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Visually-Guided Landing of an Unmanned Aerial
Vehicle

Srikanth Saripalli, Student Member, IEEE, James F. Montgomery, and Gaurav S. Sukhatme, Member, IEEE

Abstract— We present the design and implementation of a
real-time, vision-based landing algorithm for an autonomous
helicopter. The landing algorithm is integrated with algorithms
for visual acquisition of the target (a helipad), and navigation
to the target, from an arbitrary initial position and orientation.
We use vision for precise target detection and recognition, and
a combination of vision and GPS for navigation. The helicopter
updates its landing target parameters based on vision and uses
an onboard behavior-based controller to follow a path to the
landing site. We present significant results from flight trials in
the field which demonstrate that our detection, recognition and
control algorithms are accurate, robust and repeatable.

Index Terms— Unmanned Aerial Vehicle, Autonomous landing,
Autonomous helicopter, Vision-based navigation.

I. INTRODUCTION

UNMANNED AERIAL VEHICLES (UAVs) are sustained
in flight by aerodynamic lift and guided without an

onboard crew. They may be expendable or recoverable and
can fly autonomously or semi-autonomously. Historically the
greatest use of UAVs has been in the areas of surveillance
and reconnaissance [1]. They are indispensable for various
applications where human intervention is impossible, risky or
expensive e.g. hazardous material recovery, traffic monitoring,
disaster relief support, military operations etc. A helicopter is
a highly maneuverable and versatile UAV platform for several
reasons: it can take off and land vertically, hover in place,
perform longitudinal and lateral flight as well as drop and
retrieve objects from otherwise inaccessible places.

An autonomous helicopter must operate without human in-
tervention, yet must meet the rigorous requirements associated
with any airborne platform. A basic requirement is robust
autonomous flight, for which autonomous landing is a crucial
capability. Vision provides a natural sensing modality for ob-
ject detection and landing. In many contexts (e.g. urban areas,
airports) the structured nature of landing makes it suitable for
vision-based state estimation and control. Inherently, vision
alone cannot provide the necessary feedback for autonomous
landing. This is because vision can only sense the motion
created by applied forces, not the forces themselves. It is
impossible for a controller to completely eliminate undesired
movements due to disturbances (e.g. due to wind) after they
are sensed. Precise helicopter maneuvers such as takeoff,
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trajectory following, and landing thus require inertial sensing
and control.

We combine vision with low-level postural control to
achieve precise autonomous landing of an unmanned model
helicopter. The vision-based system described here acts as an
overall controller sending navigational commands to a low-
level controller which is responsible for robust autonomous
flight and landing. The result is an overall algorithm for vision-
based autonomous landing of a helicopter in an unstructured
(other than the helipad, which is a structured cue) 3D environ-
ment. The vision problem being solved here is a special case
of the ego-motion problem where all the feature points lie on
a planar surface (in this case the landing pad) [2].

Fig. 1. The USC AVATAR (Autonomous Vehicle Aerial Tracking And
Reconnaissance) after landing on a helipad

In our experiments the helicopter is initialized in hover at
an arbitrary location. It is required to autonomously locate
and recognize a helipad [Figure 1], align with it and land
on it. After describing the structure of the helipad detection
and control algorithms, we present results based on flight data
from field tests which show that our method is able to land
the helicopter on the helipad repeatably and accurately. On
an average, the helicopter landed to within 31 cm position
accuracy and to within 6o in orientation as measured from the
center of helipad and its principal axis respectively. We also
present results which show the robustness of the algorithm,
which allows the helicopter to find the helipad after losing
it momentarily. Results are presented which show that the
algorithm is capable of tracking a moving target and land on
it, once it has stopped. In these experiments the helipad was
moved a significant distance (7 m on an average).
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II. RELATED WORK

Autonomous aerial vehicles have been an active area of
research for several years. Autonomous model helicopters
have been used as testbeds to investigate problems ranging
from control, navigation, path planning to object tracking and
following.

