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Abstract— To command a rover to go to a location of 
scientific interest on a remote planet, the rover must be 
capable of reliably tracking the target designated by a 
scientist from about ten rover lengths away. The rover must 
maintain lock on the target while traversing rough terrain 
and avoiding obstacles without the need for communication 
with Earth. Among the challenges of tracking targets from a 
rover are the large changes in the appearance and shape of 
the selected target as the rover approaches it, the limited 
frame rate at which images can be acquired and processed, 
and the sudden changes in camera pointing as the rover 
goes over rocky terrain. We have investigated various 
techniques for combining 2D and 3D information in order 
to increase the reliability of visually tracking targets under 
Mars like conditions. We will present the approaches that 
we have examined on simulated data and tested onboard the 
Rocky 8 rover in the JPL Mars Yard and the K9 rover in the 
ARC Marscape. These techniques include results for 2D 
trackers, ICP, visual odometry, and 2D/3D trackers. 
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1. INTRODUCTION 
On the Mars Pathfinder mission, the Sojourner rover used 
an average of 5.2 Martian days (sols) to drive an average of 
about 7 meters to a target designated by a scientist and then 
place an instrument on the target. The Mars Exploration 
Rovers, Spirit and Opportunity, which will land early in 

2004, have a baseline of 3 sols for an approximately 10 m 
target approach. Future rovers can maximize science return 
by reducing the number of sols required to approach a 
designated target, place an instrument, and collect science 
data. Using fewer sols requires longer traverses between 
course corrections, which, in turn, requires more accurate 
navigation.  Dead reckoned navigation over rock-strewn 
terrain can produce navigation errors above the allowable 
15% of distance traveled. We have explored the use of 
visual tracking techniques that combine 2D and 3D 
information to maintain lock on a designated target point as 
the rover approaches it. With reliable target tracking, a 
rover will be able to achieve single-sol instrument 
placement from 10 to 15 rover lengths away on Mars-like 
terrain. 
 
The scenario we are exploring is as follows (Figure 1). A 
scientist designates a target in the imagery downloaded 
during the previous sol. The designated target location 
(either the image location or the corresponding 3D location 
computed from stereo processing) is uploaded to the rover. 
Once the rover receives the designated target, it will 
autonomously drive, keeping the target within the rover’s 
field-of-view (FOV), until the target is within the 
workspace of one of its arms. The rover will then deploy its 
arm and place the desired instrument on the target for 
science data acquisition and download to Earth.  
 
Reliable target tracking from on-board rover platforms is 
particularly challenging for the following reasons: 
 
(i) The visual tracker needs to operate in parallel with a 

navigator for the rover to safely avoid obstacles when 
traversing rough terrain. Figure 2 shows Martian 
terrain that the rover must be able to negotiate.   

(ii) A rover experiences sudden changes in its tilt as a 
result of a wheel dropping off a rock or dipping into 
a gully, causing the target to leave the camera FOV 
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(iii) The target changes appearance both in images as well 
as in the reconstructed 3D model after it is recovered. 
High-frame-rate image-acquisition and processing 
are not feasible due to limited computational and 
power resources 

(iv) The articulated pan/tilt camera system has to meet 
multiple mission objectives and cannot be fully 
dedicated to meeting the visual tracking 
requirements, so image frames may be taken quite far 
apart in time. 

 
Background 

There has been considerable amount of research dedicated 

to studying the problem of feature tracking. However, most 
trackers require very small and/or well-estimated motion 
between consecutive frames or some a priori knowledge of 
the target geometry as in the case of high-speed tracking of 
man-made objects in military applications. These 
assumptions do not hold for a flight rover operating across 
rough terrain. Researchers at NASA and participating 
universities have been investigating the adaptations of well-
studied tracking techniques to the problem of tracking from 
a rover platform. 
 
