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Abstract—From May 2 through May 7 of 2008, the 
Autonomous Landing and Hazard Avoidance Technology 
(ALHAT) Exploration Technology Development Program 
carried out a helicopter field test to assess the use of a flash 
LIDAR as a primary sensor during lunar landing.  The field 
test data has been used to evaluate the performance of the 
LIDAR system and of algorithms for LIDAR Hazard 
Detection and Avoidance, Hazard Relative Navigation, and 
Passive Optical Terrain Relative Navigation. Reported here 
is a comprehensive description of the field test hardware, 
ground infrastructure and trajectory reconstruction 
methodologies1,2. 
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1. INTRODUCTION 
The ALHAT Project is funded by NASA to develop an 
integrated AGNC (Autonomous Guidance, Navigation and 
Control) hardware and software system capable of detecting 
and avoiding surface hazards and guiding humans and cargo 
safely, precisely and repeatedly to designated lunar landing 
sites [2].  Achieving this necessitates advancing the state of 
the art in Terrain Relative Navigation (TRN), Hazard 
Detection and Avoidance, and Hazard Relative Navigation 
(HRN) algorithms.  This will also require the investigation 
and advancement of sensor technologies.  Currently, the  
technologies under consideration are passive and active 
optical systems and radio frequency systems.  To 
characterize applicable sensor technologies and algorithms 
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and identify key performance parameters and sensitivities, 
several field tests are planned. 

The objectives of first ALHAT field test, which we refer to 
as FT1 (Field Test 1), are to assess the performance of a 
commercial LIDAR sensor and the performance of Hazard 
Detection (HD), HRN and TRN algorithms.  The test results 
are already in the literature: [1] provides the LIDAR data 
processing and performance, [9] present the TRN results, 
and [5] gives the HD and HRN results.  This paper 
documents the FT1 hardware, ground infrastructure and 
trajectory reconstruction methodologies.   

Table 1: List of Acronyms and Abbreviations 

ALHAT Autonomous Landing and Hazard Avoidance 
Technology 

APL Johns Hopkins University Applied Physics 
Laboratory 

CDSU Command and Data Storage Unit 
DEM Digital Elevation Model 
ECI Earth Centered Inertial 
EKF Extended Kalman Filter 
FT1 Field Test One 
GNSS Global Navigation Satellite Systems 
GPS Global Positioning System 
HD Hazard Detection 
HRN Hazard Relative Navigation 
IGS International GNSS Service 
IMU Inertial Measurement Unit 
JPL NASA Jet Propulsion Laboratory 
LaRC NASA Langley Research Center 
LIDAR Light Detection And Ranging 
NASA National Aeronautics and Space 

Administration 
PPS Pulse Per Second 
RANSAC Random Sample Consensus 
SIFT Scale-Invariant Feature Transform 
TRN Terrain Relative Navigation 

2. SENSORS AND SUPPORT EQUIPMENT 
Figure 1 is a block diagram of the entire FT1 system. The 
FT1 test platform was the S.N.I.A.S. AS350D ASTAR 
helicopter N145BH.  To carry the ALHAT payload, a two-
axis gimbal was mounted to the aircraft as seen in Figure 2.  
The gimbal assembly is seen in Figure 3 with the enclosure 
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removed.  The sensors mounted to the gimbal are the flash 
LIDAR, two optical still shot cameras, an Inertial 
Measurement Unit (IMU), an orientation sensor, and a 
context (witness) video camera.  The commercial flash 
LIDAR is the device under test.  One of the still shot 
cameras provided the attitude of the platform relative to the 
surface when surveyed targets fell into its field of view. The 
other camera was co-aligned with the LIDAR and had a 
comparable field of view.  This camera was used to identify 
what the LIDAR had imaged. The IMU provides velocity 
and angle rate information and the magnetometer provides 
heading information.  An additional IMU is seen in 
Figure 3. This IMU is a member of the gimbal stabilization 
system and is not an ALHAT sensor. 

The other ALHAT sensors were also mounted externally to 
the helicopter.  Inside of the gimbal enclosure, but not on 
the gimbal, was an environment sensor that recorded the 
temperature and humidity of the instrument environment.  
Directly above the gimbal was a non-articulating platform to 
which the GPS antenna was mounted.  Additionally, two 
digital cameras were mounted to the back of the ballast box 
at the rear of the helicopter.  These cameras, seen in  
Figure 4, were the primary sensors for the APLNav [9] 
terrain relative navigation system.   

