
-  1 

AIAA Space 2009 1 MWM 

Planetary Rover Systems: 
Sojourner to MSL 

 
 
 
 
 
 
 
 
 
 

Mark Maimone 
Jet Propulsion Laboratory 

California Institute of Technology 



-  2 

AIAA Space 2009 2 MWM 

Exploring Mars: Why Send Rovers? 

• Rovers complement orbital and fixed-lander assets 
– Mobility enables precision placement of high fidelity in situ sensors  

– A large number of sites spanning kilometers can be sampled 

– Rovers enable opportunistic discovery and investigation of features 
not visible from orbit 

– Every drive gives you a “new landing site” to explore 

• Autonomous robotic capabilities mitigate communication 
delays 

– Joysticking is impractical with round trip delays of 8-42 minutes 

– Logistics in the scheduling of Deep Space Network facilities limit the 
number of command cycles (nominally just one uplink per day) 

– SOLUTION: Onboard autonomous processing means a rover can 
operate safely even in areas not previously viewed in high resolution 
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Early Attempts, Research Rovers 

In the early 1970s the then-Soviet Union 
sent two small rovers to the Martian 
surface in Mars-2 and Mars-3 missions.  
Unfortunately neither mission lasted 
long enough to send back rover data.   

B. Muirhead, Mars Rovers: Past and Future, IEEE Aerospace 
Conference, Big Sky, Montana March 6-13, 2004 has an overview of 
the 1960’s - 1990’s research programs in the US 

Several Planetary Rover Workshops over the past 12 years, e.g. 
http://ewh.ieee.org/conf/icra/2008/workshops/PlanetaryRovers/ 
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Recent and Future NASA Mars Surface Vehicles 

NASA/JPL - Caltech 
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How Far Can They Drive? 
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Sojourner’s Drive Path: 0.1 km in 0.3 years 

NASA/JPL - Caltech 
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Spirit’s Drive Path: 7.7 km in 5.6 years 

http://marsrovers.nasa.gov/mission/tm-spirit-all.html 
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Opportunity’s Drive Path: 17.2 km in 5.5 years 

Victoria Crater 

http://marsrovers.nasa.gov/mission/tm-opportunity-all.html 
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How Do We Choose Where to Drive? 
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3D Terrain visualization 

Courtesy of 
Frank Hartman 

NASA/JPL 
Caltech 

NASA/JPL - Caltech 

QuickTime™ and a
Animation decompressor

are needed to see this picture.
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Directed Driving is Complicated 

NASA/JPL - Caltech 

Sol A-436 
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Simulating the Planned Drive 

Spirit 
Sol 74 

 
25 m 
Blind 

 
9 m 

Autonomous 

Courtesy of 
Frank Hartman 

NASA/JPL 
Caltech NASA/JPL - Caltech 

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.
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Event-driven Command Sequences 

NASA/JPL - Caltech 

Courtesy of 
Scott Maxwell 

NASA/JPL 
Caltech 
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MER Driving Speeds 

• Directed (“blind”): 120 m/hr.  Gear ratios limit top mechanical 
speed to 5 cm/sec (180 m/hr), but nominally no more than 3.7 
cm/sec (133 m/hr, less cool-off/re-steer periods). 

• Hazard avoidance (“AutoNav”): 10-35 m/hr.  Rover moves in 
50 cm steps, but only images every 1.5 m (Spirit) or 2 m 
(Opportunity) in benign terrain.  When obstacles are nearby, 
imaging occurs at each step. 

