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Abstract— In May 2008, the Autonomous Landing and 
Hazard Avoidance Technology (ALHAT) Project 
conducted a helicopter field test of a commercial flash lidar 
to assess its applicability to safe lunar landing.  The 
helicopter flew several flights, which covered a variety of 
slant ranges and viewing angles, over man-made and natural 
lunar-like terrains.  The collected data were analyzed to 
assess the performance of the sensor and the performance of 
two algorithms: Hazard Detection (HD) and Hazard 
Relative Navigation (HRN). The collected flash lidar data 
were also used to validate a high fidelity flash lidar software 
model used in ALHAT Monte Carlo simulations. The field 
test results, combined with prior simulation results, 
advanced the technology readiness level of the HD 
algorithm to TRL 5 and the HRN algorithm to TRL 4.12 
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1. INTRODUCTION 
The Autonomous Landing and Hazard Avoidance 
Technology (ALHAT) Project is developing sensors and 
algorithms to increase safety during lunar landing [3]. Two 
new algorithms, executing during the final approach phase, 
are being developed: on-board hazard detection (HD) to 
determine a safe landing site [4], and hazard relative 
navigation (HRN) to enable accurate landing at the selected 
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safe site. Lidar was selected as the primary sensor for these 
new algorithms to accomplish ALHAT’s task of providing 
technology that works autonomously under any lighting 
conditions. In particular, flash lidar [8] is a promising new 
technology – providing high data rate and instantaneous 
capture of an entire range image. Currently, ALHAT is 
developing a flash lidar sensor with a 5cm range precision 
that will be able to detect 30cm-high hazards when viewed 
from a 1000m slant range at a 15-degree path angle. Slant 
range is the distance to the target along the line of sight, and 
path angle is the angle between sensor boresight and the 
horizontal [2]. 

 

Figure 1: Examples of  flash lidar data collected. 

The goal of the first Field Test (FT1) was to assess the 
commercial state of the art by testing a custom-built 
commercial flash lidar. The expected performance for this 
field test sensor was the detection of 30cm high hazards 
from a 500m slant range at a nadir viewing direction. As 
described below, the sensor was able to generate range 
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images at 500m, but did not have the range precision 
required to detect 30cm hazards.  As a result of this finding, 
numerous design improvements are being investigated to 
obtain the 5cm range precision required of the ALHAT 
flash lidar. Such improvements include accurate detector 
calibration, uniform laser pulse shaping, and 
implementation of a faster time-of-flight clock.  Single and 
multiple image-processing techniques are also being 
investigated to decrease noise and increase resolution.  The 
ALHAT sensor will also obtain a greater maximum slant 
range by using a more powerful laser and a more sensitive 
detector. 

This paper briefly describes the sensors, the data storage 
system, test terrain and the trajectories flown. The bulk of 
the paper describes the performance of the sensor as a 
function of viewing angle and slant range, the HD 
performance relative to hazard size, and the HRN accuracy 
and error rejection performance.  A comparison of real to 
simulated HD results is made and used to extrapolate the 
HD performance of the ALHAT sensor being developed, 
from the performance of the field test sensor. The paper 
concludes with a discussion of TRL advancement. 

2. TEST OVERVIEW 
The FT1 objectives were to:  

• Test a commercial flash lidar in a relevant environment 
and use this information to guide the development of the 
ALHAT flash lidar sensor  

• Test HD and HRN algorithms using data collected with a 
real sensor in a relevant environment and use this 
information to improve algorithms 

• Collect data for validation of the flash lidar sensor model 
used in the POST II Monte Carlo simulation 

• Identify areas to increase the fidelity of the sensor model 
• Advance sensor and algorithm TRL 

Sandbox analysis prior to FT1 showed that the slant range 
and path angle had a strong influence on the flash lidar and 
the HD algorithm performance. Studies also showed that the 
size of hazards influenced detection performance, while the 
distribution of hazards (number of hazards of each size per 
unit area) influenced the probability of detecting a safe 
landing site [2]. Consequently, FT1 was designed so that 
hazards of a variety of sizes, placed in fields with different 
hazard distribution, could be imaged from different angles 
and distances.  

To obtain a variety of slant ranges and path angles, as well 
as descents toward the targets, a helicopter was used as the 
test platform. An inertially stabilized gimbal was mounted 
to the front of the helicopter. The gimbal contained the flash 
lidar, two Inertial Measurement Units (IMU), an orientation 
sensor, two digital cameras and an analog camera. A GPS 
attached on the fixed structure above the gimbal provided 
position estimates. One IMU was used for stabilization of 

the gimbal while the other was used for continuous attitude 
propagation. The digital cameras were used for occasional 
absolute attitude determination.  The orientation sensor was 
not actually used while the analog camera was for real-time 
feedback on gimbal pointing. A comprehensive description 
of the FT1 hardware, ground infrastructure and trajectory 
reconstruction is given in [7]. 

