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Abstract

Numerous upcoming NASA misions need to land safely
and precisely on planetary bodies. Accurate and robust
state estimation during the descent phase is necessary. To-
wards this end, we have developed a new approach for im-
proved state estimation by augmenting traditional inertial
navigation techniques with image-based motion estimation
(IBME). A Kalman filter that processes rotational veloc-
ity and linear acceleration measurements provided from an
IMU has been enhanced to accomodate relative pose mea-
surements from the IBME. In addition to increased state
estimation accuracy, IBME convergence time is reduced
while robustness of the overall approach is improved. The
methodology is described in detail and experimental results
with a 5DOF gantry testbed are presented.

1 Introduction

NASA’s roadmap for solar system exploration is filled with
missions that require landing on planets, moons, comets
and asteroids. Each mission has its own criteria for suc-
cess, but all will require some level of autonomous safe and
precise landing capability, possibly on hazardous terrain.
Previous work [1] has focused on machine vision algorithms
that, given a stream of images of a planetary body taken
from a single nadir pointing camera, can produce estimates
of spacecraft relative motion, spacecraft body absolute po-
sition and 3-D topography of the imaged surface. These
estimates in turn can be used by spacecraft control sys-
tems to follow precise trajectories to planetary surfaces and
avoid hazardous terrain while landing.
Our current research, and the focus of this paper, augments
inertial navigation techniques [2] with the earlier devel-
oped image-based motion estimation (IBME) algorithms
[1]. The main contribution of this work is the development
of an enhanced Kalman filter (KF) that is able to process
relative pose measurements from IBME as well as inertial

measurements from an Inertial Measurement Unit (IMU).
This general methodology can be extended to any type of
relative measurements (differences between previous and
current states of the system). In order to accommodate
relative pose measurements, the KF has been modified to
duplicate the exact same estimate of the pose of the system
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and have these two (differently evolving) estimates inter-
act.
The benefits of this approach include increased state esti-
mation accuracy, reduced convergence time of the IBME
algorithm and improved robustness of the overall system.
Accuracy increases due to additional sensor data for the
KF, convergence time decreases because the KF output can
be used to initialize the IBME algorithm and robustness
improves since the inertial sensors allow continued tracking
of spacecraft state even when the IBME fails to follow an
adequate number of features. This approach can be used
as an enabling technology for future NASA missions that
require a safe and precise landing capability.

1.1 Previous Work

The work of Qian et al. [3] is similar to ours in that they
fuse both inertial data and imagery using a KF to produce
motion estimates. However, we are different in two key as-
pects. First, we combine both orientation (rate gyros) and
position information (accelerometers) with image motion
estimates. Qian et al. only fuse orientation information
(absolute from magnetometers and rate from gyros) with
image motion estimates. Second, our method is meant for
an application, safe and precise landing for spacecraft, that
is expected to have large shifts in rotation and translation
during the spacecraft descent phase. This will drastically
effect the field of view after only a few frames, and thus
we make no assumption for the reappearence of features
in more than two subsequent images. Consequently, our
method works by tracking features only between pairs of
consecutive images, and not a stream of images as in [3].
Bosse et al. [4] use an Extended Kalman filter to merge
IMU, GPS, sonar altimeter, and camera motion estimates
into a navigation solution for an autonomous helicopter.
Their approach is applicable to a less diverse set of envi-
ronments for two reasons. First, they use an optical flow
based method for motion estimation while we use a corre-
lation based method. Optical flow is restricted to domains
where the motion between images is expected to be small,
which is not the case for our application. Second, they
make the assumption that the surface being imaged is pla-
nar, which may not be the case during landing on planetary
surfaces. Our method can handle terrain with rugged to-
pography.
Amidi et al. [5] have presented a visual odometer to es-
timate the position of a helicopter by visually locking on
to and tracking ground objects. Attitude information is
provided by a set of gyroscopes while position is estimated



based on template matching from sequences of stereo vision
data. In this approach attitude estimates are not derived
from the vision algorithm and it is assumed that the field
of view changes slowly while the helicopter hovers above
the same area. New templates are acquired only when the
previous ones dissapear from the scene.