• Visual Odometry (“VisOdom”): 10 m/hr.  Desire is to have 
60% image overlap; in NAVCAMs pointed nearby, that limits 
motions to at most 60cm forward or 18 degrees turning in 
place. 
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Comparing Driving Speeds 

 
All speeds in meters/hour 

Sojourner 
 

MER 
 

MSL 
 

Directed (“Blind”) max 
mechanically attainable 

24 
 

180 210 

Directed (“Blind”) nominal 
(pauses, less than 100% speed) 

14 120 ~ 144 

Hazard Avoidance Not 
reported 

10-35 Faster 
than MER 

Visual Odometry N/A 10 Faster 
than MER 

Hazard Avoidance and Visual 
Odometry 

N/A 5 Faster 
than MER 
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Pushing limits: Driving at 25-30 Degrees 

NASA/JPL-Caltech/Cornell 
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What Kind of Technology Do They Have? 
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Main Computer Comparison 

Sojourner MER MSL 

CPU 80C85 BAE RAD6000 BAE RAD750 

MHz 2 20 up to 200 

RAM (Mbytes) 0.56 128 128 

Non-volatile storage 
(Mbytes) 

0.17 256 flash 4,096 flash 

Stereo Pixels 
processed per frame 

20 10,000 - 

50,000 

10,000 -  

50,000 
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Onboard Autonomous Robotic Technologies 

• Geometric Hazard Detection and Avoidance 
– Includes long range map-based D* optimal path planning 

• Visual Odometry - update position and attitude by comparing 
images taken before and after motion 

• Visual Target Tracking - keep watching a ground-commanded 
target no matter what the drive does 

• Autonomous Instrument Placement - safely deploy the 
instrument arm even in previously unseen areas 
 

• Onboard Autonomous Science - dust devil and cloud 
detection in images 
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Detect and Avoid Geometric Hazards 

http://marsrover.nasa.gov/gallery/video/animation.html 

NASA/JPL - Caltech 

QuickTime™ and a
H.264 decompressor

are needed to see this picture.
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Visual Odometry Processing 

• VisOdom enables precise position estimates, even in the 
presence of slip, and enables Slip Checks and Keep-out 
zone reactive checks 
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Science Return: Fewer Approach Sols 

VisOdom enabled 8 meter 1-sol 
approach on 20-24 degree slope 

NASA/JPL - Caltech 
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Opportunity Drive through Sol 410 

Driving Modes: 
Blind 
Autonav 
Visodom 

NASA/JPL/MSSS 
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Spirit Drive through Sol 418 
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Visual Terrain Tracking: B-992 

Seed Image 

7 images and nearly 90o later… 

NASA/JPL - Caltech 
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Instrument Arm Autoplace: A-1068 

Rover Exclusion Zones 

High resolution terrain 
model processed onboard 

Potential IDD Placement 
targets 

NASA/JPL - Caltech 
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Most MER Autonomy 

NASA/JPL/Cornell 
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Most MER Autonomy: Engineering Overlays 

NASA/JPL/Cornell 
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Most MER Autonomy: Overlay Animation 

NASA/JPL/Cornell 
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What Happens When Things Don’t Go As 
Planned? 
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Operations: Expect the Unexpected 

Spirit sol 1889 

Opportunity sol 446 

Sojourner sol 47 

NASA/JPL - Caltech 
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Lessons Learned:  Opportunity Slip Check 

On B-446, 50 meters of blind 
driving made only 2 meters 
progress, burying the wheels.  
Recovery time: 5 weeks. 

On B-603, 5 meters of blind 
driving made 4 meters progress 
(stopped by Visodom with 44% 
slip).  Recovery time: 1 day. 
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Lessons Learned:  Spirit Slip Check 

On A-345, Spirit stalled because a 
potato-sized rock had gotten 
wedged inside a wheel.   Recovery 
time: 1 week. 

On A-454, Spirit detected 90% 
slip and stopped with rocks 
poised to enter the wheel.  
Recovery time: 1 day. 
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Ensuring Vehicle Safety: Keep-out Zones 

From Sol 249-265, Opportunity 
kept sliding back into Wopmay; 
high slip, buried rocks, not 
enough uphill progress 

Each time VisOdom noticed the 
failure to make progress and 
prevented driving into it. 