 
Figure 2: Metrics to assess sensor performance. 

The testing was conducted at NASA Dryden Flight 
Research Center (DFRC) and Death Valley National Park. 
At DFRC, there were two different target sites: one on the 
Lakebed and one in the Borrow Pit.  The Lakebed site was 
very flat and consisted of 11 hazards in close proximity: 9 
hemispheres of various sizes and reflectivity, a large box 
and a small box.  The Lakebed site was designed for lidar 
characterization. The Borrow Pit site had numerous hazards 
made out of 1x1x1m boxes, fields of hemispheres with 5% 
and 10% distribution, and two 3m-wide craters.  The 
Borrow Pit site was designed for assessing hazard detection 
and safe landing probability. The final site was at Mars Hill 
in Death Valley National Park. Mars Hill has numerous 
rock fields of varying distribution, as well as steep and 
shallow slopes.  The purpose of the Mars Hill site was to 
obtain lidar data from natural, as opposed to man-made, 
hazards and to test slope hazard detection.   

Figure 1 (top right) shows a single flash lidar image taken 
of the Lakebed site from a 430m slant range at a nearly 
nadir view. Due to the nadir view, the projection of the field 
of view is nearly square. The hazards near 1m in height are 
clearly visible; smaller hazards show up but are close to the 
noise floor of the sensor. Figure 1 (top left) shows 3D 
points from a single flash lidar image of the Borrow Pit 
target taken from a 184m slant range at an oblique view 
angle, 27˚ from horizontal.  The oblique view stretches the 
3D points along the viewing direction.  The image clearly 
shows the detection of a 3m-wide crater and a 2x1x1m box.  
Due to the oblique view, there are 3D points on the side and 
top of the box, and there is a shadow behind the box and 
behind the front edge of the crater. Figure 1 (bottom) shows 
a mosaic of 50 flash lidar images taken at the Mars Hill site.  
The 3D points from all images are projected into a single 
elevation map to construct the mosaic.  The numerous rocks 
and slopes of the hill are clearly seen in the map.  
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To assess the performance of the sensor and the hazard 
detection algorithm, reference digital elevation maps (DEM) 
of the sites were built. For the Lakebed and Borrow Pit 
sites, these “truth DEMs” were constructed by generating 
hemisphere, box, and crater objects at the surveyed 
positions and orientations of the site hazards . The terrain 
between the hazards was filled in by a surface fit through all 
the survey points. A plane was fit for the Lakebed site and a 
quadric surface was fit for the Borrow Pit site. For the Mars 
Hill site, a previously constructed DEM was used. In the 
analysis presented in this paper, we only used the Lakebed 
DEM shown in Figure 3. 

To compare the lidar data to the truth DEM, the position 
and attitude of the lidar in the truth DEM coordinate frame 
is required.  Because the flash lidar pixel size is small 
(0.20m at 500m), this position and attitude knowledge 
needed to be very accurate (0.4 mrad for attitude and 0.2m 
for position). To achieve this accuracy, the following two-
step procedure was used.  First, the entire lidar trajectory for 
the flight was reconstructed using IMU, GPS and camera 
measurements.  This process [7] placed the lidar hazards 
within 1m horizontally of the truth hazards. Furthermore, 
the lidar had a time-varying range bias which, combined 
with the above mentioned horizontal trajectory errors, 
caused the lidar data to be misaligned horizontally and 
vertically relative to the truth DEM. To clean up this 
misalignment, the flash lidar data and truth DEM were 
correlated using a procedure based on the HRN algorithm 
[5]. The end result was precise alignment to 0.1m or less.  

 
Figure 3: Ground truth DEM for the Lakebed test site 
at DFRC. 

3. SENSOR ANALYSIS 

Lidar hardware 
The flash lidar used in FT1 was provided by NASA 
Langley Research Center. This lidar was procured from 
Advanced Scientific Concepts and then retrofitted with a 
real-time data collection and timing system. The lidar is 
comprised of a 1.57 micron, diode-pumped Nd:YAG laser 

source and receiver optics.  The laser source is diffused to 
3o to actively illuminate the target site observed by the 
receiver optics.  This receiver has a field of view slightly 
less than 3o and is composed of an InGaAs array of 
128×128 pixels and optics with a 250mm focal length and a 
120mm diameter aperture.  After calibrating the sensor 
projection function, the receiver provides range and bearing 
information for each pixel.  For FT1, the sensor operated at 
a frame rate of 8 Hz. 

In the flash lidar hardware, range is measured for each 
pixel. The range is determined by finding the peak time-of-
flight of the returned laser pulse for each pixel [1]. The 
digitization of the light energy hitting a pixel happens 
continuously but only the most recent 20 digitization results 
are stored in a circular buffer. When the light energy passes 
a threshold, the pixel “triggers” and the 20 digitization 
results are written to memory.  If the return laser power 
does not exceed the threshold, the pixel does not trigger. 
The top left image in Figure 4 shows a flash lidar image that 
has a low trigger fraction (0.26).  As can be seen, many 
pixels do not have range measurements.  This image is 
taken at the operational limits of the sensor’s hardware. 