2 Approach

2.1 Inertial sensing and Navigation

Inertial navigation systems (INS) have been used for
decades for estimating the position and orientation of
manned or autonomous vehicles such as aircrafts [6] and
spacecrafts [7, 8]. In recent years, similar systems were
employed for localization of autonomous ground vehicles
[9, 2]. The core of most INS is an inertial measurement unit
(IMU) comprised of 3-axial accelerometers and gyroscopes.
Appropriate integration of their signals provides estimates
of the location of the vehicle. The quality of these esti-
mates depends primarily on the accuracy and noise profile
of the IMU. Such systems can track very accurately sud-
den motions of short duration but their estimates quickly
deteriorate during longer traverses due to the noise that
contaminates the IMU signals. More specifically, the in-
tegration of the low frequency noise component (bias) in
the accelerometer and gyroscope measurements results in
tracking errors that grow unbounded with time. In order
to sustain positioning accuracy, inertial navigation systems
usually include additional sensors (such as compass, incli-
nometers, star trackers, GPS, deep space network radio
signal receivers, etc.) that provide periodic absolute atti-
tude and position measurements. Over the years a variety
of approaches have been proposed for optimally combining
inertial with absolute measurements. Most current INS
employ some form of Kalman filtering for this purpose.
Previously, spacecraft during the entry, descent and land-
ing (EDL) phase of their trip had to rely solely on IMU
signals in order to track their position. Lack of absolute
position and/or attitude measurements resulted in large
positioning errors and therefore left little room for naviga-
tion to a desired destination. In addition, tedious postpro-
cessing of their data was necessary for determining their
landing site.
In order to improve tracking accuracy during EDL, addi-
tional sensing modalities that provide positioning updates
are necessary. Cameras are lightweight, space-proven sen-
sors that have been successfully used in the past to pro-
vide motion estimates between consecutive image frames
[1]. As aforementioned, most INS depend on the avail-
ability of absolute position and orientation information in
order to reduce tracking errors and cannot directly process
relative pose measurements unless these are expressed as
local velocity measurements and processed as such. As it
is discussed in detail in [10] this can be problematic, es-
pecially in cases where the relative pose measurements are
available at a lower rate than the IMU signals. For this rea-
son we have developed a variant of a 6DOF Kalman filter

that is capable of optimally fusing inertial measurements
from the IMU with displacement estimates provided by a
vision-based feature tracking algorithm. At this point we
will defer the derivation of this estimator for Section 2.3
and describe first the IBME algorithm.

2.2 Visual Feature Tracking and Navigation

There exist many different types of algorithms for Image-
based Motion Estimation (IBME). For efficiency, we use an
algorithm that falls in the category of two-frame feature-
based motion estimation [11]. To obtain complete 6DOF
motion estimates, our algorithm is augmented by altimeter
measurements for scale estimation. Below we give a brief
overview of our motion estimation algorithm; for more de-
tails, please see our previous work [1].
The steps of the algorithm are as follows. At one time
instant a descent camera image and a laser altimeter read-
ing are obtained. A short time later, another image and
altimeter reading are recorded. The algorithm then pro-
cesses these pairs of measurements to estimate the rigid
6DOF motion between readings. There are multiple steps
in our algorithm. First, distinct features are selected in
the first image and then tracked into the second image.
Given these feature matches, the motion state and covari-
ance of the spacecraft, up to a scale on translation, are com-
puted. Finally, the magnitude of translation is computed
by combining altimetry with the motion, and the motion
and motion covariance are scaled accordingly. These mea-
surements are then passed to the Kalman filter where they
are combined with inertial measurements to estimate the
state of the vehicle.

2.2.1 Feature Detection and Tracking:

Figure 1: Tracked Features

The first step in two-frame motion estimation is the ex-
traction of features from the first image. Feature detection
has been studied extensively and multiple proven feature
detection methods exist, so we elected to modify a proven
feature detection method instead of redesigning our own.
Since processing speed is a very important design con-
straint for our application, we selected the efficient feature
detection algorithm of Benedetti and Perona [12]. This