An early autonomous navigation system for a model-scale
helicopter (the Hummingbird) was reported in [3]. The unique
feature of this system was the sole use of GPS as the naviga-
tion sensor replacing the Inertial Measurement Unit, which is
conventionally favored as the primary navigation sensor. The
hummingbird GPS system consisted of a common oscillator
and four separate carrier-phase receivers with four antennae
mounted at strategic points of the helicopter body providing
the position, velocity, attitude and angular information for
vehicle control. The autonomous helicopter reported in [4]
used an INS/GPS combination. The inertial measurements
were sampled and processed by the onboard computer running
numerical integration, the Kalman filtering algorithm [5], and
simple PID control as the low-level vehicle control. The
control gains were determined by tuning-on-the-fly. In [6] a
system based on integration of the onboard INS and GPS was
used to produce accurate position and velocity estimates. The
autonomous helicopter reported in [7], [8], had a combination
of vision and GPS for navigation capability. The onboard DSP-
based vision processor provided navigation information such
as position, velocity and attitude at an acceptable delay (on
the order of 10ms), which was combined with GPS and IMU
data for accurate attitude and position measurements.

Vision-based robot control has been an active topic of re-
search [9]–[11]. In [4], a vision augmented navigation system
is discussed for autonomous helicopter control which uses
vision in-the-loop to control a helicopter. A notable vision-
based technique used in autonomous helicopter control, is the
visual odometer [12], which provides accurate navigational
information (position and velocity) which is combined with
inertial measurements. An early approach to autonomous
landing [8] decoupled the landing problem from vision-based
tracking. In [13] a vision-based solution is given for safe-
landing site detection in unstructured terrain where the key
problem is for the onboard vision system to detect a suitable
place to land, without the aid of a structured landmark such
as a helipad.

In work closely related to ours, the UC Berkeley team has
recently shown a real time computer vision system for tracking
a landing target [14], [15] and have successfully coupled it
with a helicopter controller to achieve landing [16].

While several techniques have been applied for vision-based
control of helicopters, few have shown landing of an au-
tonomous helicopter on a helipad. The problem of autonomous
landing is particularly difficult because the inherent instability
of the helicopter near the ground [17]. Also since the dynamics
of a helicopter are non-linear, only an approximate model of
the helicopter can be constructed [3].

Our approach, presented here differs from prior approaches
in two ways. First, we impose no constraints on the design of
the landing pad except that it should lie on a two dimensional

plane. Hence we use moment descriptors to determine the
location and orientation of the landing target. Second, our
helicopter controller is model-free and behavior-based which
provides a clean decoupling between the higher level tasks
(e.g. target recognition, tracking and navigation) and the low
level attitude controller. We validate our strategy in experi-
mental flight trials where our algorithm is not only able to
detect and land on a given target but is also able to track a
target which moves intermittently, and land on it.

III. THE TESTBED AND EXPERIMENTAL TASK

Our experimental testbed, the AVATAR (Autonomous Ve-
hicle Aerial Tracking And Reconnaissance) [18] is a gas-
powered radio-controlled model helicopter fitted with a PC-
104 stack augmented with sensors (Figure 1). A Novatel RT-
20 DGPS system provides positional accuracy of 20 cm CEP
(Circular Error Probable, i.e. the radius of a circle, centered at
the true location of a receiver antenna, that contains 50% of
the individual position measurements made using a particular
navigational system). A Boeing CMIGTS-II INS unit with a
three axis accelerometer and a three-axis gyroscope provides
state information to the onboard computer. The helicopter is
equipped with a downward-pointing color CCD camera and
an ultrasonic sonar. The ground station is a laptop that is
used to send high-level control commands and differential
GPS corrections to the helicopter. Communication with the
ground station is carried via 2.4 GHz wireless Ethernet and
1.8Ghz wireless video. Autonomous flight is achieved using a
behavior-based control architecture [19], discussed further in
Section V.
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Fig. 2. The state transition diagram for landing.

The overall landing strategy is best described as a simple
finite state machine (Figure 2) with three states1 : search,
track, and land. Initially the helicopter is in the search mode.
The vision algorithm (Section IV) scans for the landing target.
Once the landing target is detected, the system transitions to
the track mode. In this mode, the state estimation algorithm

1We will call these states, modes, to avoid confusion with the conventional
use of state in control theory to denote variables like the position and velocity
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sends navigational commands to the helicopter controller.
When the helicopter is aligned with the landing target the
vision-based controller commands the helicopter to land and
the system transitions to the land mode. If the target is lost
when the helicopter is in track mode, the system transitions
back to the search mode. Similarly, if alignment with the target
is lost during the land mode, the system transitions back to the
track mode. Next, we describe the vision and state estimation
algorithms.

