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Abstract— To achieve longer driving distances, planetary
robotics missions require accurate localization to counteract
position uncertainty. Freedom and precision in driving allows
scientists to reach and study sites of interest. Typically, rover
global localization has been performed manually by humans,
which is accurate but time-consuming as data is relayed between
planets. This paper describes a global localization algorithm
that is run onboard the Perseverance Mars rover. Our ap-
proach matches rover images to orbital maps using a modified
census transform to achieve sub-meter accurate, near-human
localization performance on a real dataset of 264 Mars rover
panoramas. The proposed solution has also been successfully
executed on the Perseverance Mars Rover, demonstrating the
practicality of our approach.

I. INTRODUCTION

The NASA Perseverance rover landed on Mars on Febru-
ary 18, 2021. It is part of the planned Mars Sample Return
campaign to collect sample tubes and return them to Earth for
scientific analysis. Collecting a diverse set of sample tubes
requires traversing long distances across the Martian surface.

It is the first rover to be able to drive autonomously at close
to its maximum electromechanical speed and its self-driving
autonomous navigation system has been used to evaluate
88% of the distance traveled [1]. The greatest distance it
has driven without human review is 699.9m over three days
which is a planetary rover record. This overall distance is
limited by growth in position uncertainty, shown in Fig. 1.

The position uncertainty is reset by localizing the rover on
a global map of Mars. To estimate absolute orientation, the
rover periodically runs a sun finding activity. However, to
reset the rover’s position uncertainty, human rover operators
downlink panorama images and match them to an orbital map
manually. Automating position estimation would enable the
localization process to be fully performed on Mars removing
any limitation on drive distance due to uncertainty growth.

This is the first paper to solve this problem on real Mars
data with sub-meter accuracy and no outliers, while also be-
ing compatible with the typical limitations of a flight mission
like limited compute, memory, uplink data volume, as well
as thermal and power constraints. This paper advances the
state-of-practice for planetary robots with:

• A novel model-based approach that achieves state-of-
the-art, near-human localization performance.

Part of this research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National
Aeronautics and Space Administration. © 2023. All rights reserved.

Fig. 1: A) On Sol 385, the Mars Perseverance Rover at-
tempted a long drive through a narrow corridor, but the
growth in its odometry position uncertainty (blue) resulted in
the dilation of the hazard map (red) and an early termination
of the drive. B) Our framework, Censible, addresses this
common problem through accurate and reliable localizations
to an orbital reference map, allowing the rover to reduce
position uncertainty, shrink the hazard map, and find a path.

• Comprehensive experiments on real Mars rover data,
and a demonstration on the Perseverance Mars Rover
showing the practicality of our approach.

II. RELATED WORK

In current practice on all Mars rover missions, global
localization is performed manually by humans. The rover
drives until its odometry solution accumulates too much
uncertainty and captures a 360 panorama which human
experts will manually match to an orbital map [2].

Image matching approaches cast global localization as
an image registration problem between the rover images
and the orbital map. Previous image matching approaches
include normalized cross-correlation [3], [4], [5], sum-of-
squared differences, and mutual information [6], [7]. These
approaches generally have a significant outlier rate, pre-
venting adoption in real missions. Particle filters have been
proposed to address this, but require images across multiple
locations [4].



Fig. 2: High-level overview of the global localization framework. A) Transforming the rover images to match the orbital
map: a 360 rover panorama of stereo images are radiometrically corrected, stereo matched, and orthographically projected
into a 2D grid. B) Matching the rover images to the orbital map: the orbital map is cropped based on rover odometry’s
position uncertainty, the orthomosaics are template matched to the orbital map based on the census and SSD similarity
measures, and the best score is extracted and converted into a delta position update.

Feature-based approaches extract and match image fea-
tures between rover and orbital images. Common approaches
include extracting SIFT features [8], terrain-specific features
like craters [9] or rocks [10], or some combination of the two
[11]. These approaches naturally require terrain with unique
features, and they struggle in low feature terrain that the
rovers often drive through. A related category uses bundle
adjustment to match features across many rover images to
reduce odometry error [12], [13], although the error still
fundamentally grows with distance traveled.

Horizon-based approaches match the local horizon to
surface digital elevation models (DEMs), and various meth-
ods have been proposed to extract the horizons [14], [15],
[16], [17], [18] or instead match mountain peaks [19],
[20]. Accuracy is typically on the order of 100m, at best
10m. These methods are valuable for orientation estimation,
but their accuracy does not match the position accuracy
requirements of a typical Mars rover mission scenario.