Early work at ARC has investigated the use of binary 
correlation to register individual features across multiple 
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Figure 1: Scenario of rover tracking a designated target 
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Figure 2: Sample terrain from Mars missions (a) and (b), and the JPL Mars Yard (c) 
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frames. This binary correlator matches the sign of pseudo 
Difference of Gaussian (DOG) of filtered imagery.  Such 
pre-filtering has proven very stable in the presence of 
lighting variations and camera noise.  Binary sign 
correlation was also implemented using logical operation 
rather than arithmetic calculations, thus increasing the speed 
while reducing the memory requirements for the tracker.  
The instruction level parallelism of this correlative approach 
makes it amenable to the limited processing requirements of 
near-term rover missions. This technology was 
demonstrated on the Marsokhod rover for navigating to a 
desired location [16]. However, as the vehicle approaches 
the target, the target's image size grows considerably 
between updates, and a correlation search on the intensity 
image tends to drift and fail. A recent development at ARC 
explored the use of surface normals to reproject the 3D 
terrain model into a virtual depth map, rendering the models 
as they would be seen from a single range sensor [2]. This 
approach showed promising results when tested on targets 
within 5 m from the rover. 
 
Another development in target tracking for rover platforms 
occurred at JPL. One algorithm, known as visual odometry, 
uses an interest operator to track intensity-based image 
features [9][14]. By supplying an initial estimate of the 
rover motion, this tracking system computes a refined 
estimate of the rover position and orientation by matching 
these features in consecutive images. We will present a 
discussion on how this algorithm is used in our tracker and 
some of its current limitations. Another algorithm 
developed at JPL tracked targets in the three-dimensional 
elevation map that is generated from stereo imagery [11]. 
This algorithm was developed to enable the autonomous 
acquisition of targets selected from several meters away. 
However, changes to the cameras’ FOV caused the tracker 
to lose the designated target.  
 
Another effort at JPL [6] used a homography-based tracking 
kernel to track designated features. Results for short 
traverses were promising. Building on these experiences 
and looking into combining 2D and 3D information to 
enhance tracking reliability and address the limitations 
previously encountered, we designed our algorithm to be 
robust to large changes in feature geometry and photometry 
between frames and to handle tracking from mast mounted 
cameras. In this paper, we will first present some of the 
approaches we examined and why they failed to produce the 
reliability that we were seeking. We will later show how 
these initial approaches converge to the current solution 
whose results are very encouraging.  
 

2. USING ICP FOR ROVER TRACKING  
We started by examining how 3D information generated 
from stereo processing can be used to enhance the reliability 
of the 2D target trackers. We have explored a number of 

approaches for using iterative closest point (ICP) algorithms 
to enhance the reliability of 2D tracking. 

Background 

The ICP approach  [1] is suited for aligning point clouds 
that represent non-corresponding points on a common 
surface, which is what we expect from stereo data. Other 
methods may give better results when the point clouds 
represent corresponding points. ICP consists of a loop with 
a two-step kernel. The first step pairs points from one cloud 
with their nearest neighbors in the other cloud.  The second 
step determines the transform to apply to the points of one 
cloud to minimize the distance between the nearest 
neighbors.  If, after the transform, some points are not 
paired with their new, nearest neighbors, then repeating the 
kernel on new pairings can refine the transform. ICP iterates 
the kernel until the nearest neighbors do not change, or until 
iteration produces, for instance, a suitably small average 
distance between nearest neighbors or a suitably small 
change in transform. 

Most 3D tracking algorithms follow the two steps of the 
ICP kernel – they find corresponding points in two scenes 
and then determine the transform that accounts for the 
motion of the points.  The primary difference between the 
algorithms seems to be in the approach to finding 
corresponding points.  
 
The ICP approach is suited for point cloud inputs, where it 
is not necessarily possible to identify “collocated” pixels, or 
where “gradients” between pixels may not be defined.  
However, there are other methods for making point 
correspondences.  An example is RANdom SAmpling 
Consensus (RANSAC) [3], which tests a number of 
arbitrary pairings of points, finds the best transform to 
explain each, and keeps the transform that best aligns the 
two clouds overall.  
 
