

Darts Lab

Large Scale Rover Simulations: Supercomputing to Evaluate Rover Control Algorithms

Richard Madison, Abhi Jain, Gerard Benenyan, Chris Lim, Leonard Reder, Mark Maimone

Jet Propulsion Laboratory
California Institute of Technology

Space 2005 30 August 2005

Navigation for Mars Rovers

Darts Lab

Research Rovers

MER / SSTB

9.27

MSL

GESTALT (MER Autonomous Navigation)

GESTALT Movie

Uncertain Operational Environment

Darts Lab

- Obstacle size, distribution
- Slope
- Slippage
- Surface texture for stereo ranging
- Lighting conditions

What is GESTALT's Operating Envelope?

Test Navigation in Simulation

- Simulation may be available sooner and more often than flight hardware
- Very accurate controlled experiments
- More latitude in constructing representative terrains
 - Custom terrain, lighting, etc.
 - Arbitrary terrain size
- Run many simulations in parallel on supercomputer, exploring large parameter space

Test Using Supercomputer

- Large parameter space to explore
- Supercomputer can run ~200 simulations at once
 - Single workstation can only run one at full speed
- We have used simulation and supercomputers to explore design parameter space for entry, descent, and landing (EDL)
- Now use them to explore the operational envelope of surface navigation

Goals

- Develop capability to quickly simulate large number of runs of GESTALT with varying parameters
- Develop capability to interpret test results
- Demonstrate capability be performing a few experiments

Test Plan

Darts Lab

- Flat plane
- Grid of rocks
- Avoid rock on slippery slope
- Slope test with only wheel odometry
- Grid of holes negative obstacles
- Rock distribution model
- Wheel traps
- Rover visible in image
- Stereo imaging instead of range map inputs

Each test adds one challenge to GESTALT

ROAMS Simulator

GESTALT in ROAMS

Darts Lab

GESTALT chooses commands

ROAMS simulates world interactions

Repeat until reach goal, abort, or time out

Run on Supercomputer

- Dell Xeon Cluster
 - 1024 Pentium 4, each 3.2GHz
- Divide up to 1000 tests over 200 nodes
- Median 7min for a 7m traverse
 - A few runs timeout after an hour
 - 1000 tests take about 2½ hours,
 depending on machine load

RoamsMonteCarlo

- Run many ROAMS tests, varying parameters
 - Specify possible values for starting pose, goal, slippage, etc.
 - Specify number of test runs
 - Exhaustive or Monte Carlo search of parameter space
 - To identify patterns in failure to reach goal
- In each test, ROAMS records
 - Rover pose at each navigation step
 - End status: reached goal, timed out, no viable path, etc.

Data Visualizer Tool

- Evaluate results of many tests at once
- Quickly see patterns
 - Successful paths
 - Failure modes

Flat Plane

- Verify that test code works
- Navigate to goal from many starting positions and orientations
- Results
 - Usually reaches goal
 - Sometimes cannot turn sharply enough to reach goal
 - Occasional failures of the supercomputer
 - Success requires rear cameras and timeout

Doc 9.21 d2, p.15

Lesson Learned: No U-Turns

Darts Lab

- Tests succeeded only when rover initially faced goal
- Research
 - Only using front cameras
 - Follow safe terrain ahead, away from goal, until there is safe terrain behind, then back up. Repeat until timeout.
- To reach targets behind rover, enable rear cameras
- Behavior is obvious only in retrospect

9.36

Doc 9.21 d2, p.16

Rock Grid

Darts Lab

- Verify GESTALT can detect and circumvent specific obstacles
- Navigate around regular grid of rocks – vary size, spacing, start pose, goal
- Results
 - Drives over 9cm rocks, around 18cm rocks
 - Reaches goal except when large rocks are too close together to drive between
 - Occasional supercomputer failures

93

Slope with Obstacle

Darts Lab

- Evaluate ability of GESTALT to avoid obstacles despite slippage
- Drive past rock on slope, while slipping toward rock
 - Vary driving direction relative to slope, distance uphill from rock, surface friction, slope
 - Stop if collide with rock
 - Perfect position knowledge simulates visual odometry
- Results:
 - Add results here

9.35

Picture from Visualizer

Test Plan: Work in Progress

- Flat plane
- Grid of rocks
- Avoid rock on slippery slope
- Slope test with only wheel odometry
- Grid of holes negative obstacles
- Rock distribution model
- Wheel traps
- Rover visible in image
- Stereo imaging instead of range map inputs

Tools to Come

- Path safety evaluator
 - Apply GESTALT traversability evaluator to entire terrain map
 - Compare actual path against traversability map
 - Report worst cell traversed
 - Identify successful but unsafe paths
- Table showing parameters for each test where rover failed to reach goal
 - Another way to identify failure patterns

Conclusions

- Testing in simulation on a supercomputer allows us to thoroughly investigate limits of our navigation software
- Now have capability to run tests, interpret results, learn lessons
- Could test rover control algorithms in general, algorithms in general, new rover designs, etc.

Backup Slides

GESTALT Algorithm

- Stereo vision builds range map of nearby terrain
- Grid range map into cells along ground plane
- Evaluate range points in each cell
 - Mean traversable cells are close to ground plane
 - Variance traversable cells have constant elevation
- Evaluate possible travel arcs
 - Traversability of cells to be crossed
 - Progress toward goal
- Choose & execute best arc

GESTALT in ROAMS

- ROAMS generates range image
- Apply GESTALT to choose next rover motion
- Simulate rover motion
- · Repeat until reach goal, abort, or time out

ROAMS Simulator

- Rover Analysis, Modeling, and Simulation
- Simulates rover subsystems and interaction with environment
- Close control loops in simulation