The flash lidar range measurements are assembled in a flash 
image and, when interpreted, form a cloud of 3D points. 
Using standard robust estimation techniques [9], a plane can 
be fit to the 3D points. For example, a plane fit algorithm 
that ignores outliers was used at the Lakebed site, where 
many hazards stick up from a relatively flat ground. From 
the plane parameters, the slant range and the incidence 
angle relative to the target plane can be computed  (see 
Figure 2). In terrain with no slope, such as the Lakebed site, 
the trajectory path angle is the complement of the incidence 
angle. 

Lidar Trigger Fraction and Maximum Slant Range 
Based on the trajectory reconstruction, lidar images from 
one of the flights over the Lakebed site that had more than 
10 points falling within the horizontal bounds of the truth 
DEM were tabulated. For each of these 2423 images, the 
trigger fraction, slant range and path angle were computed.  
The trigger fractions were binned by path angle in 15˚ 
increments and slant range in 50 m increments. The median 
trigger fraction for each bin was computed and the results 
are plotted in Figure 6.  The inset table shows the number of 
images in each bin.  

Based on Figure 6, we observed the following trends. For 
all path angles, the trigger fraction decreases as the slant 
range increases. This expected trend is due to the decrease 
in laser energy reaching the detector from greater slant 
ranges. We also observed that as the path angles decreases 
the trigger fraction also decreases. This trend is expected 
because the diffuse reflectance from the surface decreases 
as the path angle decreases.  
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slant range=430m, path angle=35˚ 

 
slant range=420m, path angle=83˚ 

  
Figure 4: Real (top) and simulated (bottom) elevation 
maps for a pair of slant ranges and path angles. Color 
scale is purple (-0.5m) to red (1.5m). 

 

 
Figure 5: Real (top) and simulated (bottom) hazard 
detection results with a 70cm roughness detection 
threshold for the four elevation maps shown in Figure 4.  
GREEN = TRUE POSITIVE             RED = FALSE POSITIVE 
YELLOW = FALSE NEGATIVE     BLUE = TRUE NEGATIVE  

To use the sensor for HD or HRN, high trigger fractions are 
required. Trigger fractions as small as 90% can be tolerated 
since the DEM generation software is capable of filling in 
small holes due to the missing pixels. Trigger fractions 
below 90% result in holes that are too large to fill in and 
become treated as hazards, which is undesirable. For near 
nadir viewing (82.5˚ path angle), the lidar produced trigger 
fractions above 90% out to 400m slant range and then the 

trigger fraction quickly rolled off. For the opposite extreme 
of a 0˚ to 15˚ path angle3, the trigger fraction stayed above 
90% only until around 250m. Thus, given the 90% 
threshold, the maximum operational range of the sensor 
varied from 400m for nadir viewing to 250m for the 
extreme oblique viewing angles.  

The FT1 flash lidar was designed to have a maximum range 
of 500m at nadir viewing, but did not meet this expectation. 
There are several causes that explain this shortfall. During 
the test, a window was placed in front of the lidar to reduce 
drag and minimize contamination. It is predicted that the 
window and its coating reduced the amount of light 
received by 28%. Also, the data used in this analysis are 
from a dry lakebed surface, which has a different 
reflectivity from the lunar surface. These all have an effect 
on the absolute maximum range values, but do not change 
the sensitivity of the sensor to range and path angle. 
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Figure 6: Median trigger fraction for 2423 images taken 
of the lakebed binned by slant range and path angle 

DEM Elevation Error and Lidar Range Error 
The 3D point sets, derived from the flash lidar images, were 
converted into DEMs after the data-driven alignment 
procedure was applied. With this procedure, 451 3D point 
sets from the image data over the Lakebed site were 
successfully aligned to the truth DEM. The elevation 
difference between the truth DEM and each lidar DEM was 
computed at each pixel, and the mean and the standard 
deviation of the elevation differences across the image were 
computed.  Finally, as was done for the trigger fraction, the 
standard deviations of the elevation errors were binned by 
slant range and path angle, and the median standard 
deviation was computed for each bin. Figure 7 shows the 
results from these steps. 

For viewing close to nadir (82.5˚ path angle), the median 
standard deviation in elevation error was about 0.20m. 
Since the lidar is pointed straight down at nadir viewing, 
0.20m is taken as an estimate of the FT1 sensor’s random 
range error. However, this is an overestimate of the true 
capability of the sensor because of several field test 
 

3For Apollo 11,12 and 14  path angle was ~16˚; for Apollo 15,16, and 
17 path angle was ~25˚ 
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limitations. The data used to compute the estimate were 
from a slant range around 400m. At this distance, the return 
laser energy is low, so the signal-to-noise ratio (SNR) is 
small, meaning more errors. Imaging from a closer slant 
range should improve the range error. Also, the pixels in the 
array have intensity-dependent range biases, which had not 
been corrected prior to FT1. Performing calibration for each 
pixel will decrease the range error. Finally, the alignment 
between the lidar and truth DEMs was not perfect, so this 
could introduce elevation errors near hazards. 