In this work, we considered two approaches that used the 
ICP algorithm to recover change in rover pose (position and 
orientation). The first applies the ICP algorithm to full 
frames. The second applies ICP to select matches 
surrounding rock features in the point clouds. In both cases, 
the algorithm uses a full 6D model of the change in the 
camera/rover pose. One would expect a more accurate result 
of either of these approaches as compared to an affine or 
homography-based feature matcher, which uses an 
approximate motion model. 
 
ICP on Entire Frames 

First, we evaluated the use of full frame ICP between 
consecutive point clouds. We tested this algorithm on both 
synthetic images of rocks with known and accurate depth 
maps generated using a ray tracer as well as on images 
generated from the rover cameras. We found that ICP 
converged well when the motion between scenes had a good 
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initial estimate that major features locked on properly in the 
first iteration. However, when the algorithm was tested with 
rover-based images and with estimates of rover motion, the 
results were not as promising as those of synthetic images. 
There were several problems that were encountered trying 
to match terrain point clouds from real images.  
 
The first problem that we encountered with full frame ICP 
was the convergence of the algorithm on the wrong local 
minima. ICP is essentially a gradient descent algorithm, and 
thus it must begin operating in the correct valley of an error 
surface. Poor initial estimates of the rover motion make it 
challenging for ICP to converge to the correct minimum. 
 

 
 

Figure 4: Sources of ICP false matches 
 
To illustrate this point, consider the example of two, 
differently shaped, squat rocks sitting on a planar patch 
shown in Figure 4. Suppose two point clouds representing 
the scene are nearly aligned, so that points on each rock in 
the first cloud have nearest neighbors on the same rock in 
the second cloud.  Then ICP will pull the neighbors 
together, improving the alignment of the two scenes.  Now 
rotate the second scene 180° so that the two rocks are 
falsely matched.  Points on each rock now have nearest 
neighbors on the incorrect rock, but ICP will try to align to 
them, converging to an exactly incorrect result (see above).  
 Now, rotate the second patch 90° about the same axis so 
that the rocks in each cloud sit above a planar part of the 
other cloud.  ICP will minimize the distance between 
nearest neighbors by lowering the first cloud (to move rock 
points toward the second cloud’s plane) and raising it (to 
move plane points toward the second cloud’s rocks), giving 
no net change.   ICP will converge without modifying the 
initial pose.  Finally, separate the two clouds so that they do 
not overlap.  Now ICP may find that all points in one cloud 
have the same nearest neighbor in the second cloud—the 
single point closest to the first cloud.  ICP will move the 
centroid of the first cloud onto that single nearest neighbor, 
and apply an arbitrary rotation, potentially producing any of 
the situations described above.  In summary, ICP must 
begin with a reasonable estimate to converge properly.  It 
follows that ICP must supplement another tracking method, 
such as 2D tracking or visual odometry. 
 

The second problem stemmed from stereo noise, which was 
present in point clouds generated by applying stereo 
processing [9] to either synthetic or rover-based images. 
Stereo contributed at least two error sources that hampered 
ICP.  
 
First, stereo-generated depth maps have fattened occluding 
edges. Stereo finds the depth at an image pixel by 
correlating a window around the pixel, across a second 
image, and converting the offset ("disparity") that produces 
the best correlation value into a distance from the cameras. 
A window containing an occluding boundary can correlate 
well at the disparity of the foreground object or the 
background, and favors the more distinct foreground even 
when the window is centered on the background.  As a 
result, several pixels outside an occluding boundary are 
incorrectly assigned the distance of the foreground object.  
When the scene rotates, the artificial edges stay with the 
foreground object, but they do not rotate. ICP then 
underestimates rotation as it averages the rotating and non-
rotating pixels.  
 