IV. VISION ALGORITHM

The vision algorithm is described below in three parts; pre-
processing, geometric invariant extraction, object recognition
and state estimation.

A. Assumptions

We make the following assumptions:
� The camera is perpendicular to the ground plane and is

pointing downward.� The vertical axis of the camera coincides with the prin-
cipal axis of the helicopter.� The intensity values of the helipad are different from that
of the neighboring regions.

The first assumption affects the perceived shape of the
landing pad. The second assumption affects the accuracy of
landing. In reality the first two assumptions are often in
conflict. In the case when the helicopter is a stable hover (nose
pitched down), if the camera’s vertical axis coincides with the
principal axis of the helicopter, then necessarily the camera is
not perpendicular to the ground. However the misalignment is
small and in our assumptions, we ignore it.

B. Preprocessing

The goal of this stage is to locate and extract the landing
target. Figure 3 (a) shows an aerial view of the helipad used
in our experiments.

1) Thresholding and Filtering: Thresholding converts the
color image to a binary image. The image obtained from the
camera is noisy and the frame grabber is of low quality, hence
we work with binary images to reduce the computational cost
and increase the effectiveness of the algorithm. The image
is first converted to grayscale by eliminating the hue and
saturation information while retaining the luminance. This is
accomplished by the following equation [20]

Y � 0 � 299 � R
�

0 � 587 � G
�

0 � 114 � B (1)

where R,G,B represent the red, green and blue values in the
image respectively.

The thresholding algorithm must produce a binary image
which preserves the landing target but effectively removes
most of the other data from the image. One of the important
aspects of threshold selection is the capability to reliably
identify the mode peaks in the image histogram [20]. This
capability is of utmost importance for automatic thresholding
where the image characteristics can change over a broad range

(a) Image from onboard
camera

(b) Thresholded and fil-
tered image

(c) Segmented image (d) Final image

Fig. 3. Image processing results. Image (a) is captured in flight from the
downward-pointing camera on the helicopter

of intensity distributions. Choosing a good threshold in an
outdoor environment is difficult because the intensity values
vary significantly depending on sunlight, orientation of the
camera, heading of the helicopter etc. However, after various
runs with offline images obtained from the camera, it was
decided to threshold the image at a fixed threshold. We defer
the implementation of a variable threshold strategy to future
work.

A 7 � 7 Median-filter is applied to the thresholded image
for removing noise and to preserve the edge details effec-
tively. Median-filters have low-pass characteristics and they
remove additive white noise [20]. They preserve the edge
sharpness [21] in an image and are particularly suitable for
the recognition of geometric objects such as the helipad.
Figure 3(b) shows the image after thresholding and filtering.

2) Segmentation and Connected Component Labeling: The
image obtained after thresholding and filtering may consist of
objects other than the helipad. The objective of segmentation
is to partition the image into regions. If ℜ represents the
entire image region, then segmentation is the process which
partitions ℜ into n sub-regions ℜ1, ℜ2, ����� , ℜn such that

� ℜ1 � ℜ2 � ����� ℜn
� ℜ� ℜi is a connected region for i � 1 	 2 	������
	 n� ℜi � ℜ j

� φ for all i � 1 	 2 	������
	 n� f � ℜi  � TRUE for all i � 1 	 2 	������
	 n� f � ℜi � ℜ j  � FALSE for all i � 1 	 2 	������
	 n

where f � ℜi  is some classifier which classifies the region. We
use the image intensity to define f � ℜi  as

f � ℜi  � I � i 	 j �� I � i 	 j �� ℜi a � I � i 	 j  � b

0 � a � b � 255 (2)



4

where I � i 	 j  represents the intensity value of a pixel at � i 	 j 
and � a 	 b � represents the range of intensity values belonging to
a particular region.

The image is scanned row-wise until the first pixel at
a boundary is hit. All the pixels which belong to the 8-
neighborhood of the current pixel are marked as belonging
to the current object. This operation is continued recursively
until all pixels belonging to the object are counted. A product
of this process is the area of the particular object in pixels.
Objects whose area is less than a particular threshold area
( � 80 pixels) are discarded. Similarly objects whose area is�

700 pixels are discarded. The remaining objects are the
regions of interest and are candidates for the landing target
(Figure 3 (c)).