algorithm is an implementation of the well known Shi-
Tomasi feature detector and tracker [13] modified to elimi-
nate transcendental arithmetic. Although they ultimately
implemented their algorithm in hardware on a reconfig-
urable computer, we have found that their algorithmic en-
hancements also decrease the running time of software im-
plementations.
Usually feature detection algorithms exhaustively search
the image for every distinct feature. However, when the
goal is motion estimation, only a relatively small number
of features need to be tracked (∼ 100). Consequently, we
can speed up feature detection by using a random search
strategy instead of exhaustive search while still guarantee-
ing that the required number of features is obtained. Sup-
pose that N features are needed for motion estimation.
Our detection algorithm selects a pixel at random from
the image (uniform distribution in row and column direc-
tions). It then computes the sums of intensity derivatives
in a neighborhood of the pixel that are used to determine
if the pixel is good for tracking. Intensity derivatives are
only computed if they have not been computed previously.
If the sums of intensity derivatives are large enough (see
[12]) then the pixel is selected as a feature for tracking.
This procedure is repeated until N features are detected.
Next, features are tracked from the first frame to the sec-
ond. As with feature detection, there exist multiple meth-
ods for feature tracking in the machine vision literature.
Feature tracking can be split in to two groups of algo-
rithms: correlation based methods and optical flow based
methods. Optical flow feature trackers are appropriate
when the motion between images is expected to be small.
Since we cannot make this assumption for our application
(autonomous EDL for spacecraft), we chose a standard
correlation-based feature tracker [14]. This tracker has
been made efficient through register arithmetic and sliding
window of sums for correlation computation. An exam-
ple of features selected and tracked between two frames is
given in Fig. 1.

2.2.2 Motion Estimation:

The motion between two camera views is described by a
rigid transformation (C(q), t) where the rotation C(q), rep-
resented as a unit quaternion q, encodes the rotation be-
tween views and t encodes the translation between views.
Once features are tracked between images, the motion of
the camera can be estimated by solving for the motion
parameters that, when applied to the features in the first
image, bring them close to the corresponding features in
the second image.
During estimation the motion parameters are concatenated
into a single state vector a

a = [q, t] = [q1, q2, q3, q4, tx, ty, tz]
T (1)

Features in the first image are represented in unit focal
coordinates as hi = [hoi, h1i] and in the second image as
h′

i = [h′
oi, h

′
1i]. The cost function that is minimized to

estimate the motion parameters is

L(a) =
∑

i

‖h
′

i − P (hi, a)‖2 (2)

where P is the projection of the features in the first image
into the second. P is defined as follows. Let Xi be the 3-D
coordinate of feature hi at depth αi then

Xi = [hoiαi, h1iαi, αi]
T (3)

The 3-D coordinates of feature h
′

i are then

X
′

i = [x
′

i0, x
′

i1, x
′

i2] = C(q)Xi + t (4)

and the projection of hi into the second image is

P (hi, a) = [x
′

i0/x
′

i2, x
′

i1/x
′

i2]
T (5)

L(a) is minimized using a robust Levenberg-Marquardt
nonlinear minimization algorithm, this algorithm requires
an initial estimate of the motion parameters and feature
depths. In our implementation, the feature depths are all
initially set to 1. An initial estimate of the motion pa-
rameters can be obtained using any number of methods
including: unaided inertial navigation, a robust 8-point al-
gorithm [1], or global search. For the results generated in
this paper the initial estimate comes from a simple global
search that finds the global minimum of L(a) by searching
a coarse discretization of the rotation space, assuming zero
translation, and then searching a coarse discretization of
the translation space using the best rotation.
During minimization, a robust technique is used to prevent
features that are inconsistent with the motion estimate
from the previous iteration from corrupting the motion
estimate for the current iteration. During each iteration
of the minimization, the projection residuals of the fea-
tures are stored in a vector R = [ri, . . . , rN ] and sorted. If
ri > rN/2 +3(r3N/4−rN/4) then the corresponding feature
is considered an outlier and is removed from the computa-
tion of L(a) for the current iteration. After a few iterations
(< 10), the estimation converges to the best estimate of
the motion â. Using this estimate, the Fisher information
matrix

