3d mapping in real-time,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 421–428, 2020.

[2] Y. Cai, W. Xu, and F. Zhang, “ikd-tree: An incremental kd tree for
robotic applications,” arXiv preprint arXiv:2102.10808, 2021.

[3] S.-J. Han, J. Kang, K.-W. Min, and J. Choi, “Dilo: Direct light detection
and ranging odometry based on spherical range images for autonomous
driving,” ETRI Journal, vol. 43, no. 4, pp. 603–616, 2021.

[4] Z. Liu and F. Zhang, “BALM: Bundle adjustment for lidar mapping,”
IEEE RAL, vol. 6, no. 2, pp. 3184–3191, 2021.

[5] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, 2014, p. 9.

[6] A. Tagliabue, J. Tordesillas, X. Cai, A. Santamaria-Navarro, J. P.
How, L. Carlone, and A.-a. Agha-mohammadi, “Lion: Lidar-inertial
observability-aware navigator for vision-denied environments,” arXiv
preprint arXiv:2102.03443, 2021.

[7] K. Ebadi, M. Palieri, S. Wood, C. Padgett, and A. akbar Agha-
mohammadi, “DARE-SLAM: Degeneracy-aware and resilient loop
closing in perceptually-degraded environments,” Journal of Intelligent
Robotic Systems, vol. 102, no. 1, pp. 1–25, 2021.

[8] T. Shan, B. Englot, C. Ratti, and D. Rus, “Lvi-sam: Tightly-coupled
lidar-visual-inertial odometry via smoothing and mapping,” arXiv
preprint arXiv:2104.10831, 2021.

Fig. 10: Results based on size of the map for ikd-tree and mto 0.001 across
all datasets (A-J).

[9] S. Zhao, H. Zhang, P. Wang, L. Nogueira, and S. Scherer, “Super
odometry: Imu-centric lidar-visual-inertial estimator for challenging
environments,” arXiv preprint arXiv:2104.14938, 2021.

[10] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “Lio-sam:
Tightly-coupled lidar inertial odometry via smoothing and mapping,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 5135–5142.

[11] K. Li, M. Li, and U. D. Hanebeck, “Towards high-performance solid-
state-lidar-inertial odometry and mapping,” IEEE Robotics and Automa-
tion Letters, vol. 6, no. 3, pp. 5167–5174, 2021.

[12] C. Qin, H. Ye, C. E. Pranata, J. Han, S. Zhang, and M. Liu, “Lins: A
lidar-inertial state estimator for robust and efficient navigation,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 8899–8906.

[13] J.-C. Yang, C.-J. Lin, B.-Y. You, Y.-L. Yan, and T.-H. Cheng, “Rtlio:
Real-time lidar-inertial odometry and mapping for uavs,” Sensors,
vol. 21, no. 12, p. 3955, 2021.

[14] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct
lidar-inertial odometry,” arXiv preprint arXiv:2107.06829, 2021.

[15] K. Chen, B. T. Lopez, A.-a. Agha-mohammadi, and A. Mehta, “Direct
lidar odometry: Fast localization with dense point clouds,” arXiv preprint
arXiv:2110.00605, 2021.

[16] J. Lin, C. Zheng, W. Xu, and F. Zhang, “R2live: A robust, real-time,
lidar-inertial-visual tightly-coupled state estimator and mapping,” arXiv
preprint arXiv:2102.12400, 2021.

[17] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp,” in In Robotics:
science and systems, vol. 2, no. 4, 2009, p. p. 435.

[18] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in
ICRA. IEEE, 2011, pp. 1–4.

[19] K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Voxelized gicp for
fast and accurate 3d point cloud registration,” EasyChair Preprint no.
2703, EasyChair, 2020.

[20] G. Strang, Introduction to Linear Algebra, 4th ed. Wellesley, MA:
Wellesley-Cambridge Press, 2009.

[21] Y. Cai, W. Xu, and F. Zhang, “ikd-tree: An incremental k-d tree for
robotic applications,” 02 2021.

[22] A. Agha et al., “Nebula: Quest for robotic autonomy in challenging
environments; team costar at the darpa subterranean challenge,” ArXiv,
vol. abs/2103.11470, 2021.

[23] “psutil,” https://psutil.readthedocs.io/en/latest/.
[24] A. Reinke, “Advanced lidar odometry for exploration of unknown

underground environments,” Master’s thesis, University of Bonn, 2022.

https://psutil.readthedocs.io/en/latest/

	I Introduction
	II Related Works
	II-A Lidar Odometry
	II-B Lidar-Inertial Odometry
	II-C Lidar-Visual-Inertial Odometry

	III System Description
	III-A GICP from normals
	III-B Adaptive Voxel Grid Filter
	III-C Sliding-window Map

	IV Experimental Results
	IV-A Dataset
	IV-B Metrics
	IV-C Computation time
	IV-C1 GICP from normals
	IV-C2 Adaptive Voxel Grid Filter

	IV-D Memory
	IV-D1 Map maintenance
	IV-D2 Map size

	IV-E Comparison to the state-of-the-art

	V Conclusions
	References