NASA/JPL-Caltech/Cornell 
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Spirit Settles at Hillary on Sol A-625 

NASA/JPL - Caltech 
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Science Results: Expect the Unexpected 

Spirit sol 1187 - dead drive motor 
uncovers silica-rich soil 

Opportunity sol 1961 - Iron-
Nickel meteorite “Block 
Island” 

Opportunity sol 339 - first 
iron meteorite found on 
another planet 



-  39 

AIAA Space 2009 39 MWM 

Science Results: Expect the Unexpected 
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BACKUP SLIDES 
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MER Explores Victoria Crater 
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Opportunity Traverse Around Victoria  

NASA/JPL-Caltech/Univ of Arizona 
Sol B-1672 http://marsrovers.nasa.gov/mission/tm-opportunity-all.html 
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Opportunity Views Cape Verde B-1006 

NASA/JPL-Caltech/Cornell 
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Special Effects: Opportunity on Cabo Frio 

NASA/JPL/Cornell 



-  46 

AIAA Space 2009 46 MWM 

Special Effects: Opportunity at Victoria 

NASA/JPL/Cornell 
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Visual Odometry Processing 

●Adjacent pairs of stereo images are 
processed onboard the rover 
●Candidate features are selected and tracked 
automatically from one pair to the next 
●Misleading or poorly matched features are 
automatically eliminated from consideration 
●A 3-D motion estimate is generated from 
dozens of pairs of matched features 
●This motion estimate replaces the previous 
best guess (derived from wheel odometry 
only) and can be used for precision pointing 
or driving, even when the wheels slip on 
sloped and/or loose terrain 
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Style of Commanding 

• Direct teleoperation does not work (except on the Moon) 
– Typically only one chance to send commands each day 

– Send a series of conditional, event-driven commands 

• Goal designation is different: 
– On Earth, a goal might be set using a live beacon, or GPS 

coordinates 

• Planetary rover Goal designation has multiple error sources: 
– Target specification error:  locating the rover with respect to the goal 

at its initial position 
• Stereo range resolution dominates in rover-taken images, initial rover 

localization and map projection resolution dominate in infrequently-taken 
orbital images 

– Ensuring the proper goal has been reached at the end 
• Must either track the goal or carefully update rover position estimates 

along the way 
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Fault Responses 

• There is no kill switch 
– The rover has to be programmed to be more conservative 

• Some faults are worse than others 
– Surface operations are different than cruise operations 

– Fault behavior can be tailored to the current terrain 

• The command language needs to be designed to allow 
autonomous fault detection and recovery 

– Must allow the system to be retuned for different types of terrain; we 
don’t have smart enough sensing to autonomously switch behaviours 
based on terrain yet 

– Adding contingencies into the plan for benign or expected faults will 
improve overall mission return 

• Plan for degraded operations when components fail 
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MER Design due to Environment and KISS 

• Low power: Nominal mission planned to succeed even with 
limited power 

• Slow driving: Wheel motor gear ratios were determined by the 
needs of  worst-case climbing 

– So it can climb over obstacles, but its top speed is limited even in 
benign terrains 

• Limited sensing 
– No camera can see the middle wheels or under the rover 

– A small number of cameras was chosen to minimize the power 
required and system integration complexity 
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MER Style of Commanding 

• A series of event-driven conditional commands is updated 
each drive day 

• Drive goals are normally specified using X,Y,Z 
– Short range drive goals (< 20 m) from onboard Navcam range data 

– Long range drive goals from Pancam range data or orbital images 

• Only goals that allow for accumulated position estimation 
error are selected 

– Position error can be minimized by enabling Visual Odometry 

• Visual Target Tracking can eliminate target specification error 
– Constantly re-estimating target location visually during a drive 
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MER Fault Responses 

• Two classes of driving faults: Goal and Motion Errors 
– Goal Errors simply indicate the planned location wasn’t achieved; the 

vehicle is still safe 

– Motion Errors indicate some system parameter is out of range, e.g., 
motor current, vehicle tilt 