As the path angle decreases, the errors in the range 
measurements decrease in the vertical direction and increase 
in the horizontal direction. This trend of decrease in 
elevation error with decreasing path angle was also 
observed in ALHAT simulations. 

Elevation errors also influence hazard detection 
performance: as the random errors increase, the detection 
rate decreases while the false alarm rate increases. This 
trend is discussed in the next section. 

Lakebed 3 Real Elevation Error
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Figure 7: Median standard deviation of elevation error 
for different path angles and slant ranges. 

4. HAZARD DETECTION ANALYSIS 
Hazard detection was assessed using the 451 aligned 3D 
lidar point sets. Performance was analyzed in two ways: 
comparative hazard analysis and individual hazard analysis. 
Comparative hazard analysis utilizes the same analysis tools 
used in the ALDAC1 POST II simulations [6]. Individual 
hazard analysis is a new way of analyzing HD performance. 
This analysis aims to assess the impact of the false alarms. 
The goal is to eliminate enough small false alarms so that a 
safe site can be found for landing. However, this constraint 
comes at the expense of not detecting small hazards. 

To validate the high fidelity sensor model used in ALHAT, 
simulated flash lidar images of the truth DEM were 
generated using the position and attitude of each real flash 
lidar image (Figure 4, bottom). The range precision 
parameter in the model was set to 20cm to match the 
experimental value discussed in the previous section. The 
HD analysis tools were also run on the simulated imagery to 
generate statistics that could be compared to the ones from 
the real data in order to validate the sensor model. 

Comparative Hazard Analysis 
Comparative hazard analysis compared hazard detections 
from the real lidar data to those from the reference 
simulated data. The comparative analysis tool counts 
correctly detected hazards (true positives = TP), missed 
hazards (false negatives = FN), incorrectly detected hazards 
(false positives = FP) and correctly detected no-hazard areas 
(true negatives = TN). This counting is done at a pixel and a 
component level.  Pixel-level analysis compares the real and 
simulated detections on a pixel-by-pixel basis. Component-
level analysis first groups the adjacent pixel detections into 
connected components, and then compares the components 
in both real and simulated data. Components do not have to 
overlap to be matched; they just need to be within a small 
number of pixels from each other. This gives component-
level analysis some robustness to misalignment. 

Figure 5 shows real and simulated detection results with a 
70cm detection threshold for the elevation maps shown in 
Figure 4. At this threshold, both the detection and the false 
positive rate are comparable between the real and the 
simulated data.   However, in the top left image, one hazard 
is completely missed and one has very few detected pixels 
on it.  

A quantitative assessment at a 70cm detection threshold is 
shown in Figure 8. This figure shows detection metrics for a 
sequence of 51 flash lidar images with very good alignment 
to the truth DEM and with high trigger fractions.  The 
metrics for the real data are compared to the same metrics 
for the simulated data. The horizontal axis of the plots is the 
image number in the sequence.  

The bottom right plot compares DEM coverage percentage, 
which describes the fraction of the truth DEM area that has 
valid lidar elevation data.  The high agreement (correlation 
coefficient r = 1.00) confirms that the real data have high 
trigger fractions. The top right plot compares the elevation 
error metric,  and the good correlation (r=0.76) indicates 
that the trends follow each other in both types of data.  

The top left plot compares the true positive detections on a 
per-pixel basis and the agreement is very good (r=0.95). 
The simulated data has slightly more correctly detected 
pixels because there is no misalignment error.  The true 
positive component detections (top middle) agree (r= 0.74), 
but not as well as the pixel level detections. This may be 
due to discretization during the component grouping, which 
will cause a small difference in the number of detections to 
have a greater impact on the correlation coefficient. 

The bottom left plot in Figure 8 shows that the number of 
false-positive pixels in the real data is significantly higher 
than the number in the simulated data. The component-level 
false positives, shown in the bottom middle plot, are in 
much better agreement, and there are very few false-positive 
components.  This indicates that the false-positive pixels are 
grouped around detected hazards (caused by a small 
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misalignment between the truth and lidar DEMs), so when 
the components are generated, these pixels get grouped with 
a detected hazard component and are not identified as a 
separate false positive component. 

Based on this comparative hazard analysis, the simulated 
and real data agree well under 3 circumstances: the 
simulation sensor model range precision is adjusted to 
20cm, the real data is accurately aligned to the truth DEM, 
and the trigger percentage of the real data is high. The 
simulation sensor model has been validated for these 
conditions. 