Inside the helicopter was an equipment rack.  As seen in 
Figure 5, it housed power supplies, a power distribution and 
switching box, the PXI chassis, and the LIDAR computer 
and computer switch.  For pre- and post-flight checkout, the 
power supplies where plugged into a wall socket and 
powered the instruments.  When helicopter power was 
available, the operator could use the power distribution box 
to switch from the power supplies to the helicopter power.  
The box also controlled the power of the individual devices.  
The PXI chassis contained a National Instruments PXI-6682 
time synchronization card, a computer switch and a 
computer.  This system commanded and collected data from 
the LIDAR and APLNav passive optical cameras.   

The remainder of this section documents each device on the 
Gimbal Assembly and the rack mounted equipment.  

 Inertial Measurement Unit 

The IMU utilized during the test is a Litton LN-200.  Three 
solid-state fiber optic gyros and three solid-state silicon 
accelerometers comprise the IMU and were sampled at a 
rate of 400 Hz.   

GPS Base Station 

The GPS base station is a statically placed GPS antenna and 
receiver.  The data is stored internal to the receiver and 
periodically downloaded to a computer.  By recording the 
static location of the GPS, the position measurement 
accuracy of the helicopter can be increased via relative GPS.  
In order to support the long data sessions required, the 
receiver was set to sample data only once a second. 

 
Figure 1: Payload block diagram 

 

 
Figure 2: Helicopter test platform 

 

 

Figure 3: Gimbal assembly 

 

 
Figure 4: Passive optical TRN cameras 
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Figure 5: Equipment rack 

 
Flight GPS Receiver 

The Ashtech MicroZ CGRS GPS receiver combined with a 
Magellan Dual-band L1/L2 antenna recorded the position of 
the helicopter.  As stated above, the receiver was housed in 
the equipment rack and the antenna was mounted externally 
to the helicopter on a fixed platform above the gimbal.  To 
protect against data loss, the GPS data was stored 
redundantly in the receiver and by the Command and Data 
Storage Unit (CDSU) described below.  In addition to 
measuring position, the receiver provided a digital pulse per 
second (PPS). The PPS combined with a 33 MHz, 32-bit 
counter provided the GPS time tags for each instrument.  
Initially for FT1, the flight receiver operated at a rate of 10 
Hz.  However, during post-flight data quality analysis, it 
was observed that this rate caused gaps in the GPS data.  
Consequentially, the receiver sample rate was reduced to 5 
Hz. 

Backup GPS Receivers 

NovAtel Inc. ProPak-V3 GPS receivers were the FT1 
backup receivers. Although, in our experience, it is 
relatively easier to operate and configure a NovAtel receiver 
than an Ashtech receiver, the ProPak-V3 receiver does not 
output the necessary PPS. Thus, a NovAtel receiver cannot 
be the primary flight receiver. Instead, the HG1700 SPAN58
system (ProPak-V3 GPS receiver with IMU) was used only 
as a backup. 

Gimbal Mounted Digital Cameras 

Two Sony XCD-SX910 digital cameras were mounted to 
the gimbal.  One camera had a Fujinon HF12.5SA-1 lens 
that produced a thirty-degree field-of-view.  The other 
camera had a Fujinon DF6HA-1B lens and seven-degree 
field-of-view.  The wider-angled camera served as the 
attitude sensor of the trajectory reconstruction system.  By 
observing surveyed ground targets, the camera attitude in 
the GPS frame could be determined.  The narrow angle 
camera was co-aligned with the LIDAR.  With a field of 
view similar to that of the LIDAR, it provided an image that 
roughly coincided with the LIDAR samples.  For this test, 
both cameras produced monotone (grayscale) 1280!960 

pixel images.  Set to OneShot mode, the cameras captured a 
single Portable Graymap Graphic image when triggered to 
by the CDSU.  The CDSU triggered the narrow-angle 
camera at a rate of 3 Hz and the wide-angle camera at 1 Hz.  
The exposure times of each camera were manually modified 
to account for changing lighting conditions. 

Flash LIDAR 

FT1 sought to establish the feasibility of using a flash 
LIDAR as the primary sensor for Hazard Detection and 
Hazard Relative Navigation algorithms.  To this end, NASA 
Langley Research Center (LaRC) provided the flash LIDAR 
seen in Figure 3. Manufactured by Advanced Scientific 
Concepts, the LIDAR was a combination of a 1.57 micron, 
diode-pumped Nd:YAG laser source and receiver optics.  
The laser source is diffused to provide a three-degree cone 
to actively illuminate the target site observed by the receiver 
optics.  This receiver, with a field of view slightly less than 
three-degree, was the combination of a 128!128 pixel, 
InGaAs array and a 120-mm-diameter, 250-mm-focal-
length aperture.  By calibrating the focal plane, each pixel of 
the receiver provides a simultaneous range and bearing 
measurement.  For this test, the sensor operated at eight 
Hertz. 