I =
∑

i

(dLi/da ∗ dLi/daT ) (6)

where
dLi/da = −2(dPi/da)(h

′

i − P (hi, a)) (7)

is computed and passed to the Kalman filter for use in gen-
erating the covariance of â.
A fundamental shortcoming of all image-based motion es-
timation algorithms is the inability to solve for the magni-
tude of translational motion ‖t‖, so the output of motion
estimation is a 5DOF motion composed of a unit vector de-
scribing the direction of heading and the rotation between
views. As described in [1] laser altimetry can be combined
with the 5DOF motion estimate to compute the complete
6DOF motion of the vehicle. However, for the gantry re-
sults presented in this paper, the altimetry data was too



coarse, so the magnitude of translation was derived from
the change in gantry positions between image captures.
For each image pair, the output sent to the Kalman fil-
ter for image-based motion estimation is the relative pose
measurement [zp zq]

T
and its corresponding covariance Rr

calculated based on the motion state a, the magnitude of
translation ‖t‖ and the Fisher information matrix I.

2.3 Fusion of Inertial and Relative Sensor data

In this section we derive the equations for the modified
Kalman filter that processes the relative pose measure-
ments from the IBME algorithm. Since our formulation is
based on sensor modeling, we use the Indirect form of the
Kalman filter that estimates the errors in the estimated
states instead of the states themselves. The interested
reader is referred to [15, 2, 16] for a detailed description of
the advantages of the Indirect KF vs. the Direct KF.
In what follows, we assume that at time tk the vehicle
is at position Gp(tk) = Gp1 with (quaternion) attitude
1
Gq(tk) = q1 and after m steps it has moved to position
Gp(tk+m) = Gp2 with attitude 2

Gq(tk+m) = q2. Frames
{G}, {1}, and {2} are the inertial frames of reference at-
tached to the vehicle at times t0, tk and tk+m correspond-
ingly.

2.3.1 Relative Position Measurement Error:

The relative position measurement zp between the two lo-
cations {1}, and {2} can be written as:

zp = 1p2 + np = G
1 CT (q)(Gp2 −

Gp1) + np (8)

where np is the noise associated with this measurement
assumed to be a zero-mean white Gaussian process with
covariance Rp = E[npn

T
p ]. G

1 C(q) is the rotational ma-
trix that expresses the orientation transformation between
frames {G} and {1}.
If ∆pi is the error in the estimate of position pi and δq is
the error in the estimate of attitude q then:1

pi = ∆pi + p̂i, i = 1, 2. , q = δq ⊗ q̂

Equation (8) can now be written as:

zp = G
1 CT (δq ⊗ q̂)(Gp̂2 + ∆p2 −

Gp̂1 − ∆p1) + np (9)

The estimated relative position measurement is:

ẑp = G
1 CT (q̂)(Gp̂2 −

Gp̂1) = G
1 CT (q̂)Gp̂1,2 (10)

The error in the relative position measurement is:

∆zp = zp − ẑp

By substituting from Eqs. (9), (10) and employing

the small error angle approximation δq ' [δ~q 1]
T

'[
1
2
~θ1 1

]T

, it can be shown [10] that:

∆zp ' G
1 CT (q̂1)b

Gp̂1,2c ~δθ1 +
G
1 CT (q̂1)∆p2 −

G
1 CT (q̂1)∆p1 + np (11)

1Note that from here on q refers to q1 and δq refers to δq1. We have
also dropped the vector symbol from the real, measured, estimated
and error position to simplify notation.

where b c denotes the cross product matrix of a vector

b~V c =

[
0 −V3 V2

V3 0 −V1

−V2 V1 0

]

In Eq. (11) the first term expresses the effect of the ori-
entation uncertainty at time tk on the quality of the esti-
mated measurement. Note that if at time tk there was no
uncertainty about the orientation of the vehicle that would
mean δ~θ1 = 0 and thus the error in the relative position
measurement would depend only on the errors in the esti-
mates of the previous and current position of the vehicle.

2.3.2 Relative Attitude Measurement Error:

The relative attitude measurement error between the two
locations {1}, and {2} is:

∆zq = zq −
1
2q̂ = 1

2q + nq −
1
2q̂ (12)

where nq is the relative attitude measurement noise. We
assume that nq is a zero-mean white Gaussian process with
covariance Rq = E[nqn

T
q ]. Since

1
2q = 1

0q ⊗
2
0q

−1 = q(tk) ⊗ q−1(tk+m) = q1 ⊗ q−1
2

and

qi = δqi ⊗ q̂i , i = 1, 2.