 
Figure 8: Comparison of real and simulated detections 
for an image sequence with good alignment and high 
trigger percent. 

 
Figure 9: Comparison of real and simulated detections 
for all images. 

As it is expected, the agreement is not quite as good when 
the data are misaligned or include a significant percentage 
of pixels that have not triggered. Figure 9 shows metrics for 
all 451 images aligned to the truth DEM.  The segment 
shown in Figure 8 is between image indices 200 and 250 in 
this figure. The real and simulated component detections are 
correlated (true positive component correlation = 0.58, false 
positive component correlation = 0.88) but there are some 

noticeable disagreements. One cause of these disagreements 
is the lower trigger fraction in the real data compared to the 
simulated data, as indicated by the lower DEM coverage 
percentage (bottom right plot). Slight misalignments may 
also come into play as indicated by the higher elevation 
error in the real data relative to the simulated data (top right 
plot). 

Individual Hazard Analysis 
In the comparative hazard analysis, there were a significant 
number of false positives when the roughness detection 
threshold was set to a low value. These false positives are 
treated as real hazards in the safe landing site selection 
software. Thus, the presence of too many false positives 
may leave no hazard-free location to land. Nevertheless, 
despite the false positives, it is desirable to set the detection 
threshold as low as possible in order to detect the small 
hazards. Usually, the size of the smallest hazard desired for 
detection is set in advance. Thus, the HD analysis done up 
to date has focused on maximizing the detection probability 
of hazards greater than a predetermined height. A study was 
conducted to determine the sensor’s range precision and 
field of view needed to detect such hazards [2]. Attempts 
were made to minimize the false-positive rates by 
appropriately choosing the detection threshold for such 
hazards, but there was no clear understanding of the 
tolerable amount of false positives introduced in the 
process. Such understanding is needed to make 
comprehensive statements about the hazard detection ability 
of the FT1 flash lidar. This ability is the smallest height at 
which as many as possible real hazards are detected, while 
as few as possible false positives are introduced. 

To quantify these false positives, previous analysis used the 
false alarm rate (FAR = # FP / (# FP + # TP)). This metric 
depends on the number of actual hazards (TP) in the area 
being imaged.  As this number decreases, the FAR 
increases, which can be misleading since the number of FPs 
has not changed.  Instead, a more intuitive metric for 
quantifying false positives is the number of false positives 
per area.  In ALHAT, the relevant area is the Vehicle 
Footprint Dispersion Ellipse (VFDE), which is defined as 
the area under the lander at touchdown grown by the 
GN&C position error change since the hazards were 
detected. Any safe landing site must be larger than the 
VFDE. The new technique for FP quantification is 
illustrated in Figure 10. Each square is the size of a VFDE 
and represents one of five disjoint landing areas. At least 
one of these areas needs to be free of false positives so that 
there is a place to land.  For the FT1 analysis, we used the 
criterion that there be no more than 1 false positive 
component in an area the size of 5 VFDEs. Notice that this 
constraint is independent of the number of actual hazards in 
the landing area. 

FT1 comparative hazard analysis, as well as ALDAC1 
analysis, also showed that the numerous false positives were 
usually small. In the ALDAC1 analysis, these small false 
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positives contributed to the failure of a few trials, where the 
HD software picked a landing site that contained a hazard 
for landing. In these trials, the configuration of the false 
positives was such that the landing location, which is 
chosen to be farthest from all detected hazards (true and 
false positives), was actually near a small undetected 
hazard. The remedy is to eliminate the small hazard 
detections (both true and false) from consideration in the 
safe site selection process. This is accomplished by placing 
a component detection threshold on the hazard size in 
pixels; hazards below the threshold are eliminated, while 
hazards on or above the threshold are kept. The 
consequence of this procedure is that the vehicle must be 
tolerant to all hazards below the threshold. Figure 10 
illustrates how these two constraints are applied. An 
elevation map (top) is generated and from that a roughness 
map is computed.  The roughness detection threshold is 
applied and detection components are identified (middle). 
Next, the component detections with number of pixels 
smaller than the component detection threshold are 
eliminated (bottom). The large detections remain but there 
are more places to land than if the small detections were 
kept.  

 
Figure 10: Individual hazard discrimination criteria. 

Individual hazard detection analysis was applied on the data 
from the Lakebed site. The first step was to determine the 
number of pixels detected on each hazard in the site as a 
function of the roughness detection threshold. To do this, a 
roughness map was computed from each lidar DEM. The 
roughness threshold was then varied from 20cm to 150cm, 
in 10cm intervals, and applied to the roughness map. A 
binary detection image was generated for each threshold. 
The detection pixels in this image were grouped into 
connected components. These components were compared 
to the ones generated from the truth DEM. If any two 
corresponding components intersected, a TP hazard 
occurred and the number of pixels inside the intersection 
was considered as the size of that hazard. If the component 
did not intersect, a FP hazard occurred and the number of 
pixels inside the component from the lidar DEM was 
considered as the size of that hazard. This process was done 
for all 451 lidar DEMs aligned to the truth DEM. 