Environment Sensor 

A HOBO U12-013 was attached inside of the gimbal 
enclosure.  Set to sample every 30 seconds, both the 
temperature and the humidity inside the enclosure were 
recorded.  This device operates independently of the data 
collection system and was not time synchronized.  Instead, 
the device’s internal clock was manually set at the 
beginning of the field test and allowed to free run.  The 
HOBO logs data to its own internal drive.  There it is stored 
until the gimbal enclosure could be opened, and the device 
removed.  Once it was accessible, the HOBO was connected 
to a laptop, the data was downloaded, and the HOBO 
memory was cleared. 

Command and Data Storage Unit 

The CDSU is a computer running the open-source, real time 
RTAI-LINUX operating system.  It was the command and 
data collection unit for the trajectory reconstruction system.  
It directly interfaced with the GPS receiver, the IMU, both 
gimbal cameras, and the orientation sensor.  In addition to 
these devices, the CDSU also received a synchronization 
pulse from the LIDAR data collection system.  The purpose 
of this pulse was to inform the CDSU when the Flash 
LIDAR collected a data frame. When the CDSU collected a 
data sample from a device, it would generate the time tag 
for that sample. 

3. DATA COLLECTION  
During FT1, different systems independently collect flight 
data.  As noted above, the CDSU collected the reference 
system data. A separate computer operating LabView" 
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collected the flash LIDAR and Passive TRN data.  In 
addition to flight data collection systems, other support-
system data was recorded.  The environmental sensor 
recorded the temperature and humidity within the gimbal 
enclosure. The GPS base station receivers recorded their 
position to act as a local, stationary GPS reference.  The 
flight GPS receiver also recorded the flight data to its 
internal memory adding redundancy to GPS system.  Lastly, 
a voice recorder captured all communications between the 
flight operator, the pilot and the ground crew.  

At the end of each flight, data was downloaded from each 
system as illustrated by  

.  Initially, the CDSU-collected GPS data was parsed into 
navigation data and timing data.  Then, all CDSU flight data 
was copied to an external, two-terabyte drive.  
Simultaneously, LaRC personnel retrieved a removable hard 
drive containing the flash LIDAR and passive optical TRN 
data.  The data was copied into a data storage server and to 
the external two-terabyte drive.  Between flights, the GPS 
base station receiver and flight receiver data was converted 
to a Rinex file and saved to a laptop running Ashtech® 
Micro-Manager.  Once the receiver data was successfully 
downloaded and checked for quality, the receivers were 
erased in preparation for the next flight.  This data was then 
copied from the laptop to the two-terabyte drive.  Overnight, 
the data on the external drive was duplicated onto a second 
external drive to prevent data loss. 

At the end of the field test, all data from all sources were 
copied from the external drives onto a JPL server.   

4. TARGET SITES 
During FT1, data was collected at three target sites 
designated as the Borrow Pit, Lakebed and Mars Hill.  The 
Borrow Pit and Lakebed sites were artificially created and 
surveyed for this experiment.  The Mars Hill site was a 

natural terrain sight selected for its varying slopes and rock 
collections. 

Borrow Pit 

 
Figure 7: Image of Borrow Pit captured by the wide-
angle camera 

An artificially created target site located at NASA Dryden 
Flight Research Center, Borrow Pit seen in Figure 7 was 
constructed to test the flash LIDAR’s ability to detect 
hazards at various slant ranges and angles.  To this end, 
several targets were located at the Borrow Pit.  The targets 
included polystyrene and acrylic hemispheres, one-meter 
cardboard cubes, man-made craters, and plywood camera 
attitude targets.  The hemispherical targets were placed into 
two areas: the 10% rock field and the 5% rock field.  The 
10% rock field contained forty-two 18” diameter 
hemispheres, eight 24” diameter hemispheres, and six 36” 
diameter hemispheres.  The 5% rock field contained fifteen 
18” diameter hemispheres, seven 24” diameter hemispheres, 
and one 36” diameter hemisphere.  The locations of the 
hemispheres were surveyed so that the positions were 
known in the GPS frame.  Using this information, the truth 
DEM (Digital Elevation Model) seen in Figure 8 was 
created.  Also seen here are the man-made craters and the 
cardboard boxes. 

Figure 6: Data collection block diagram 

 

5% Rock Field 

Cardboard 
Boxes 

Artificial Craters 

10% Rock Field 
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Figure 8: Borrow Pit truth DEM 

 
Figure 9: Image of the Lakebed captured by the thirty-
degree fov camera 

 
Figure 10: Lakebed DEM 

Lakebed 

The Lakebed is the second man-made target site and is also 
located at NASA Dryden Flight Research Center.  With its 
flat, featureless surface, the naturally occurring dry lakebed 
is an ideal site for determining the LIDAR’s ability to detect 
targets.  To this end, nine hemispheres of various sizes and 
albedos, a single one-meter cardboard cube, a cluster of four 
one-meter cardboard cubes and eleven attitude targets where 
placed there.  The site was surveyed and a truth DEM was 
created.  Figure 9 and Figure 10 show the Lakebed site as 
seen by the thirty-degree field-of-view camera and the truth 
DEM, respectively. 