Deep CNN approaches are a compelling new category
that train a deep network to match rover images to orbital
images [21], [22], [23]. Many of these rely on significant
amounts of training data, often relying on simulation for
both training and evaluation. The large size of the networks
also presents a practical challenge for integration into a real
rover mission, both in terms of Earth-Mars uplink volume
and rover memory and computation constraints.

III. METHODOLOGY

Our orbital maps are based on HiRISE, which is the
highest resolution camera orbiting Mars with 0.25m image
resolution for the red/NIR channel. The DEMs are derived
from stereo matching and have 1.0m horizontal resolution.
The Perseverance rover has wide-angle lens color stereo
cameras mounted on a pan-tilt mast for navigation. The pan-

Fig. 3: A rover image and the orbital map rendered from the
same perspective. Even with the highest resolution orbital
maps available, there are significant differences in appear-
ance, geometry, and shadows between them. Our approach
produces robust matches despite these differences.

tilt can capture a 360 panorama of stereo images around the
rover, which forms the input for our method.

We model rover localization as an image registration
problem between the rover images and the orbital map.
We take a model-based approach to make the rover images
match the orbital map image as closely as possible, then
find a similarity measure that is invariant to the differences.
The following subsections detail the stages of our approach,
depicted in Fig. 2.

Absolute Orientation Estimation: Rover missions can
typically estimate absolute orientation with high accuracy,
either by estimating rover orientation based on the position
of the sun, the stars, or internally through gyrocompassing.
By running one of these activities in advance, the registration
problem can be simplified to a search over 2D translation.

Panoramic Stereo Imaging: We acquire a 360 panorama
of stereo pairs around the rover to maximize the area of
imaged terrain. For Perseverance, we use monochrome red
channel images, which are spectrally the most similar to the
red/near-infrared channel HiRISE map.



Fig. 4: The locations of all 264 panoramas localized in Jezero Crater on Mars, represented by white dots. The panorama
dataset captures the entire rover mission to date with a wide variety of terrains over 2.5 years. This includes featureless terrain,
complex terrain with occlusions, terrain modified due to wheel tracks, and a variety of shadows and lighting conditions.

Fig. 5: Comparison of sun angles for the rover images
(red) versus the orbital map images (blue). The solid black
lines represent the sun angle boundaries in Jezero Crater
(summer and winter solstice), and the dotted black line is
the spring/fall equinox.

Radiometric Correction: We model the image formation
process from pixel values to scene radiances. A key motiva-
tion for this stage is to make the lighting consistent across
all images in the combined orthomosaic. Common sources
of lighting discrepancies include vignetting from the rover
lens, or differences in image exposures.

p(x, y) = τcomp(f(x, y)rs(x, y)texp) + b) (1)

represents the function from scene radiances rs to pixel
values p(x, y), where τcomp is a square-root companding
table to compress 12 bits to 8 bits, texp is the exposure time,
b is a camera-specific bias, and f(x, y) is the flat field.

We model the flat field f(x, y) as a deformable radial
polynomial [24]. This step removes a significant vignette at
the edges of the wide-angle stereo images which is a nuisance
for image matching. We use this parametric model instead
of a raw flat-field image to minimize uplink data volume to
the rover, on the order of tens of megabytes:

rc(x, y) = (x− x0)
2 + (η(y − y0))

2

f(x, y) =

3∑
n=0

cnrc(x, y)
n

(2)

where rc(x, y) is the radius from column and row offsets
x0 and y0 (roughly the image center), η is the non-radiality
term which allows the curve to be asymmetric, and cn are the
coefficients of a third-degree polynomial. These parameters
are estimated using nonlinear least squares minimization
against the raw flat field correction images.

The image formation model above is inverted to obtain
the scene radiances, where τ−1

comp is the decompanding table,
the inverted lookup-table for τcomp:

rs(x, y) =
τ−1
comp(p(x, y))− b

f(x, y)texp
(3)



This model notably does not capture lens flare, which is a
nuisance present in images pointed towards the sun, but gen-
erally difficult to model and remove. Since panorama images
are captured within ten minutes of each other, variations in
dust optical depth and sun elevation did not have a significant
enough impact to warrant inclusion in this model.