C. Interlude: Invariant Moments

Geometric shapes possess features such as perimeter, area,
moments that often carry sufficient information for the task
of object recognition. Such features can be used as object
descriptors, resulting in significant data compression, because
they can represent the geometric shape by a relatively small
feature vector. They are thus ideally suited for the present task.
Based on the geometric features of an object one can calculate
a set of descriptors which are invariant to rotation, translation
and scaling. These shape descriptors are widely used in optical
character recognition and pose estimation. One such class of
descriptors [22] is based on the moments of inertia of an
object. For a 2 � D continuous function f � x 	 y  the moment
is given by

mpq
��� ∞

� ∞
� ∞

� ∞
xpyq f � x 	 y  dxdy p 	 q � 0 	 1 � � (3)

where (p+q) represent the order of the moments. A uniqueness
theorem [23] states that if f � x 	 y  is piece-wise continuous and
has non-zero values only in the finite part of the xy plane,
moments of all orders exist and the moment sequence mpq

is uniquely determined by f � x 	 y  . Conversely, mpq uniquely
determines f � x 	 y  . Hence the moments of an object in an
image can be used for object detection.

The � p �
q  th order moment of an image I � x 	 y  , where

I � x 	 y  is the discrete (intensity) function is given by

mpq
� ∑

i
∑

j
ip jqI � i 	 j  (4)

where the indices i, j correspond to the coordinate axes x, y
respectively.

The center of gravity of the object is specified by

x̄ � m10

m00
ȳ � m01

m00
(5)

The central moments of an object are the moments defined
about the center of gravity and are given by

µpq
� ∑

i
∑

j
� i � x̄ p � j � ȳ qI � i 	 j  (6)

where p 	 q � 0 	 1 	 2 � � � and µpq is the � p � q  th order central
moment. The the indices i, j correspond to the coordinate axes

x, y respectively. The normalized central moments, denoted by
ηpq, are defined as

ηpq
� µpq

µ00
γ (7)

where

γ � p
�

q
2

�
1 f or p

�
q � 2 	 3 	�� � � (8)

¿From the definition it can be shown that the central
moments up-to third order are given by the following rela-
tions [24]

µ00
� m00

� µ (9)

where µ is the area of the object in the discrete case.

µ10
� µ01

� 0 (10)

µ20
� m20 � µ x̄2 (11)

µ11
� m11 � µ x̄ ȳ (12)

µ02
� m02 � µ ȳ2 (13)

µ30
� m30 � 3m20 x̄

�
2µ x̄3 (14)

µ21
� m21 � m20 ȳ � 2m11 x̄

�
2µ x̄2 ȳ (15)

µ12
� m12 � m02 x̄ � 2m11 ȳ

�
2µ x̄ ȳ2 (16)

µ03
� m03 � 3m02 ȳ

�
2µ ȳ3 (17)

Normalized central moments can be employed to produce
a set of invariant moments. The five lower-order invariants
φ1 	�� � � � φ5 are given in terms of the second and third order
central moments [22] by

φ1
� η20

� η02 (18)

φ2
� � η20 � η02  2 � 4η2

11 (19)

φ3
� � η30 � 3η12  2 � � 3η21 � η03  2 (20)

φ4
� � µ30

�
µ12  2 � � µ21

�
µ03  2 (21)

φ5
� � µ30 � 3µ12  � µ30

�
µ12  � � µ30

�
µ12  2� 3 � µ21

�
µ03  2 � � � 3µ21 � µ03  � µ21

�
µ03  (22)� � 3 � µ30

�
µ12  2 � � µ21

�
µ03  2 �

φ1 	�� � � φ5 are scale, rotation and translation invariant. Object
eccentricity is given by

ε � � µ02 cos2 θ � µ20 sin2 θ � µ11 sin2θ
µ02 sin2 θ � µ20 cos2 θ � µ11 cos2θ

� 2 (23)

The eccentricity ε is invariant to rotation, scaling and
translation. Since the eccentricity of an object can easily
be computed from the normalized moments we use it for
validating the helipad detection.
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Object orientation is defined as the angle between the
major axis of the object and the x-axis. It can be derived by
minimizing the function

S � θ  � ∑ ∑�
i � j ��� ℜ

� � i � x̄  cosθ � � j � ȳ  sinθ �2 (24)

where � i 	 j  belong to ℜ (the space representing the image).
Minimizing S � θ  gives the object orientation θ as

θ � 1
2

arctan � 2µ11

µ20 � µ02
 (25)

D. Object Recognition and State Estimation

Initial trials with test data showed that the first, second
and third moments of inertia were sufficient to distinguish
between the landing target and other objects present in the
image (Equations (18),(19),(20)). The algorithm was calibrated
offline using a set of images collected in prior flights. The
calibration values stored were the mean values of the moments
of inertia. During actual flight the moments of inertia of each
frame are calculated and compared to the calibration values. If
they lie within a tolerance of � 10% of the stored values and
the computed eccentricity is close to the correct value, then
the object (in this case the helipad) is said to be recognized
and the algorithm proceeds to the next step of state estimation.