Mars Hill 

Seen in Figure 11, Mars Hill is the only naturally occurring 
target sight of FT1.   Located within Death Valley National 
Park, this site is approximately 200 miles away from the 
Lakebed and Borrow Pit.  With its natural rocks, slopes and 
lack of vegetation, this site is a perfect analog for lunar 
terrain.  Plywood attitude targets, seen as white dots on the 
right of the hill, and cardboard boxes were placed at Mars 
Hill. 

 
Figure 11: Mars Hill captured by the thirty-degree fov 
camera 

 

5. TRAJECTORY RECONSTRUCTION 
Overview 

For FT1, the objective of the trajectory reconstruction 
process is to provide the position and attitude of the LIDAR 
for every LIDAR sample relative to a target.  Initially, it was 
proposed to develop an Extended Kalman Filter (EKF) to 
produce the LIDAR attitude and position by combining the 
GPS position data, the IMU angular rate data and the 
camera-based attitude estimates.  However, the development 
of the filter stalled.  In order to provide results in a more 
timely fashion, a simpler method was adopted.  The new 
process is as follows.   

To begin, the raw GPS data is processed to produce the 
position measurements accurate to a standard deviation of 
two centimeters.  Second, the images produced by the wide-
angle camera are manually sorted through to find images 

5% Rock Field 

10% Rock Field 
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Craters 

Cardboard 
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that contain six or more attitude targets.  Once the images 
were identified, they are used to determine the camera 
attitude.  Because the cameras infrequently captured images 
of the attitude targets, the camera-generated attitudes are 
used to initialize IMU-based attitude propagation.  Finally, 
gyro propagation is combined with the GPS measurement to 
provide the full LIDAR pose (postion and attitude). 

This section details the reconstruction process.  Initially, we 
present the GPS processing methodology followed by the 
imagery-based attitude estimation process.  After that, the 
equations used to propagate the attitude estimate based on 
the IMU data are given.  Finally, we provide how the 
camera estimates, gyroscope propagation and GPS position 
data are all combined to reproduce the LIDAR pose. 

GPS Data Processing 

The GPS hardware configuration of FT1 consists of two 
receivers, one is a static base station on the ground, and the 
other mounted on the helicopter. The data recorded by both 
receivers is analyzed to derive the precise positions of each. 
To obtain the precise position of a receiver, the data logged 
by the receiver is processed together with satellite orbit 
position and clock information. The quality of the GPS orbit 
and clock information used in the data processing defines 
the accuracy of the receiver position solution.  In the final 
processing of the GPS data for FT1, we use the precise GPS 
orbit and clock information called the FLINN product. This 
product is produced at JPL by processing tracking data from 
80 globally distributed ground stations, with about 10 days 
latency and 3 cm accuracy. The product is routinely 
generated and submitted to International GNSS Service 
(IGS) to support precise applications in science and industry 
communities. 

                      

                      

                      

Figure 12: GPS data post-processing for trajectory 
reconstruction 

Our solution approach is illustrated in Figure 12.  At the left 
of the image is the data collected during a flight.  The center 
column represents a GPS processing method and the right 

hand side is the product and its solution accuracy.  Each 
method is now described in detail. 

Base Station Static Point Positioning—The base station 
receiver data is processed using the FLINN GPS orbit and 
clock product. The combination of GPS measurements at 
two different frequencies, commonly known as L1 and L2, 
are used to remove the effect of the ionosphere on the 
measurements. To further improve accuracy, data points 
with tracking elevation angle below seven degrees are 
excluded. Given two hours or longer hours of data, the 
typical accuracy of the static point position solution is three 
centimeters. 

Helicopter Kinematic Point Positioning—Initially, the flight 
receiver data is processed to determine the helicopter’s 
position using a kinematic point positioning technique. 
Again, L1 and L2 GPS measurements are used to remove 
the effect of the ionosphere.  Then, using the best FLINN 
GPS orbit and clock information, the absolute the kinematic 
point positioning is determined to within twenty 
centimeters.  Here, the main error source for the solution is 
the correlation between the troposphere delay and the 
position height component.  This solution is used as the 
initial trajectory for the relative positioning solution.  