1
2q can be written as:

1
2q = δq1 ⊗

1
2q̂ ⊗ δq−1

2 (13)

By substituting Eq. (13) in Eq. (12) we have:

∆zq = δq1 ⊗
1
2q̂ ⊗ δq−1

2 − 1
2q̂ + nq (14)

with

δq1 =

[
δ~q1

δq14

]
, δq2 =

[
δ~q2

δq24

]
, δq

−1
2 =

[
−δ~q2

δq24

]

In order to simplify the notation we set:

1
2q̂ = q =

[
~q

q4

]

For small attitude estimation errors δq1 and δq2 we make
the following approximations: δq14

' 1, δq24
' 1, δ~q1 <<

13×1, δ~q2 << 13×1. The first term in Eq. (14) can be
written as:

δq1 ⊗
1
2q̂ ⊗ δq−1

2 '

[
~q + q4(δ~q1 − δ~q2) + b~qc(δ~q1 + δ~q2)

q4 − ~qT (δ~q1 − δ~q2)

]

(15)
By multiplying both sides of Eq. (12) with the matrix

ΞT (12q̂) = ΞT (q) =
[

(q4I − b~qc) −~q
]

(16)

we define the vector attitude measurement error as:

∆z̃q = ΞT (12q̂)∆zq = ΞT (12q̂)(
1
2q + nq) − 0

= ΞT (12q̂)(δq1 ⊗
1
2q̂ ⊗ δq

−1
2 ) + ΞT (12q̂)nq (17)



By substituting from Eqs. (15), (16) the first term in the
previous equation can be written as:

ΞT (12q̂)(δq1 ⊗
1
2q̂ ⊗ δq−1

2 ) ' δ~q1 −
1
2C(12q̂)δ~q2 (18)

Eq. (17) is now expressed as:

∆z̃q '
1

2
(δ~θ1 −

1
2C(12q̂)δ

~θ2) + ñq (19)

where we have used the small angle approximation δ~qi =
1
2
~θi, i = 1, 2 and ñq = ΞT (12q̂)nq with

R̃q = E[ñqñ
T
q ] = ΞT (12q̂)RqΞ(12q̂)

2.3.3 Relative Pose Measurement Error:

The Indirect Kalman filter estimates the errors in: (i) at-

titude δ~θ, (ii) gyroscopes biases ∆~bg, (iii) velocity ∆~v, (iv)

accelerometers biases ∆~ba, and (v) position ∆~p. The error
state vectors estimated by the filter at times tk and tk+m

for i = 1, 2 are:

∆xi =
[

δ~θi
T ∆~bgi

T ∆~vi
T ∆~bai

T ∆~pi
T

]
T

The errors in the relative position and attitude (pose) mea-
surements calculated in Eqs. (11) and (19) are:

∆z̃k+m =

[
∆zp

∆z̃q

]
= X

[
∆zp

∆zq

]
(20)

= Γ [D1 D2]

[
∆x1

∆x2

]
+ X nr = H

[
∆x1

∆x2

]
+ ñr

with

Γ =

[
G
1 CT (q̂1) 0

0 G
1 CT (q̂1)

]

D1 =

[
bGp̂1,2c 0 0 0 −I

( 1
2
) G

1 C(q̂−1
1 ) 0 0 0 0

]

D2 =

[
0 0 0 0 I

(− 1
2
) G

2 C(q̂−1
2 ) 0 0 0 0

]

X =

[
I3×3 03×4

03×3 ΞT (12q̂)

]

Both noise vectors nr and ñr are assumed to be zero-mean
white Gaussian processes with

Rr = E
[
nrn

T
r

]
=

[
Rp Rpq

Rqp Rq

]
, R̃r = E[ñrñ

T
r ] = XRrX

T

As it is evident from Eq. (21), the relative pose measure-
ment error is expressed in terms of the current ∆x2 =
∆x(tk+m) and the previous ∆x1 = ∆x(tk) (error) state
of the system. Therefore the Kalman filter state vector
has to be appropriately augmented to contain both these
state estimates. Note that tk and tk+m are the time in-
stants when the two images processed by the IBME were
recorded and thus the relative pose (motion estimate) mea-
surement provided by the IBME corresponds to the time
interval [tk, tk+m].