The state estimation algorithm calculates the coordinates
and orientation of the landing target relative to the helicopter.
The heading is calculated using Equation 25, while the co-
ordinates of the landing target are calculated using Equation
5.

The coordinates of the helipad so obtained are in the image
frame. These coordinates are transformed into state estimates
relative to the helicopter, based on the height of the helicopter
above the ground. The height of the helicopter is obtained
from the onboard differential GPS. The x-coordinate of the
helipad in the helicopter frame of reference is given by

xheli
� height � tan φh

2 � ximage

resolution of the camera along the x axis
(26)

where φh is the field of view of the camera in the x direction,
ximage is the x-coordinate of the helipad in the image plane.
Similarly the y-coordinate of the helipad is given by

yheli
� height � tan φv

2 � yimage

resolution of the camera along the y axis
(27)

where φv is the field of view of the camera in the y direction,
yimage is the y-coordinate of the helipad in the image plane.
The x and y coordinates so obtained are converted into velocity
commands by dividing them with an appropriate scaling factor.
This scaling factor is inversely proportional to the height and
is determined empirically. These state estimates are sent to the
helicopter controller, described next.

V. CONTROL ARCHITECTURE

The AVATAR is controlled using a hierarchical behavior-
based control architecture. Briefly, a behavior-based con-
troller [25] partitions the control problem into a set of loosely
coupled behaviors. Each behavior is responsible for a partic-
ular task. The behaviors act in parallel to achieve the overall
goal. Low-level behaviors are responsible for robot functions
requiring quick response while higher-level behaviors meet
less time-critical needs. The behavior-based control architec-
ture used for the AVATAR is shown in Figure 4. The low-
level behaviors have been extensively described in previous
work [19], we give a brief summary below and focus on the
behaviors specific to the landing problem.

Navigation Control
Long term

Goal Behaviors

Altitude Control Lateral Velocity

Heading Control

Reflex
Behaviors

Short-term
Goal Behaviors

Desired
Altitude Position

or Vertical
Velocity

Desired
Lateral

Velocity

Pitch Control Roll Control

Desired
Pitch

Desired
Roll

Tail Rotor Collective

IMU

SONAR

Longitudinal
Cyclic

Lateral
Cyclic

GPS

Desired Location

Fig. 4. AVATAR behavior-based controller

At the lowest level the robot has a set of reflex behaviors that
maintain stability by holding the craft in hover. The heading
control behavior attempts to hold the desired heading by using
data from the IMU (Inertial Measurement Unit) to actuate the
tail rotor. The altitude control behavior uses the sonar, GPS
and IMU to control the collective and the throttle. The pitch
and roll control behaviors maintain the desired roll and pitch
angles received from the lateral velocity behavior. The lateral
velocity behavior generates desired pitch and roll values that
are given to the pitch and roll control behaviors to achieve a
desired lateral velocity. At the top level the navigation control
behavior inputs a desired heading to the heading control, a
desired altitude or vertical velocity to the altitude control and
a desired lateral velocity to the lateral control behavior. A key
advantage of such a control algorithm is the ability to build
complex behaviors on top of the existing low level behaviors,
without changing them.

The low-level and short-term goal behaviors roll, pitch,
heading, altitude and lateral control behaviors are imple-
mented with proportional controllers (The altitude control
behavior is implemented as a proportional-plus-integral(PI)
controller). For example the roll control behavior reads in the
current roll angle from the IMU and outputs a lateral cyclic
command to the helicopter. This is shown in Equation 28
where τ is the servo command, θ is the roll angle and θd

is the desired roll angle.
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τ � Kp � θd � θ  (28)

The long-term goal behavior navigation control is respon-
sible for overall task planning and execution. If the heading
error is small, the navigation control behavior gives desired
lateral velocities to the lateral velocity behavior. If the heading
error is large, the heading control behavior is commanded
to align the helicopter with the goal while maintaining zero
lateral velocity.