Stereo Matching: Lens distortion is modeled with a
temperature-dependent CAHVORE model, a fisheye lens
distortion model [25]. Images are stereo rectified, and stereo
matching is performed using semi-global matching [26]. The
SGM model implicitly assumes smoothly varying terrain ge-
ometry, which is a reasonable assumption for Martian terrain.
SGM is particularly helpful in scenes with low texture, either
due to inherently featureless terrain or poor lighting condi-
tions due to the opposition effect (also known as shadow
hiding). The algorithm uses a Sobel pre-filter, 5x5 blocks
with a SAD-based correlator, and matching is performed with
the full-scale two-pass algorithm in 8 directions. Quadratic
subpixel estimation is used for more accurate ranges, and a
series of post-filters removes erroneous matches: a pseudo
left-right line-of-sight consistency check, a uniqueness ratio
check, and a speckle post-filter.

Orthoprojection: The stereo point cloud is rotated to align
with the orbital frame, using the previously recovered rover
absolute orientation and the mast joint angles. These points
are filtered to between 3 and 40 meters to remove the rover
body and shadows in the near range, and noisy stereo in the
far range. The stereo point clouds are ortho-projected into a
25cm resolution pixel grid to match the orbital appearance
maps. The 1m resolution DEM is interpolated to a 25cm
resolution grid to match the appearance map resolution to
facilitate adding the scores together later. Pixels that fall into
same grid cell are averaged.

Template Matching: To establish the rover’s position, the
rover orthomosaic image is matched against the orbital map
image. The orbital map is cropped around on the rover’s
position estimate from odometry, with a width of the rover’s
position uncertainty plus the stereo orthomosaic width. Both
the template and orbital map undergo a modified census
transform, a non-parametric local image transform that is in-
variant to monotonic variations in intensity. The transform’s
partial invariance to brightness differences between wedges is
also particularly useful for any unmodeled radiometric effects
like lens flare.

The census transform is defined by a comparison operator
between nearby pixel intensities. The proposed implemen-
tation accounts for missing data by adding a third category,
which is ignored by the modified Hamming distance (Fig. 6).

c (p, p′) =


0 if p > p′

1 if p ≤ p′

∅ if either p or p′ have no data
(4)

This comparison is performed over a local window of pixels
W , which is typically 3×3. Self-comparisons are excluded,
resulting in 8 comparisons:

W = {(i, j) | i, j ∈ {−1, 0, 1}, (i, j) ̸= (0, 0)} (5)

Fig. 6: Modified census transform with missing data, which
is not penalized by the modified Hamming distance.

A typical census transform results in an 8-field descriptor for
each pixel location (x, y) in an image I [27]. This transform
is performed on both the rover orthomosaic and orbital map,
resulting in a descriptor D for each pixel location:

D(x, y) = c(I(x, y), I(x+ i, y + j)) i, j ∈ W (6)

The proposed algorithm uses a modified Hamming distance
which does not penalize missing data, which comes from
geometric occlusions and stereo failures that are a natural
consequence of the rover’s perspective:

H (d, d′) =

{
0 if d = d′, d = ∅ or d′ = ∅
1 otherwise (d ̸= d′)

(7)

The Hamming distance between two descriptors sums over
each comparison within the window W :

H (D,D′) =
∑|W |

k=1 H(d, d′) (8)

The census score matrix SC is computed by sliding the rover
descriptor image Dr over the map descriptor image Dm and
summing the modified Hamming distances:

SC(x, y) =
∑
i,j

H(Dm(x+ i, y + j)︸ ︷︷ ︸
map

, Dr(i, j)︸ ︷︷ ︸
rover

)) (9)

The elevation score matrix uses a sum of squared distances
(SSD) similarity measure between the rover Er and map Em

elevations. For invariance to absolute elevation differences,
the average elevation is subtracted from each window:

SE(x, y) =∑
i,j

((Em(x+ i, y + j)− µmx,y
)︸ ︷︷ ︸

map

− (Er(i, j)− µr)︸ ︷︷ ︸
rover

)2 (10)

The objective of template matching is to establish which x, y
location minimizes SC and SE , indicating that the template
and image region match. This search occurs over discrete
pixels that represent 25cm cells. A typical 30m search range
results in a 240×240 pixel search region:

min
x,y∈1..240

SC(x, y) + αSE(x, y) (11)

where α enables a weighted sum of the census and elevation
scores, with greater weight placed on the census scores. The
minimizing (x, y) pixel coordinates are then converted to
meters and then a global northing and easting.