2.3.4 Augmented-state propagation:

If ∆xk/k is the state estimate at time tk (when the first
image was recorded) we augment the state vector with a
second copy of this estimate:

∆x̆ =
[

∆xT
k/k ∆xT

k/k

]T

Since initially, at time tk, both versions of the estimate of
the error state contain the same amount of information,
the covariance matrix for the augmented system would be:

P̆k/k =

[
Pkk Pkk

Pkk Pkk

]

where Pkk is the covariance matrix for the (error) state of
the vehicle at time tk. In order to conserve the estimate of
the state at tk, necessary for evaluating the relative pose
measurement error at tk+m, during this interval only the
second copy of the state estimate is propagated while the
first one remains stationary.2 The propagation equation
for the augmented system based on Eq. (26) is:

[
∆x1

∆x

]

k+1/k

=

[
I 0
0 Fk+1

] [
∆x1

∆x

]

k/k

+

[
0

Gk+1

]
~wk

or

∆x̆k+1/k = F̆k+1∆x̆k/k + Ğk+1 ~wk

where ∆x1 is the non-moving copy of the error state of
the vehicle.3 The covariance of the augmented system is
propagated according to Eq. (27) and after m steps is:

P̆k+m/k =

[
Pkk PkkF

T

FPkk Pk+m/k

]
(21)

where F =
∏m

i=1 Fk+i and Pk+m/k is the propagated co-
variance of the evolving state at time tk+m.

2.3.5 Update equations:

When the relative pose measurement is received the covari-
ance matrix for the residual is given by Eq. (28):

S = HP̆k+m/kHT + R̃r (22)

where R̃r = XRrX
T is the adjusted covariance for the the

relative pose measurement and Rr is the initial covariance
of this noise as calculated by the IBME algorithm. We

define the pseudo-residual covariance matrix as S̃ = Γ−1SΓ
and by substituting from Eqs. (21), (22):

S̃ = D1PkkD
T
1 + D2FPkkD

T
1 + D1PkkF

T
D

T
2 + D2Pk+m/kD

T
2 + Rr

2In the derivation of the equations of the Kalman filter that pro-
cesses relative pose measurements, we duplicated the state estimate
and its corresponding covariance at time tk and allowed each of them
to evolve separately. We have coined the term stochastic cloning for
this new technique. From the Oxford English Dictionary: [ad. Greek
κλών twig, slip], [clone, v. To propagate or reproduce (an identical
individual) from a given original; to replicate (an existing individ-
ual).]

3The discrete time state and system noise propagation matrices
Fk+1, Gk+1 are described in detail in [17, 16, 10].



where Rr = Γ−1R̃rΓ. The updated covariance matrix is
calculated from Eq. (30) as:

P̆k+m/k+m = P̆k+m/k − P̆k+m/kH
T
S

−1
HP̆k+m/k (23)

= P̆k+m/k −

[
PkkDT

1 + PkkF
T DT

2

FPkkDT
1 + Pk+m/kDT

2

]
S̃

−1 ×

[
D1Pkk + D2FPkk D1PkkF

T + D2Pk+m/k

]

The updated covariance matrix for the new state of the
vehicle will be (lower-right diagonal submatrix):

Pk+m/k+m = Pk+m/k −

(FPkkD
T
1 + Pk+m/kD

T
2 )S̃−1(D1PkkF

T + D2Pk+m/k)

The Kalman gain is calculated by applying Eq. (29):

K =

[
K1

K2

]
= P̆k+m/kH

T
S

−1 (24)

with
K2 = (FPkkD

T
1 + Pk+m/kD

T
2 )S̃−1ΓT (25)

The residual is calculated as in Eq. (31):

r̃k+m = ∆z̃k+m = X∆zk+m =

[
zp − ẑp

ΞT (12q̂)(zq − ẑq)

]

where zp, zq are the relative position and orientation mea-
surements provided by the IBME,

ẑp = 1
p̂2 = G

1 C
T (q̂1)(

G
p̂2 −

G
p̂1) , ẑq = 1

2q̂

and

ΞT (12q̂)ẑq = ΞT (12q̂)
1
2q̂ = 03×1

Thus

r̃k+m =

[
zp − G

1 CT (q̂1)
Gp̂1,2

ΞT (12q̂)zq

]