The altitude control behavior is further split into three sub-
behaviors, hover control, velocity control and sonar control.
The hover control sub-behavior is activated when the heli-
copter is either flying to a goal or is hovering over the target.
This sub-behavior is used during the object recognition and
object tracking state when the helicopter should move laterally
at a constant altitude. The hover controller is implemented as
a proportional controller. It reads the desired GPS location and
the current location and calculates the collective command to
the helicopter. This is shown in Equation 29 where τ is the
collective command sent to the helicopter servos, g � θlat 	 θlon 
is a function of the current latitude and longitude g � θdlat 	 θdlon 
is a function of the desired latitude and the longitude, Kp is
the proportional gain. The function g converts a given latitude
and longitude to the corresponding distance in meters from a
pre-surveyed point at the experimental site.

τ � Kp � g � θdlat 	 θdlon  � g � θlat 	 θlon � (29)

Once the helipad has been located and the helicopter is
aligned with the helipad the velocity control sub-behavior takes
over from the hover control sub-behavior. It is implemented
as a PI controller. The integral term is added to reduce the
steady state error. The helicopter starts to descend till reliable
values are obtained from the sonar. The sonar control sub-
behavior takes over at this point until touchdown. This is
also implemented as a PI controller. The velocity control sub-
behavior is shown in Equation 30 where τ is the collective
command sent to the helicopter servos, v is the current velocity
vd is the desired velocity, Kp is the proportional gain and Ki

is the integral gain.

τ � Kp � vd � v  � Ki
� � vd � v  dt (30)

The sonar control sub-behavior is shown in Equation 31,
where τ is the collective command to the helicopter servos,
x is the current position, xd is the desired position, Kp is the
proportional gain and Ki is the integral gain.

τ � Kp � xd � x  � Ki
� � xd � x  dt (31)

The values Kp, Ki represent the gains associated with the
PI controller. Currently these values are obtained empirically
during flight tests. We plan to obtain these values analytically
and tune them in the future.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A total of fourteen landings were performed on two dif-
ferent days in different weather conditions to validate the
algorithm. Out of the fourteen landings, nine were vision-
based autonomous landings where the helipad was stationary
and the helicopter had to autonomously detect it, align with
it and land on it. Two landings consisted of a transitional
stage where the helipad was intermittently hidden to test the
robustness of the algorithm. In the remaining three landings
the helicopter was required to track a moving helipad and land
on it once it stopped. The following subsections describe the
experimental results in detail.

A. Autonomous Landing

The helicopter is initially commanded to autonomously
fly toward the helipad based on GPS [search mode]. Once
the helipad is in view, the controller switches to vision -
based control [track mode] [Figure 2]. If for any reason the
helicopter loses sight of the helipad, the controller switches
back to search mode. Once in track mode the low-level
control behaviors on the helicopter receive commands from the
vision controller. The vision system sends orientation offset,
velocity forward and velocity right commands with respect to
the image coordinate frame to the helicopter controller. The
commands are then converted into velocity-north and velocity-
east commands based on the current GPS and heading. The
navigational control behavior takes these lateral velocity and
heading commands and sends the appropriate commands to
the low-level behaviors for the control of the helicopter.

TABLE I

DATA FROM FLIGHT TESTS

Trial Total flight time Landing time δθ
1 306 s 108 s 5 �
2 156 s 63 s 15 �
3 316 s 112 s 0 �
4 308 s 106 s 3 �
5 178 s 62 s 10 �
6 186 s 87 s 10 �
7 194 s 66 s 2 �
8 156 s 77 s 10 �
9 203 s 93 s 4 �

When the helicopter is oriented with the helipad it starts
descending [land mode]. At this juncture the helicopter is
controlled by the velocity control sub-behavior. If it descends
to a height of 2 meters or less the sonar control is activated.
From this point onwards the helicopter’s altitude is regulated
by sonar, till it lands.