Subpixel Estimation: The accuracy of the approach above
is fundamentally limited by map resolution, so we estimate
the subpixel location by fitting a 2D quadratic surface model
to the 3x3 pixel neighborhood surrounding the best score:

p(x, y) =

2∑
i=0

2∑
j=0

ai,jx
iyj (12)

The quadratic model parameters are estimated using least-
squares, and the subpixel location is recovered at the min-
imum critical point. In the rare case that the quadratic
model is a poor fit to the data, a 1D quadratic model is
fit to the 3x1 row and 1x3 column neighborhood, and the
subpixel row and column are estimated independently. The
minimum principal curvature of the 2D quadratic surface is
additionally calculated as a confidence measure, based on an
eigendecomposition of the 2D quadratic Hessian matrix.

Map Distortion Model: All map projections from sphere
to plane have an inherent but modelable distortion. The
equidistant cylindrical map projection has an inherent scaling
error in the east-west direction that grows the farther the
rover travels away from the map’s latitude of true scale φts.
For Perseverance, this could amount to a 1m discrepancy
between map and rover every 500m. To correctly translate
map vectors to rover vectors, the east-west scaling error can
be compensated by the formula:

eastingmap =
eastingrover ∗ cosφts

cosφ
(13)

where φ is the rover’s latitude and φts is the latitude of true
scale (or standard parallel). No scale correction is required
for the northing component.

Fig. 7: Localization accuracy of our approach on the bench-
mark dataset, using a 30m radius search window (the max
expected rover uncertainty). Our approach achieves near-
human performance with no significant outliers.

IV. EXPERIMENTS

A. Datasets

Our benchmark dataset consists of all available naviga-
tion camera panoramas from the Perseverance Mars Rover
mission, 264 in total. The dataset captures a wide variety
of environments from the past 2.5 years of the mission

(Fig. 4). Most images are captured in the afternoon (after
driving), with some panoramas captured in the late morning
(mid-drive), and all Martian seasons are represented (Fig. 5).
There are typically five stereo pairs per panorama, covering
a full 360 around the rover, but some panoramas only
capture three or four pairs. The image resolution is typically
2560x1920, but some images are 1280x960 and 5120x3840.
For consistency, we down-sample all images to 1280x960
resolution.

For ground truth locations, an independent team of map-
ping experts produced rover orthomosaics and hand-aligned
them to the HiRISE orbital map. The accuracy of these
locations is expected to be within a couple of pixels of the
orbital map (0.5m) [28]. This is a mature process that the
Mars missions currently depend on for localization, and our
results comport with this expected accuracy.

B. Benchmark Results on Mars Panoramas
We use a 30m search range, a conservative bound on the

rover odometry position uncertainty after a long drive. We
label localizations with >5m error as outliers based on a
Perseverance mission requirement for global localization.

Our approach achieves 0.36m accuracy across 264 panora-
mas with no significant outliers (Table I) and a maximum
error of 1.07m. Notably, the mode is around one-pixel
error (0.25m) in the orbital map (Fig. 7). Other common
approaches, including masked normalized cross-correlation
(NCC) and mutual information, produce some accurate lo-
calizations but suffer from significant outlier rates, especially
with large search ranges. The modified census transform
exhibits greater invariance to the intensity differences be-
tween the rover images and the orbital images and universally
produces less ambiguous correlation peaks in the score
matrix compared to alternative approaches (Fig. 8).

C. Ablation & Sensitivity Studies
Table II is an ablation study showing the relative impact

of each pipeline stage on overall localization performance.
The modified census transform is the key contributor to
localization performance. Radiometric correction, subpixel
estimation, DEM matching, and stereo method individually
play a more minor role in localization performance, but
in combination they impact average error and outlier rate
enough to justify their inclusion.

Table III is a sensitivity study showing the relative impact
of the key parameters. A key performance factor is maxi-
mizing the orthomosaic coverage, either through increasing
the number of panorama stereo pairs around the rover, or
increasing the max stereo range. The approach is surprisingly
insensitive to lower image resolutions, likely due to the
comparatively low resolution of the orbital map (Fig. 3). It is
also insensitive to increasing search ranges or map resolution,
although run-time and accuracy will be impacted in obvious
ways for each.