Helicopter Kinematic Relative Positioning—The base 
station receiver data and the flight receiver data are 
processed together to determine the helicopter’s position 
relative to the base station. In the relative positioning, those 
errors that are common to both the base station receiver data 
and the flight receiver data, such as the GPS orbit and clock 
errors and troposphere and ionosphere delay errors, cancel 
out over a short baseline. In our process, the base station 
position is fixed to the static point positioning solution and 
the helicopter’s position is solved iteratively starting with 
the kinematic point positioning solution. To do so, we use 
the GPS pseudorange and carrier phase measurement at 
frequency L1.  Typically the helicopter’s position error 
relative to the base station has a two-centimeter standard 
deviation.  

Image Based Attitude Estimation 
The objective of the image-based attitude estimation is to 
provide attitude measurements while over a test site.  
Because the image-based attitude estimation does not drift 
as the IMU does, it serves as an anchor point for the IMU 
data processing and the final trajectory reconstruction.   

The initially proposed procedure for the image-based 
attitude estimation was the following.  First, the image 
sequences containing a sufficient number of attitude targets 
were manually extracted.  Then, using these images, the 
image pose was estimated.  Last, we applied a bundle 
adjustment using the estimated pose and selected track 
features of an image series to improve attitude and position 
estimates.  However, many image sequences contained a 
lack of distinguishable features, or the target field was 
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relatively small compared to the full image.  For these, 
bundle adjustment produced bad results.  Therefore, a 
method was adopted that relied on the kinematic relative 
GPS position rather than estimating it from imagery. This 
method is as follows. 

Image Rectification and Attitude Target Extraction—
Initially, sequences of images containing six or more 
attitude targets were found.  Prior to inspection, we used the 
camera CAHVOR model [4] to rectify each image.  Then, a 
manual scan was made of every eighth frame.  If any 
attitude targets were seen, the skipped frames were 
examined to determine the exact frame in which the targets 
initially appeared.  By comparing this frame to the surveyed 
locations of the attitude targets, each target was identified 
and its x- and y-pixel location were recorded.  These 
locations are then used to initialize an automatic tracking 
algorithm. 

To track the target locations, each image frame in a 
sequence containing the attitude targets was passed through 
a Scale-Invariant Feature Transform (SIFT) Keypoint 
Detector [7]. Comparing the SIFT points between 
consecutive images allowed for the computation of the 
Homography transform which mapped the pixels from one 
image into the next.  By initializing the locations of the 
targets in the first frame with a location recorded earlier, the 
Homography transform is applied to propagate the x- and y-
pixel locations forward through the entire series. When, 
however, there was poor matching between pictures, the 
propagation failed. 

When the above failed, the algorithm automatically shifted 
the target grid of one image horizontally and vertically over 
the other.  For every shift, the normalized sum of the pixel 
values under the targets is computed and the optimal shift 
was found.  Since the targets are white, this is the shift at 
which the sum of pixels is the maximum.  In order for 
automatic shifting to succeed, the targets must clearly 
contrast the background and the target grids in both frames 
must be relatively in the same configuration.  When either 
condition was not met, the automatic shift algorithm failed.  
In this case, a target was hand-selected and the shift from 
one image to the next was manually determined.  All targets 
were shifted by this amount and the x- and y-pixel location 
propagation continued.  Starting with the manual shift, the 
local maximum was found to find the best local target 
location.  When the propagation of the target locations 
completed, the results were visually inspected for 
correctness by plotting the predicted attitude target locations 
back onto the image frames.  Figure 13 illustrates the entire 
target-tracking algorithm. 

Solving for the Camera Attitude—Once a series of rectified 
images are produced and the pixel locations of the targets 
are known, the attitude of the camera can be found.  For a 
CAHVOR calibrated camera, every x- and y-pixel location 
corresponds to a known three-dimensional ray expressed in 
the camera frame.  Given the set of three-dimensional points 

Pi expressed in the GPS frame and a corresponding set of 
two-dimensional points vi expressed in image coordinates 
(the x,y-pixel locations), it is possible to derive a unit length 
ray vi in the camera frame using the camera calibration data. 
Let r be the camera location as measured by the GPS and 
{wi } = {w1, …, wn} be a set of unit length rays from the 
camera to each Pi, i.e.,

   (1) 

where || . || is the vector norm. Then, solving for the full 
camera pose amounts to computing the rotation between 
{wi} and set {vi} = {v1, …, vn}.  To do so, we define V as the 
n!3 matrix consisting of {vi}, W as the n!3 matrix 
consisting of {wi} and R as the rotation matrix that rotates 
VT such that  

WT=RVT             (2) 

In practice, (2) does not have an exact solution and is 
computed either by R=ABT, where  A!BT = WTV is the 
singular value decomposition of WTV, or by R=Pinv(W)V 
where Pinv is the Moore-Penrose pseudoinverse. Note that 
if WTW is non-singular, then Pinv(WTW) = (WTW)-1WT 
and, therefore, R = (WTW)-1WTV. 