Second, stereo-generated point clouds have “outlier” 
regions, which appear in only one of two consecutive point 
clouds that ICP must align.  As any range sensor moves 
around the scene, different parts of the scene become 
occluded. The problem is aggravated for stereo as we 
attempt to remove fluke results. Correlation-based stereo 
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Figure 3: Top left shows the top view of two point clouds 
computed from stereo processing acquired at time t (green) 
and t+dt (red). Top right shows that areas of missing data 
result in selected neighboring points that pull point cloud
in opposite directions. Bottom left shows overall resultant 
change to match two clouds is very small. Bottom right 
shows that even after filtering outlier regions, the overall 
result does not cause the two point clouds to match up 
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can produce occasional fluke results, given occasional hard-
-to-track features plus image noise.  Solutions generally 
involve eliminating or modifying pixels whose depths are 
inconsistent with their neighbors, or small islands 
surrounded by unrecoverable depths. If stereo cannot find a 
dense map, eliminating disconnected, small patches can 
remove coverage for large areas. Figure 3 (top left) shows 
two point clouds (red and green), where a large area along 
the bottom of the red cloud has been eliminated as described 
here. ICP must realize that the region is an outlier, and then 
eliminate it. Such outlier rejection is typically done by 
eliminating pixels that are too far from their nearest 
neighbor.  However, as the picture shows, the outlier region 
is as close to the green cloud as is another, valid, red 
region.  Eliminating both regions leaves nothing for ICP to 
align, but retaining them causes ICP to give up, unable to 
align both regions.  In other instances, where regions did 
not compete, outlier regions often caused ICP to iterate to a 
poor transform before the outliers could be eliminated, and 
ICP could rarely recover. 
 
In summary, full frame ICP suffered from several problems. 
It had to begin with a reasonably good estimated transform 
in order to converge to the correct local minimum.  
However, even with a perfect estimate, it was inclined to 
diverge to account for large outlier regions and illusory 
points on occluding boundaries. It should be possible to 
eliminate both of the problems with stereo processing, at 
which point ICP may deserve a second look. 
 
ICP on Select Points 

To avoid problems with full-frame ICP, we attempted to use 
ICP to align small patches in one cloud with the entire 
second cloud. Small patches being tracked into a second 
image necessarily appear in the first image, and if they do 
not appear in the second image, ICP-confusion would be 
acceptable.  Small patches also might be chosen to avoid 
occluding edges.  In addition, small patches may avoid 
another ICP difficulty—aligning sparse rocks on a flat 
terrain, where the good match between flat terrain in two 
clouds masks poor alignment of the sparse rocks.  
 
Once again, the results of this experiment on real images 
were not promising.  Because of the limited size of the 
patch surrounding the feature, and because of an imprecise 
initial pose estimate, the patch may not have significant 
overlap with its proper mate in the second cloud. As 
previously discussed, this can produce an arbitrary 
transform.  Second, because of the small size of the patch, 
ICP becomes more sensitive to stereo noise in the patch 
pixels.  Third, because of the small size, it is more difficult 
to distinguish rotation from translation. As with full image 
stereo, the latter problems can be reduced, in this case by 
treating several small patches as a single cloud, thus adding 
a "lever arm." However, the need for rather accurate initial 
alignment leaves ICP to be used as a post-processing step, 
and increasing the amount of image coverage increases the 

probability of including outlier regions.  
 
Conclusion 

Initially we considered using the Iterative Closest Point 
matching algorithm (ICP) to aid the 2D/3D tracker to 
improve the tracking accuracy.  Stereo is sufficiently noisy 
that it produces entire blobs of data that appear in only one 
image of a pair. These areas must be rejected as outliers 
before ICP can converge. However, when the images are 
not initially well-aligned, these outliers look like any other 
poorly aligned area.  With no easy way to eliminate the 
outliers, ICP will likely not converge to any credible answer 
Because ICP requires both good initial estimate and good 
stereo data with low noise, only select points with high 
stereo confidence (i.e. small covariances) can be used 
effectively. This degenerates to an algorithm that tracks 
sparse 3D points that have high stereo confidence, and uses 
them along with the rigid body assumption to eliminate 
drifting points and track an obscured point.  This algorithm 
is known as visual odometry [9][14]. 
 