• But ranges are selected to ensure overall vehicle safety; even if “out of 
range”, you can still have sufficient power and communications 

• Command sequences can behave conditionally on fault type 
– The more time you have, the more alternatives you can plan for 

• Unplanned faults leave the vehicle in a safe state 
• Both MER vehicles are dealing with failed motors, yet 

continue to perform useful science 
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MER Mobility Faults 
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Resource Modeling 

• Any autonomy technology transitioning to flight must include 
a prediction of its CPU resource use as a function of sensed 
data size (e.g., image resolution) 

– RAM, CPU time 

• Rover operations team will need to model overall system 
resource use during each day: 

– Power 

– Time required 

– Data Volume 
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Opportunity Drive Modes in first 410 Sols 

Data from rover's 
onboard position 
estimate 
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Opportunity Tilt History through Sol 380 
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Conclusion 

• Planetary robots can take advantage of many new robotic 
technologies 

– But only if they are tailored to the mission constraints 

• Faster processors would improve autonomy behavior, but not 
by orders of magnitude 

– Mechanical and other sensor bottlenecks quickly come into play 

• More focus needed on reducing the number of days spent at 
a science feature 

– Most time is spent performing in situ work at science targets, 
efficiency improvements there will have a large impact on overall 
mission science return 
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Opportunity Drive to Endurance Crater 

Inside Endurance Crater: 

NASA/JPL/MSSS 
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Spirit Drive History through Sol 588 

Data from rover's 
onboard position 
estimate 

 Bonneville 
Crater Rim 

Drive toward Columbia Hills 

Outcrop! 
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MER FSW 9.1 Drive Constraints 

• Typically only enough power to drive 4 hours/day 
• Rover generally sleeps from 1700 – 0900; humans 

plan next day's activities while it sleeps, e.g. human 
terrain assessment enables a blind drive 

• A single VisOdom or AutoNav imaging step takes 
between 2 and 3 minutes (20MHz CPU, 90+ tasks) 

• Onboard terrain analysis only performs geometric 
assessment; humans must decide when to use 
VisOdom instead of/in addition to AutoNav 

• Placement of Arm requires O(10cm) precision vehicle 
positioning, often with heading constraint 
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A-436: Exercising 3 Drive Modes 

• Here’s an example of a sol that used 3 drive moves 
• The drive plan for Spirit's Sol 436 was: 

– Back up 5m cross-slope 
– Drive upslope with VisOdom using 2 waypoints 

• Run Obstacle Check in parallel 
– Bear right and run AutoNav (no more VisOdom) 

to climb a reduced slope in unseen area 
• One last note says: 

– This avoids the 25deg slopes along the front 
ledge on the upslope 
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Planned vs. Actual Drive: A-436 
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Visodom Benefits 

• Visual Odometry has proven a highly effective tool for 
driving in high-slip areas 

• Tangible benefits: 
– Increased Science Return 

• Provided robust mid-drive pointing 
• Enabled difficult approaches to targets in 

fewer Sols 
– Improved Rover Safety 

• Keep-out zones 
• Slip checks 
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Autonomy Tradeoffs 

• Benefits: 
– Adapts to current vehicle state 
– Can drive into unknown areas 
– Faster planning time 

• Disadvantages: 
– Can be order of magnitude slower than Directed 
– VisOdom cameras need to be manually pointed 
– VisOdom-only mode needs manual Keep-out zones 
– Only geometric terrain classification; cannot 

predict high slip areas 
– Unknown use of resources and final state 
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Directed Driving Tradeoffs 

• Benefits: 
– Fastest execution time 
– More “predictable” final state 
– Strategies may be adapted daily 

• Disadvantages: 
– Can only drive as far as you can see 
– Needs much more planning effort 
– Limited terrain adaptability; yaw knowledge only 
– Cannot plan mid-drive precision imaging with 

slip 
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