 

 

 
Figure 13: Block diagram of target tracking algorithm 

& Auto Adjustment

Automatic Shift 
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Next, we find the best attitude estimate using the RANdom 
SAmple Consensus (RANSAC) method [3].  From the set 
{Pi} = {P1, …, Pn}, three points are selected and used to 
form an attitude estimate.  Using the resulting R matrix, the 
attitude targets are projected into the image and the 
projection error is calculated.  Using a predetermined 
threshold, erroneous members of {Pi} are identified and 
rejected.  Then, the best attitude estimate is that formed 
from the remaining points.  The resulting matrix R is the 
image-based attitude estimate. 

 

IMU-Based Attitude Propagation 

For a given flight, the resulting imagery-based attitude 
estimates exist only when the wide-angle camera captured a 
sufficient number of attitude targets, which occurred at a 
maximum rate of once a second.  Given the high rotational 
velocities of the gimbal, this was insufficient for 
reconstructing the LIDAR trajectory.  To this end, we 
determine the attitude every 2.5 milliseconds using the 
LN200 gyroscopes. To use the gyroscopes, we first define 
an inertial frame.  Then, using the camera attitude estimates 
to initialize the attitude, we propagated the attitude over the 
time that the LIDAR was sampling data.  The following 
sections provide the details of each step.   

The inertial frame—We utilize an Earth Centered Inertial 
(ECI) frame.  We define the inertial frame to be the location 
of the WGS84 frame at the initial time in a flight that the 
wide-angle camera captures enough attitude targets to 
produce an attitude estimate. 

Determining the initial attitude from a series of attitude 
estimates—In this section, we find the initial attitude of the 
IMU relative to our ECI frame.  The attitude of the IMU 
relative to the inertial frame is denoted MRI. This was 
determined for every imagery-based attitude estimate.  The 
product of the image-based estimates was the attitude of the 
camera with respect to the GPS frame.  Call it ERC.   From 
the ith estimate ERC

i,, the IMU attitude relative to the initial 
frame was determined by the successive rotations 

MRI
i = MRC (ERC

i)-1 ERI(t).       (3) 

Here, MRC is the known rotation between IMU frame and 
the camera frame, and ERI accounts for the rotation between 
the GPS frame and the ECI frame. 

For propagating attitudes, quaternions are numerically better 
suited. Therefore, each MRI

i is converted to the equivalent 
quaternion MqI

i.  Now that we expressed the attitude of the 
IMU relative to an inertial frame in quaternion form, we 
propagated it using the delta angles measured by the 
gyroscopes and using the (4).  
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Here,  

 

and 14 is the 4"4 identity matrix.

The angles #x, #y, and #z, are the angles provided by the x-, 
y- and z-gyroscope measurements, respectively.  This 
equation is the result of truncating the infinite series 
expansion of the quaternion kinematic equation [8]. 

Recall that image-based attitude estimates are only available 
when the camera images at least six attitude targets.  Also, 
the estimates come from sequences of consecutive images.  
For each sequence, we attempt to find a good initial attitude 
to begin our propagation of the attitude over the entire 
flight. To start, we selected the initial estimate from a 
sequence and propagated the attitude forward until the end 
of it. Note that each sequence was a small portion of the 
entire flight.  Figure 14 shows an example of MqI generated 
from a section of data collected over the Borrow Pit target 
site.  As seen here, the image-based attitude estimates agree 
with the gyroscope propagation. 

 
 

Figure 14: Plot of attitude estimate based on camera 
versus attitude propagated with IMU 

Having both a propagated quaternion and camera-based 
estimates during the same time span, we found the mean 
error between them.  For clarity, we now denote the 
propagated quaternion as MpI and retain the MqI notation for 
attitude estimates.  The error quaternion mapping the 
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difference between the propagated attitude and the estimated 
attitude is given by 

qe = (MpI)-1 # MqI .  (5) 

Here, (MpI)-1 is the inverse quaternion of MpI and # is the 
quaternion product.  From the error quaternion, the 
equivalent Euler angle of rotation $ and unit Euler axis of 
rotation a can be determined. Using $ and a, we define the 
scalar error quantity es = $ and the vector error ev = es a.   

At this point, we have an error vector ev and scalar es for 
every attitude estimate.  Taking ue to be the mean of all ev
and us to be the mean off all es, we create the correction 
quaternion qc=[ue

T
!sin(us/2), cos(us/2)]T.  Applying the 

correction quaternion to first camera-based estimate MqI
1

provided the initial quaternion used to propagate the attitude 
for the entire flight, such that MqI

0 = MqI
1#qc.   