Finally, the updated augmented state is given by Eq. (32):

x̆k+m/k+m = x̆k+m/k + Kr̃k+m

From Eq. (25) the (evolving) state will be updated as:

xk+m/k+m = xk+m/k + (FPkkD
T
1 + Pk+m/kD

T
2 )S̃−1 ×(

Zk+m −

[
Gp̂1,2

0

])

where

Zk+m =

[
G
1 C(q̂−1

1 )zp
G
1 C(q̂−1

1 )ΞT (12q̂)zq

]

is the pseudo-measurement of the relative displacement
(pose) expressed in global coordinates. The quantities
q̂−1
1 , 1

2q̂ = 1
Gq̂ ⊗ 2

Gq̂−1 = q̂1 ⊗ q̂−1
2 , and p̂1,2 = Gp̂2 −

Gp̂1 are
computed using the previous and current state estimates
from the filter. Note that the current state estimates at
time tk+m are calculated by propagating the previous
state estimates at time tk using the rotational velocity
and linear acceleration measurements from the IMU.
The same process is repeated every time a new

set of relative pose measurements z(tk+λm) =[
zT
p (tk+λm) zT

q (tk+λm)
]T

, λ = 1, 2, .. becomes avail-
able. The previous treatment makes the assumption that
the measurements z(tk+λm) are mutually independent,
i.e. E{z(tk+λim)zT (tk+λjm)} = 0. If the IBME algorithm
uses the same set of features from an intermediate image
to track the pose of the vehicle through two consecutive
steps then these measurements are loosely correlated:

E{z(tk+λm)zT (tk+(λ+1)m)} 6= 0

E{z(tk+λm)zT (tk+(λ+1)m)} << E{z(tk+λm)zT (tk+λm)}

In this case the correlations have to be explicitly addressed
by the estimation algorithm. The interested reader is re-
ferred to [18] for a detailed treatment of this case.

3 Experimental Results

3.1 Gantry description

Experiments were performed on a 5DOF gantry testbed
at JPL, shown in Fig. 2. The gantry provides a hard-
ware in the loop testbed for collecting data of a simulated
planetary surface useful for validating algorithms in a con-
trolled environment. It can be commanded to move lin-
early at constant velocity in x, y, and z and can also pan
and tilt. The gantry provides ground truth linear measure-
ments with 0.35 millimeter resolution and angular mea-
surements with 0.01 degree resolution at up to a 4 Hz data
rate. It can carry payloads weighing up to 4 pounds and
still pan and tilt while heavier payloads can be carried with
linear motions only. For our experiments, we attached an

Figure 2: 5DOF Gantry Testbed

electronics package containing sensors, onboard comput-
ers, and battery power to the gantry. The sensors include
a Crossbow DMU-VGX IMU, a downward pointing laser
altimeter and greyscale CCD camera. Only the IMU and
CCD camera were used for these experiments. The laser
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Figure 3: Trajectories estimated by integration of (i) the rel-
ative pose measurements provided by the IBME
vision-based algorithm, (ii) the IMU signals, and
(iii) the gantry.

altimeter will be integrated into the approach in the future.
For our experiments, only linear motions were commanded,
pan and tilt was held at zero degrees orientation due to
weight constraints as described above. All sensor and
ground truth gantry data were gathered while following
these trajectories and then processed and analyzed off-line.

3.2 Preliminary results

In the results presented here the motion of the vehicle
is tracked after it has been accelerated to a speed of
v = [42.7 − 42.7 0]

T
mm/sec at t = 5.5sec. For the

rest of the time the vehicle follows a straight line, almost
constant velocity, trajectory until time t = 18sec when
it decelerates to a full stop at t = 19.6sec. In order to
extract the actual body acceleration during this motion,
the local projection of the gravitational acceleration vector
L~g = G