A total of nine test flights were conducted for testing
autonomous landing only. The data obtained are shown in
Table I. The final average orientation error (δθ) is approx-
imately 7

�
. The computational cost for image processing is

shown in Table II. The time taken for computing the moments
of inertia is only 10% of the total time. We conclude that
if the landing target has a well defined shape, the vision
algorithm is computationally inexpensive. It may be noted that
our frame grabber was offboard, thus the captured images were
contaminated with wireless transmission artifacts, artificially
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TABLE II

COMPUTATIONAL COST FOR IMAGE PROCESSING AT 10 FRAMES PER

SECOND

Image Processing CPU time
Image Acquisition � 20%

Thresholding and Filtering � 12%
Segmentation � 40%

Component Labeling � 7%
Hu’s Moments of Inertia � 10%

GUI and displaying images
�

11%

increasing the difficulty of the problem. Further, because of
the limited bandwidth of the wireless video transmitter we
were able to process only 10 frames per second.

TABLE III

ERRORS IN THE OBJECT RECOGNITION ALGORITHM

Total No of Frames 22060
Helipad present 16094
Helipad detected 15632

Table III shows the accuracy of the algorithm used. The
data were obtained from approximately 22000 frames during
the nine flight trials. Each flight was of a duration of approx-
imately 3 minutes. Out of a total number of 22060 frames
processed, the landing pad was present in 16094 frames while
it was detected in 15632 frames. The algorithm failed to detect
the helipad in 462 out of 16094 frames - an error rate of 2 � 87%.
The moments of inertia are invariant to rotation, scaling and
translation but vary when the plane in which the image lies is
continually changing. The helicopter pitches and rolls in flight,
which changes the relative orientation of the image plane; this
distorts the image which results in errors. In the future we
plan to integrate measurements from the IMU with the vision
controller to nullify the effects caused by the roll and pitch
motion.

TABLE IV

AVERAGE RESULTS FROM FLIGHT TESTS

Mean time to land 81 s
Mean autonomous flight time 198 s

Mean error in orientation 6o

Standard Deviation in orientation 5o

Mean error in position 42 cm

Table IV shows the results averaged over the nine flight
trials. We were able to control the heading of the helicopter
remarkably well. During the landing phase, the downward
velocity is always restricted to a maximum of 0 � 2 m/s (see
Figure 5 (d)). This was implemented for a smooth descent
trajectory, as well as for safety purposes. The trajectory of
the craft during descent for a representative trial is shown
in Figure 5 (c). Although initially there are some variations
in height, the helicopter descends smoothly during the later
part. For the helicopter to finally land it has to overcome
ground effect and turbulence. So when the helicopter is 1m
from the ground we ramp down the collective servo to force a
decrease in the pitch of the main blades, thereby reducing

the upward thrust, hence the downward velocity ramps up
to a maximum. This can be seen in Figure 5 (d), when the
downward velocity reaches 0 � 6 meters/second. The difference
between the orientation of the helipad and the helicopter for a
representative trial is shown in Figure 5 (a). The controller is
able to maintain the orientation of the craft aligned with the
helipad.

The average position error after landing during these nine
flights was 42 cm from the center of the helipad. This value is
calculated as the distance from the center of the helipad to the
center of the helicopter after landing. This error is small when
compared to the size of the helipad (120 x 120 cm) and the
helicopter(150 x 180cm). Presently the camera is statically
mounted below the undercarriage of the helicopter pointing
down. Depending on the height of the craft even a small
inclination in the craft causes a large change in the horizontal
distance on the ground, making it difficult to track the landing
target precisely. Mounting the camera on a gimbal would solve
the problem. Also precise control of the helicopter near the
ground is difficult because of the air-cushion developed by
the downward thrust from the main rotor of the helicopter.

B. Autonomous Landing with Helipad Momentarily Hidden

Two trials were performed where the helipad was momen-
tarily hidden when the helicopter was in track mode. The
helicopter successfully went into search mode, and when the
helipad was visible again, it was able to successfully track the
helipad, orient appropriately and land on it. During the time
the helipad is lost the helicopter maintains a near constant
altitude. The average position error after landing during these
two flights was 41 cm from the center of the helipad. This
value is calculated as the distance from the center of the
helipad to the center of the helicopter after landing. The
average error in orientation was 8

�
. This is the difference

between the orientation of the helicopter after it has landed,
and the principal axis of the helipad. These values are similar
to the values obtained in the landing experiments described
previously, where the helipad was continuously visible.