To illustrate the effects of this procedure, we include Figure 
16, which, because of its size, has been placed in the 
Appendix.  Here, frames (A) and (B) are the values of es and 
ev, respectively, created when the attitude was propagated 
starting at MqI

1 and (C) and (D) was propagated starting at 
MqI

0. By improving the starting point, the maximum scalar 
error es has dropped from 0.26 degrees to 0.18 degrees and 
the standard deviation has dropped from 0.06 degrees to 
0.03 degrees.  The vector error has the same shape, but now 
has zero mean. 

Determining the attitude of the IMU with respect to ECI—
During a flight, several passes at the target site are made.  
At each pass, the wide-angle camera takes a series of images 
used to estimate the attitude. See Figure 15.  This figure 
shows the IMU, LIDAR and camera timestamps for the 
second Borrow Pit flight.  Here nine sequences of attitude 
estimates are clearly visible.  However, it can be seen that 
LIDAR data is available between each sequence.  To 
provide attitude estimates between each series, we 
propagate the estimates using the IMU.  As the propagation 
continues, the estimate accuracy degrades due to error 
sources such as the gyroscope bias and numerical 
inaccuracies. Here we attempt to compensate for these 
errors. 

 

Minutes since start of data acquisition. 

Figure 15: Sample times of IMU, LIDAR and camera 

Initially, it was proposed to combine GPS, camera data and 
the IMU with an EKF.  However, development of the filter 
stalled and remains the subject of future work.  For FT1, we 
utilized the following ad hoc method. We began by finding 
the initial quaternion for each sequence of image-based 

attitude estimates as determined by the previous section.  In 
addition to q0, the standard deviation of es for each sequence 
was calculated.  Starting from the initial quaternion of each 
sequence, we propagate the attitude across the entire flight.  
While propagating, the accuracy of the attitude was also 
tracked via 

$k(t) = $0 + | b(tk-tq0) | (6)

where $0  is the standard deviation of es for a given 
sequence, | % | indicates the absolute value, b is an arbitrary 
scale factor, tk is the timestamp of the kth measurement and 
tq0 is the timestamp of q0.  Take M to be the number of 
imaged-based attitude estimate.  For the flight illustrated in 
Figure 15, M = 9.  Since we propagated the attitude starting 
at each sequence’s q0, there were M different propagated 
attitudes at every time step.  Each of these were combined 
using a weighted average 

   (7) 

where !j and aj are the Euler angle and axis that define a 
propagated quaternion pj, wj=$j

-1 is the weight of pj and W 
is the sum of all weights.  Notice, that by using ! and a, u is 
the average of the attitudes axis angle form.  Finally, for 
every time step, u was converted to the quaternion 
MqI(u)|=|[vT|sin(#),_cos(#)]T, where v = u/||u|| and # = ||u||/2.  
Also note that this scheme favors samples where there is 
good camera and IMU agreement. 

Constructing the LIDAR trajectory 

The objective of the trajectory reconstruction effort was to 
determine the position and attitude of the LIDAR with 
respect to a target site.  Finding the attitude requires the 
following successive rotations: 

TqL = TqE # EqI(t) # (MqI)-1 # MqL.  (8) 

Above, TqE and MqL are the known relative attitudes. The 
first is the attitude of the target frame relative to the GPS 
frame and the latter is the attitude of the LIDAR with 
respect to the IMU frame.  The other term introduced in (8), 
EqI(t), is the attitude of the GPS frame with respect to the 
ECI frame at time t.  

To find the position of the LIDAR in the target frame, we 
first linearly interpolated the 1 Hz GPS position 
measurement, rL/E, to the 8 Hz necessary for the LIDAR.  
Then, we removed the offset between the GPS and target 
frame, rE/T, and rotated the interpolated measurements from 
the GPS frame into the target frame using the rotation 
matrix TRE, which is the rotation matrix equivalent to (8),  

rT = TRE  (rL/E – rE/T)     (9) 

The attitude provided by (8) and the GPS measured position 
via (9) gave the full pose of the LIDAR for each flight. 

0 80 70 60 50 40 30 20 10 
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6. INSTRUMENT VERIFICATION 
To verify the accuracy of the reconstructed trajectory, we 
used the LIDAR by shifting the LIDAR data until the 
minimum correlation error between the sensor data and truth 
DEM was found.  The LIDAR camera boresite vector 
corresponds to the LIDAR z-axis and the sensor array rows 
and columns define the x- and y-axes.  Therefore, any 
position shift in the z-direction can be interpreted as a range 
error.  Shifts in the x- and y-axes correspond to yaw, %, and 
pitch, &, errors as follows: 

& = tan-1( -'y (d + 'z)-1 ),      (10) 

% = tan-1( 'x (d + 'z)-1 ),      (11) 

where 'x, 'y and 'z represent the x, y and z shifts, and d is 
the distance to the target. Notice that yaw is the rotation 
about the LIDAR y-axis, and pitch is the rotation about the 
LIDAR x-axis. Roll and pitch errors have been calculated 
using this method for Lakebed and Borrow Pit flights and 
plotted in Figure 17 (A) and Figure 18 (A), respectively. 