LC(q)T G~g has to be subtracted from the accelerom-
eter signals. Even small errors in the attitude estimate q̂
can cause significant errors in the calculation of the ac-
tual body accelerations. This is more prevalent during
slow motions with small body accelerations as the ones
during this experiment. The estimated velocities and posi-
tions through the integration of the IMU are susceptible to
large errors due to the magnitude of the gravitational ac-
celeration compared to the minute body accelerations that
the vehicle experiences during its actual motion. With L~g
being the dominant acceleration in the measured signals,
error analysis based on the propagation equations of the
IMU integrator has shown that even for small attitude er-
rors such as δθ = 1◦ the errors in position can grow as
∆px ' ‖g‖ δθ t2 = 171 t2 mm while the vehicle only
moves as px ' vx t = 42.7 t mm. This is evident in Fig.
3 where the position estimates calculated by appropriate
integration of the IMU signals are valid for only a short pe-
riod of time before the errors grow unbounded (e.g. for the
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Figure 4: Trajectories estimated by (i) the integration of the
relative pose measurements provided by the IBME
vision-based algorithm, (ii) the Kalman filter, and
(iii) the gantry (x-y).

y component of position the final error is over 1500mm).
Note also that during this relatively slow motion the inte-
gration of the IBME estimates provides significantly better
results with only small errors introduced at the begining
of the experiment (end of the acceleration phase).
By combining the IBME relative pose measurements with

the IMU signals within the Kalman filter, positioning er-
rors are substantially reduced. The vehicle trajectory es-
timated by the KF follows closer the ground truth path
(recorded by the gantry) when compared to the trajecto-
ries estimated previously by either the IMU or the IBME.
The position estimates for (x − y) and (z − t) are shown
in Figs. (4) and (5a) respectively. The average (absolute)

errors in these estimates were | ∆p |= [4.5 4.7 4.2]
T

mm

for the KF, | ∆p |= [17.4 41.4 29.9]
T

mm for the IBME

and | ∆p |= [53.5 464.7 126.1]
T

mm for the IMU.
The availability of intermittent (relative) positioning in-
formation enables the filter to also update the estimates
of the biases in the accelerometer and gyroscope signals
as depicted in Fig. (5b). This in effect reduces the errors
in the linear acceleration and rotational velocity measure-
ments and allows the KF estimator to operate for longer
periods of time before an external absolute pose measure-
ment is necessary. Finally, we should note that since the
information from the IBME corresponds to relative and
not absolute pose measurements the filter estimated errors
will continue to grow, albeit at a slower rate. This rate
is determined by the frequency and quality of the IBME
measurements.

4 Summary and Future Work

The motivation for this work is to advance the state
of the art in technologies that enable autonomous safe
and precise landing on planetary bodies. However, the
general Kalman filter methodology described here can be
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Figure 5: (a) Trajectories estimated by (i) the integration
of the relative pose measurements provided by the
IBME vision-based algorithm, (ii) the Kalman fil-
ter, and (iii) the gantry (z-t). (b) z-axis accelerom-
eter bias estimates.

extended to any application that combines traditional
inertial sensors with those that provide relative measure-
ments (differences between previous and current states of
the system).
We have shown that augmenting inertial navigation
with image-based motion estimation provides advantages
over using each method separately by increasing state
estimation accuracy. In addition, the fusion of IMU mea-
surements with motion estimates from the IBME increases
the robustness of the Kalman filter estimator due to the
fact that these two sensing modalities have complimentary
operating conditions and noise characteristics. The IMU
is capable of tracking sudden motions but drifts fast
during longer smoother trajectories while the IBME is
best suited for low frequency movements and is immune
to low frequency drifts. Finally, although propagated pose
estimates from the KF were not used to initialize IBME
at this stage, we expect that this will increase the speed of
convergence of the IBME algorithm by reducing the size
of the search space.
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A Indirect Kalman Filter equations

Propagation

∆xk+1/k = Fk+1∆xk/k + Gk+1wk (26)

Pk+1/k = Fk+1Pk/kF
T
k+1 + Gk+1QkG

T
k+1 (27)

Update

S = HPk+1/kH
T + R (28)

K = Pk+1/kH
T
S

−1 (29)

Pk+1/k+1 = Pk+1/k − Pk+1/kH
T
S

−1
HPk+1/k (30)

rk+1 = zk+1 − ẑk+1 = ∆zk+1 (31)

xk+1/k+1 = xk+1/k + Krk+1 (32)
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