C. Autonomous Landing with Helipad in Motion

Three flight trials were performed with the helipad in
motion. As soon as the helipad was in the field of view of
the camera it was manually moved, so that the helicopter
could track it. Figures 6 (a)-(d) depict the results. The initial
location and the final location of the helipad as well as the
trajectory of the helicopter are shown in Figure 6 (c) (In
the figure the circle represents the initial position of the
helipad and the diamond represents the final position). The
helicopter maintained a constant orientation and height while
it was tracking the landing pad as shown in Figures 6 (a)
and (b). Table V shows the error in the orientation of the
helicopter with respect to the helipad, distance of the center
of the camera from the center of the helipad and the distance
moved by the helipad after the helicopter has landed. The
helipad was not in motion from the time the helicopter started
landing. Surprisingly, these values are much better than the
values obtained in the above landing experiments. This can be
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Fig. 5. Performance of the vision algorithm in conjunction with the landing controller for a stationary helipad.

attributed to the fact that the initial set of experiments (with
a stationary helipad) were performed on a very windy day
while there were near-perfect weather conditions during the
trials with the helipad in motion.

TABLE V

DATA OBTAINED WITH MOVING HELIPAD

Trial δd δθ Distance moved
1 25 cm 10 � 838 cm
2 12 � 5 cm 4 � 713 cm
3 50 cm 2 � 487 cm

D. Discussion of Results

An initial set of seven landings were performed on day one
to validate the vision and the control algorithm. During these
flights the helicopter had to find a helipad, orient and land
on it.The average position error after landing during these
seven flights was 40 cm from the center of the helipad and
the average orientation error was 7

�
. To test the algorithm

two additional landings were performed after a week in
completely different conditions. Since we use an intensity-
based descriptor, we wanted to test the robustness of the
algorithm to external light conditions.The average position

error after landing during these two flights was 42 cm from
the center of the helipad. The average orientation error was
7

�
. The results obtained were similar to the ones obtained

earlier. This provides partial validation for using moments
of inertia as a shape descriptor for the helipad in diverse
environmental conditions. Two flights were performed on day
two to test whether the control algorithm could fall back to
search mode i.e, to search for the helipad once it was not
visible, and also to test how coherently the vision and control
algorithms performed in tandem. The average position error
after landing during these two flights was 41 cm from the
center of the helipad. The average error in orientation was 8

�
.

The results obtained were satisfactory and were comparable
to the previous results.

Finally, on day two we tested (in three flight trials) how
well the algorithm could track a moving helipad and land on
it. We were able to consistently track and land on the helipad
with an average error of 5

�
in orientation and an average error

of 28 cm in distance. This result was much better than the
values obtained in previous trials where the average error was
approximately 7

�
in orientation and 40cm in distance. This

could be attributed to the fact that on day two there was little
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Fig. 6. Vision algorithm in conjunction with the landing controller when the helipad is moved.

or almost no wind and near-perfect flight conditions. 2

VII. CONCLUSION AND FUTURE WORK

We have presented the design and implementation of a
real-time vision-based system for detecting a landing target
(stationary or in intermittent motion) and a controller to
autonomously land a helicopter on the target. The vision
algorithm is fast, robust and computationally inexpensive. It
relies on the assumptions that the landing target has a well-
defined geometric shape, and all the feature points of the
landing target are coplanar. Since we chose a landing target
composed of polygons and the helicopter keeps the camera
roughly perpendicular to the ground, these two assumptions
were justified.

Data from fourteen flight trials show that our algorithm
and landing strategy works accurately and repeatably even
when the landing target is in motion or is temporarily hidden.
The helicopter achieved autonomous landing to within 40
cm positional accuracy and 7

�
orientation accuracy measured

relative to the helipad. In the future we plan to integrate
measurements from the IMU with the algorithm described
here to nullify the effects caused by the roll and pitch motion

2In Figures 5 and 6 the total time of flight in each of the subfigures is
different since the plots are from different experimental trials

thereby improving the detection of the landing target. At
present the gains used in the behavior-based controller for the
helicopter are manually determined. In the future, we plan
to determine these gains based on system identification of the
dynamics of the helicopter. Also, we plan to mount the camera
on a gimbal to nullify the effects caused by changes in the
inclination of the helicopter, so that we are able to track the
helipad more accurately.

In the future we plan to focus our attention on the problem
of safe and precise landing of the helicopter in unstructured
harsh 3D environments. The applications of such a system
are enormous; from space exploration to target tracking and
acquisition.
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