The results from this step are shown in Figure 11. The solid 
curves represent the median number of TP pixels on each 
hazard object (over all 451 images) as a function of the 

detection threshold. Rightmost is the curve for the 2x2x1m 
box, which is the largest hazard and thus has the most pixels 
on it. Next is the 1x1x1m box, which has more pixels on it 
than the 0.9m radius hemispheres at the higher detection 
thresholds. However, for lower detection thresholds, 
because hemispheres have a larger area closer to the ground, 
the 0.9m hemispheres had greater number of pixels than the 
1x1x1m box. After that are the curves for the three 0.6m 
radius hemispheres. These curves exhibit some differences 
amongst themselves.  All hemispheres were made from the 
same plastic material and were covered with a thin layer of 
dirt from the lakebed; thus, reflectivity differences are not 
the source of the variability.  Instead, the variability is likely 
due to the fact that some hemispheres only appear in certain 
images, and thus the statistics for the three hemispheres 
were based on a collection of images with different path 
angles and slant ranges.  The final set of curves is for the 
four 0.3m radius hemispheres.  Each of these hemispheres 
has a different reflectivity, which causes the number of 
pixels on each hazard to vary accordingly. The white target 
is the most reflective and thus has the most pixels.  

The second step was to assess the number of false positives 
as a function of detection threshold. Since any false positive 
greater in size than the component detection threshold is 
considered a hazard, this analysis looks at the cumulative 
number of false positives greater than a certain size.  

For each image at each detection threshold, the number of 
false positives in the image was tabulated as a function of 
false positive size in pixels (e.g., 4 of 1 pixel size, 2 of 2 
pixels, … 0 of 50 pixels). These counts were then converted 
into the cumulative number of FP of size n pixels or greater. 
Each image had a different area, so, to normalize out this 
effect, the cumulative counts of FP per image area were 
converted into cumulative counts of FP per VFDE area by 
multiplying the counts by the image area divided by the 
VFDE area (380m2 for a 22m diameter VFDE).  

This data was then used to find the component size 
threshold for each detection threshold where 80% of the 
images had no false positives. The result is plotted by the 
dashed curve in Figure 11. This curve divides the plane into 
an upper region that has less than a 20% chance of a false 
positive per VFDE and a lower region that has more than a 
20% chance. The rightmost point on the curve is at 
(110cm,1pixel). This point indicates that, with a 110cm 
detection threshold, 80% of the images do not have a false 
positive of size 1 pixel or greater within an area the size of 1 
VFDE. 

Assuming that false positives in each image are independent 
(which is true if the FP are generated solely based on 
random uncorrelated range measurements), then each image 
is a random sample from the distribution of false positives 
per VFDE. If 80% of the images do not contain a false 
positive,  then the 1 false positive in 5 VFDE criterion is 
satisfied.  
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Figure 11: Individual hazard analysis for real data. A 
70cm detection threshold and a 10 pixel component size 
threshold allows for detection of the larger hazards with 
less than 20% chance of a false positive per VFDE. 

 

Figure 12: Individual hazard analysis for a simulated 
flash lidar with 20cm range precision. The similarity 
between this plot and the same plot for the real flash 
lidar data demonstrates that the sensor model used in 
ALHAT simulations is a reasonable representation of 
the truth. 

 

Figure 13: Individual hazard analysis for a simulated 
flash lidar with 5cm range precision. This represents the 
expect performance of the flash lidar under 
development by ALHAT. 

To meet the one-false-positive-per-5-VFDE criterion, the 
detection threshold and component-size threshold must be 
selected above the dashed false-positive curve.  Because all 
of the curves for the 0.60m and 0.30m diameter 

hemispheres are below this dashed curve, the hemispheres 
cannot be detected with any threshold setting.4 The larger 
objects can be detected with a range of thresholds. One 
possible setting is a detection threshold of 70cm and a 
component size threshold of 10 pixels. This setting allows 
the detection of the 2x2x1m box, the 1x1x1m box and the 
0.9m radius hemispheres, while it limits the number of false 
positives to less than 1 per 5 VFDE areas. 