D. Results on the Perseverance Rover
The proposed framework has been tested both on the

Perseverance Mars Rover on Mars, and a flight-identical



Fig. 8: Compared to normalized cross-correlation (NCC) and
mutual information, the modified census transform consis-
tently produces the least ambiguous correlation peaks.

TABLE I: Comparison to Alternative Similarity Measures

Algorithm Avg. Error 99%-Tile >5m Errors
Masked NCC 24.97m 45.90m 225/264
Masked Mutual Information 24.33m 46.98m 216/264
Modified Census (Ours) 0.36m 0.93m 0/264

TABLE II: Ablation Study

Removed Feature Avg. Error 99%-Tile >5m Errors
Baseline (No removals) 0.36m 0.93m 0/264
No Radiometric Correction 0.38m 0.94m 1/264
No Subpixel Estimation 0.37m 0.93m 0/264
No SGM Stereo (Local BM) 0.36m 0.91m 0/264
No DEM Scores 0.36m 0.93m 0/264
No RadCorr/Subpx/SGM/DEM 0.73m 11.70m 3/264
No Census Scores 14.17m 43.26m 185/264

version of the rover on Earth. On both rovers, the algorithm
runs on a Qualcomm Snapdragon 801 processor, an onboard
co-processor to the rover’s main RAD750 computer.

On the flight-identical rover on Earth, the algorithm was
benchmarked on the Snapdragon co-processor: for 5 stereo
pairs, it ran in 81s and used <1GB of volatile memory (Ta-
ble IV). Semi-global stereo matching represents the majority
of the run-time and memory consumption, although a more
constrained platform could use a simpler local stereo method
without a significant performance impact (Table III).

On Mars, the framework was deployed on the Persever-
ance rover and successfully executed on Martian sol 914.
The system executed in shadow mode, using images from a
previous sol without updating rover pose. The small footprint
of our system was key to enabling this test, due to the
limited uplink bandwidth to Mars: the binary was 744KB,
with a small 250KB appearance and elevation orbital map
representing a 200m x 200m area.

V. CONCLUSION AND FUTURE WORK

Motivated by increasing autonomous rover navigation, this
paper discusses our developments towards enabling longer

TABLE III: Sensitivity Study

Category Parameter Avg. Error 99%-Tile >5m Errors

Number
Stereo Pairs

3 pairs max 0.38m 1.04m 0/264
2 pairs max 0.42m 1.11m 0/264
1 pair max 0.88m 20.09m 6/264

Max Stereo
Range

40m 0.36m 0.93m 0/264
20m 0.35m 0.92m 0/264
10m 0.69m 11.11m 3/264

Stereo
Resolution

1280x960 0.36m 0.93m 0/264
640x480 0.35m 0.91m 0/264
320x240 0.35m 0.91m 0/264
160x120 0.40m 1.01m 1/264
80x60 4.17m 35.31m 46/264

Search
Radius

30m 0.36m 0.93m 0/264
50m 0.36m 0.93m 0/264
100m 0.36m 0.93m 0/264
150m 0.92m 0.95m 1/264

Appearance
Map
Resolution

25cm 0.36m 0.93m 0/264
28cm 0.36m 0.94m 0/264
50cm 0.48m 1.02m 0/264
100cm 0.71m 1.72m 0/264

TABLE IV: Real execution timing on flight-identical hard-
ware. At conservative thermal settings, the algorithm runs
within two minutes and <1GB volatile memory.

Resolution Pairs Total Stereo Matching Memory
2560x1920 1 36s 14s 8s <1GB
2560x1920 5 81s 65s 8s <1GB

drives applied to the Perseverance rover on Mars. The
approach meets human level accuracy. It enables the rover
to be commanded to drive for potentially unlimited drive
distances without requiring localization from Earth. Censible
is a system for global localization, applicable to wide range
of planetary robots.

Beyond Perseverance, absolute position estimation is key
for future planetary robotic missions. A number of national
agencies and private companies have plans for developing
planetary rovers in the next decade. Lunar rover missions
like Endurance aim to traverse many kilometers across
the Moon’s south pole. The Ingenuity and future Sample
Retrieval Helicopters require absolute position estimation to
navigate autonomously and retrieve sample tubes. Censible’s
success has already begun to impact some of these mission
studies.
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