Additionally, we compared the attitude determined by (7) to 
the image-based estimates and plotted the results in Figure 
17 (B) and Figure 18 (B).  The maximum observed errors 
observed by the LIDAR during the Borrow Pit flight were 
0.25 and 0.16 degrees for pitch and yaw, respectively.  
These are comparable to the camera-generated values of 
0.12 and 0.15 degrees (seed Figure 17 (B)).  For the 
Lakebed flight, seen in Figure 18 (A), the maximum LIDAR 
determined error was 0.37 and 0.58 degrees for pitch and 
yaw, respectively. However, the pitch and yaw errors seen 
in Figure 18 (B) for the cameras were significantly worse, 
0.33 and 2.50 degrees, respectively. 

In Figure 17 (B) and Figure 18 (B), a non-random process 
noise is apparent and is the likely cause of the larger than 
expected errors.  Currently, the source of this error has not 
been identified, however, for the ad hoc method described 
here, gyroscope scale factor errors, sense axis 
misalignments, and bias have not been accounted for.  
Additional error sources for the camera and IMU include the 
numerical inaccuracies introduced by (4) and timing errors.  
For the LIDAR, the largest source of error is the timing 
uncertainty. Efforts have been made to identify the timing of 
the LIDAR sampling.  Unfortunately, it changes from flight 
to flight and is not easily identifiable.   

Despite the larger than expected error, the trajectory 
reconstruction method was sufficient enough to place the 
LIDAR hazards within one meter horizontally of the truth 
hazards. The combination of the mainly horizontal 
trajectory errors and the time-varying range bias inherent to 
the LIDAR caused the LIDAR data to be misaligned relative 
to the truth DEM. To eliminate this misalignment, the flash 
LIDAR data and truth DEM were correlated using a 
procedure based on the HRN algorithm [6] was used. The 

end result was precise alignment to 1 DEM pixel (0.1m) or 
less.  

Even though the results from the method presented here 
were sufficient to achieve the ALHAT objectives, it may be 
desirable in the future to try to achieve the expected attitude 
performance of 0.71-degrees.  In that case, methods to 
identify the error sources will be developed.  One such 
option is the use of an unconstrained nonlinear optimization, 
such as the MATLAB® function fminsearch.  By 
formulating the effects that gyroscope misalignments, biases 
and timing offsets has on the propagated trajectory, the 
parameter values that minimize error between the camera 
estimates and the propagated trajectories can be found.  
Although this approach is simple, the time for the nonlinear 
optimizer to find the parameters will be great, and it will not 
compensate for the numerical inaccuracies. 

A more complex alternative is to complete the EKF and 
extend it to an optimal smoother.  The filter will directly 
solve for gyroscope biases and drift, due to the averaging 
between sensors, and reduce the impact of the numerical.  
By running the filter multiple times and observing the 
effects that shifting timing offsets has on the filter residuals, 
the best timing offset of the camera and IMU can be 
identified.  Similarly by shifting the timing of the LIDAR 
samples and observing the effects on 'x, 'y and 'z, the best 
LIDAR offset for each flight can be found.   

7. CONCLUSIONS 
The expected performance of the reference system was .12 
cm for position and 0.071 degrees for attitude.  Although the 
maximum observed attitude error of 0.33 degrees was five 
times worse than expected, the error for the Borrow Pit 
flight never exceeded the FT1 requirement.  However, this 
was not the case for the Lakebed flight.  Examination of the 
error seen in Figure 17 (B) and Figure 18 (B) clearly 
demonstrates a yet unidentified, non-random process noise.  
By compensating for gyroscope misalignments, scale factor 
errors, gyro biases and timing, this error should dramatically 
reduce. Despite the larger than expected errors, this method 
was sufficient to achieve the FT1 ALHAT objectives.  In 
case a better level of accuracy is required in the future, the 
sources of error will be analyzed and the methods to 
compensate for them will be developed.  Two approaches 
are the use of an unconstrained nonlinear optimizer, or the 
development of an Extended Kalman Filter.  The results of 
these efforts are expected to achieve the expected 0.071-
degree performance for FT1. 
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APPENDIX 
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Figure 16: The error between the propagated and estimated attitude.  (A) is the scalar error and (B) is the vector 
error before the corrections.  (C) is the scalar error and (D) is the vector error after the correction. 
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                                            (A)        (B) 

Figure 17: Yaw and pitch errors from second Borrow Pit flight for (A) the LIDAR and (B) the camera. 

   
                                                          
                                           (A)        (B) 

Figure 18: Yaw and pitch errors from the third Lakebed flight for (A) the LIDAR and (B) the camera. 
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