The same individual hazard detection analysis was applied 
to the simulated lidar images generated for Section 3 and 
the results are shown in Figure 12. In general, these curves 
are similar to the ones form the real data. One discrepancy 
however, is that the false positive curve in the simulated 
data actually goes below one of the 0.6m diameter 
hemisphere curves. This indicates that for some viewing 
directions and path angles the 0.60m hemispheres may be 
detectable while also assuring sufficiently low false 
positives. Another discrepancy is that the four 0.3m 
diameter hemispheres all have very similar curves in the 
simulated data. This is because the different reflectivity of 
the spheres is not modeled in the truth DEM from which the 
simulated data is rendered. The final discrepancy is that the 
1x1x1m box has significantly more pixels for any given 
detection threshold in the simulated data. This is possibly 
due to pixels not triggering on the edges of the box in the 
real data and such edge effect is not modeled in the sensor 
model. In order to predict the performance of the flash lidar 
under development by ALHAT, a set of simulated flash 
lidar images was generated with a 5cm range precision and 
the same analysis was applied.  The resulting plot is shown 
in Figure 13. In this plot, the false positive line intersects 
the hemispheres that are 30cm high.  This indicates that the 
sensor under development could detect 30cm high hazards 
while still limiting false positives to one per 5 VFDE (just 
barely). The detection rate could be increased for these 
hazards as the expense of slightly more false positives.  

These results should be interpreted as the nominal 
performance over the part of the test space (slant range, path 
angle, hazard size) covered by the 451 images from the 
Lakebed3 flight.  Given a different set of images, the 
performance may improve or degrade. At the very least, this 
analysis is an example of how HD analysis will be 
conducted in the future. 

5. HAZARD RELATIVE NAVIGATION ANALYSIS 
The assessment of hazard relative navigation was 
straightforward relative to the assessment of HD.  The HRN 
algorithm [5] was applied to consecutive pairs of lidar 
images that viewed the lakebed target and the alignment 
result was compared to the reconstructed trajectory.  

 
4 It should be reiterated that these results are for the commercial flash 

lidar tested in FT1.  Later it will be shown that the flash lidar being 
developed by ALHAT will be able to detect these hazards 
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HRN Analysis Approach 
First, pairs of consecutive images from all 2423 images that 
viewed the lakebed targets were determined.  Due to data 
gaps this resulted in 2322 image pairs for HRN assessment. 
To test the robustness of the HRN algorithm, no culling of 
the pairs due to low trigger fraction, path angle or slant 
range was performed. The 3D points from each pair were 
transformed to the local level frame using the reconstructed 
trajectory. The misalignment corrections from data-driven 
alignment were not used for two reasons: first, the number 
of image pairs would have been significantly reduced and 
second, the misalignments were fairly static so they had 
little effect on consecutive image correlations.  

Next, a random 3D position shift was applied to the second 
image in the pair and elevation maps were generated for the 
first and second (shifted) image5. No attitude shift was 
applied; the attitude for each image from the trajectory 
reconstruction was used. The 3D shift was uniformly 
distributed in each axis between -1 m and 1 m (±1m cube). 
A track point was selected in the first image and a patch of 
elevation around this point was extracted for correlation 
with the second image.  The correlation search window was 
set to ±3m in both horizontal directions around the selected 
track point position. The elevation patch in the first image 
was correlated with the search window in the second image.  
The 3D shift computed from the correlation peak was then 
compared to the true 3D shift to compute an error residual.   

Along with this residual, four correlation metrics (peak 
height, peak width, peak ratio and track point contrast) were 
recorded. Peak height is the height of the highest peak in the 
correlation search window and it ranges between -1 and +1, 
with +1 indicating excellent correlation. The peak width is a 
measure of how wide the peak is in pixels. The peak ratio is 
the ratio of the highest peak to the second highest 
correlation peak.  Track point contrast is the variation of the 
local terrain relief over the track point patch measured in 
meters per pixel. The HRN algorithm used these four 
correlation metrics internally to determine if a correlation 
was valid. To do that, thresholds are placed on the 
correlation metrics and if any are violated, the HRN 
estimate is considered invalid. Through the use of these 
checks, the HRN algorithm is able to throw out most 
incorrect estimates. Another important metric for assessing 
performance is the Circular Error Probability (CEP). The 
95th percentile CEP is the radius of a circle that contains 
95% of the HRN residuals within it. 

Some examples of HRN tracking are shown in Figure 14. 
The middle and right column show valid correlations; the 
left column shows an invalid correlation. The top row of 
each column shows the first image and the selected track 
point. The second row shows the second image after it has 
been shifted synthetically to simulated motion errors. The 

 
5 To facilitate automatic processing a fixed resolution (0.1m) was used.  

third row shows the patch from the first image overlaid on 
its best match location in the second image. Notice that the 
large box, which is the feature with the sharpest corners and 
greatest elevation change, was selected for tracking by HRN 
in the two valid examples. Although the box was on the 
edge of the image in the middle example, the correlation 
was still able to find the correct matching position. In the 
left example, neither the box nor the hemisphere was 
selected for tracking because the track point selector had 
been constrained to the center of the elevation map. This 
was done to prevent selection of points that might not be in 
the overlap between images. As a result, a low contrast 
patch was selected and the correlation metrics mark this pair 
as invalid. 

   

   

   
Figure 14: HRN examples. 

HRN Performance 
The HRN algorithm was applied to all image pairs.  
Correlation thresholds were set to peak height >0.5 (unit 
less), peak width < 15 pixels, peak ratio > 1.1, and contrast 
> 0 (no threshold). With these thresholds, 1086 out of 2322 
pairs were marked as valid. For all valid pairs, the HRN 
error residuals on the x, y and z coordinates are shown in 
Figure 15. The elevation error (z) is typically less than the 
0.20m range precision of the sensor due to averaging over 
the correlation patch.  

A scatter plot of the horizontal errors is shown in Figure 16. 
The ±1m random shift bounds are shown with the dashed 
green box and the ±3m search window is shown with the 
red box.  The errors are clustered around the origin with 
only a few gross outliers. The Gaussian nature of the errors 
near the origin is apparent in the zoomed view. A case-by-
case investigation revealed that the 6 pairs with errors 
outside the ±1m box are due to a track feature being 
selected right on the edge of the flash lidar image.  This is a 
challenging correlation situation and it is avoided by forcing 
HRN to pick track points away of the DEM boundaries. For 
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all valid results, the 95th percentile CEP was 0.32m.  
Although this error is greater than one DEM pixel, HRN 
tracking is pretty good given the large noise in the sensor.  
Also, this statistic is for all valid path angles and slant 
ranges in the data set, which includes many images with low 
trigger fractions where correlation could be challenging. 
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Figure 15: HRN estimate errors for 3 coordinate axes. 

 

Horizontal Error Scatter Plot Zoom
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Figure 16: Errors in the horizontal HRN estimate 
marked as valid: all (left) and zoom to central peak 
(right). 
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Figure 17: Sensitivity of the HRN algorithm in obtaining 
a valid estimate relative to the image contrast, trigger 
fraction, slant range and incidence angle. 

The effects of environmental variables on the correlation 
being marked as invalid were investigated and the results 
are shown in Figure 17.  The top left plot shows the effect 

of contrast on each image pair. Basically all selected track 
points with contrast below 0.20m/pixel resulted in invalid 
correlations. Since 0.20m is the range error of the sensor, 
this result makes intuitive sense; the terrain is going to have 
at least as much relief as the noise placed on it by the 
sensor. Although it was not done in this analysis, it would 
be a good idea to set the contrast threshold at the range error 
of the sensor. The top right plot shows the effect of trigger 
fraction on measurement validity. HRN does not work well 
at very low trigger fractions, and it is surprising that it 
actually does work in some cases, for images that have 
trigger fractions less than 10%. On the other hand, HRN 
occasionally fails on images that have nearly 100% trigger 
fraction; however, this failure could be due to many other 
factors such as poor manual gimbal pointing or track point 
area not appearing in both images due to high velocity near 
surface. The bottom right plot shows the effect of slant 
range. HRN works at slant range ranging from 100m to 
550m, but in general performs worse at higher altitudes. 
The bottom right plot shows that there is no discernable 
effect of path angle; HRN works at all path angles. 

6. CONCLUSION 
The FT1 analysis first assessed the flash lidar in terms of its 
sensitivity (pixel trigger fraction) and range measurement 
precision as a function of path angle and slant range.  The 
results show that the lidar has a worst case range error 
(random noise) of 0.20m one sigma. When imaging though 
the gimbal window (28% loss), the lidar has a maximum 
range between 400m for nadir viewing and 250m for 
oblique viewing (15˚ from horizontal). These results are for 
dry lakebed material that does not necessarily have the same 
reflectivity as the lunar surface.  

Hazard detection results show that the lidar and algorithm 
have a 100% detection rate for 70cm high hazards while 
keeping the probability of a false positive detection less 
than 20% per VFDE. Smaller hazards can be detected but at 
the expense of more false positives. The hazard detection 
performance is not adequate to detect small hazards 
required for safe lunar landing and the main source of the 
difference is the relatively high range noise of the 
commercial sensor flown in FT1.  

The hazard detection results were also compared to results 
obtained from simulated flash lidar imagery with 20cm 
range precision.  The real and simulated hazard detection 
results agreed well when the flash lidar is in its nominal 
operational regime. This validated the implementation of 
the ALHAT flash lidar simulator, which was used in the 
Monte Carlo simulation in POST II [2]. Simulated results 
for a sensor having a 5cm range precision were also 
generated, and these showed that the detection of 30cm high 
hazards with a low false positive rate was possible. This 
field test analysis, along with the recent comprehensive 
analysis of the HD tests space through Monte Carlo 
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simulation has advanced the HD algorithm from TRL4 to 
TRL5. 

The critical components of the HRN algorithm were also 
tested using consecutive flash lidar images. After processing 
more than 2000 image pairs, the results show that the HRN 
algorithm provides motion estimates with an accuracy of 
0.38m (95th percentile circular error probability), while it is 
able to reject most incorrect estimates using internal 
algorithm checks. The processing of a significant amount of 
real data, combined with a recent stand-alone simulation of 
the HRN algorithm with lunar terrain, has advanced the 
HRN algorithm from TRL3 to TRL4. 
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