3. VISUAL ODOMETRY 
The JPL Machine Vision group currently uses an 
implementation of visual odometry based on Matthies’ 
dissertation [9], with several subsequent improvements to 
speed and accuracy.  This algorithm is the current visual 
odometry pose estimation baseline in CLARAty (Coupled 
Layer Architecture for Robotic Autonomy) [12]. CLARAty 
is an architecture for reusable robotic software which 
integrates a number of robotics and vision technologies into 
its framework. The current implementation of visual 
odometry is able to recover translation of the imager with 
about 2% error of the total traversed distance [14], and 
rotation with about 3% error of the heading change. 
 
The current visual odometry implementation works as 
follows.  Start with a pair of images from a pair of cameras 
with known relative geometrya stereo head.  Choose 
distinctive features in, say, the left image, stereo-match 
them into the right image, and triangulate to get the 3D 
positions of the features relative to the cameras.  Move the 
camera pair and acquire a new image pair.  Track the 
features from the old left image into the new left image. 
Stereo match the features from there into the new right 
image, and triangulate to find the 3D feature positions 
relative to the new imager locations.  Compare 3D distances 
between features in the first frame with the distances 
between corresponding features in the new frame, and 
eliminate features that move with respect to their neighbors. 
 Using a rigid world assumption, use a maximum likelihood 
estimator to determine the 6D pose change of the imager 
that best accounts for the apparent 3D motion of the features 
[9]. 
 
Using visual odometry alone to estimate target location 
results in accumulated errors that are too large for accurate 
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instrument placement. The pose estimation errors from 
visual odometry are cumulative and will lead to larger errors 
in tracking accuracy compared to algorithms that use 
designated target information and control the camera gaze 
for that target. Hence we use the visual odometry as an 
initial estimate of the rover change in pose to seed a tracker 
that focuses on the designated target.  
 
While the visual odometry algorithm produces promising 
results for rover pose estimation, this algorithm can lose 
track of the target if the change in rover pose is large 
between consecutive frames. This occurs when a rover falls 
off a rock during a traverse.  
 
Filtering of non-flat features 

Visual odometry tracks a large number of corner feature 
using a homography transform. The tracker assumes that the 
corner features fall on flat surfaces and not on occluding 
boundaries. While outliers are filtered using a Maximum 
likelihood estimator after being tracked, we explored 
whether selecting fewer better features would improve the 
robustness and the pose estimate computed by visual 
odometry. Since trackers require flat features for tracking, 
we applied a surface normal filter (Figure 5) that removes 
features that are not flat.  
 
Experimentally, normal filtering eliminates poor features, 
but reducing the number of features reduces the probability 
that visual odometry will succeed.  Any improvement in 
quality of tracking is masked by the errors that accumulate 
on frames where visual odometry fails. 
 
We came to this conclusion by testing visual odometry on a 
rover commanded to traverse an S trajectory of about 10 m 
using several forms of normal filtering (Table 1).  We ran 
this algorithm on imagery acquired from the hazard cameras 
(body cameras). We collected data for four cases: 
 

1. Baseline: is the CLARAty visual odometry.  We 
acquired 200 features and typically lost around 80 
during tracking. 

2. 85%: we generated a depth map of the scene using 
JPL stereo, converted to a normal map, and recorded 
the confidence associated with each normal. We 
eliminated any features with normal confidence less 
than 85%, as these represent non-flat features that do 
not meet assumptions in visual odometry’s 
homography transform.  That typically eliminated 
about 10 of the 200 features. 

3. Best-15: we acquired 200 features, and then chose the 
15 with the highest normal “confidence.”  These 
should be the flattest features, most suitable for 
homography transform, and thus most likely to track 
properly in visual odometry.  In general, few of these 
features were lost in tracking. 

4. Best-30: analogous to Best-15, but with 30 features. 
 
We recorded visual odometry after approximately 3 m, 5 m, 

Table 1: Results of using surface normal filter on visual odometry features 
 

Test Run  Length 
 

x (m) y (m) z(m) % Total 
Error 

xr (rad) xr (rad) zr (rad) 

3 m 2.793 0.390 0.015 0.018 -0.094 1.115 
5 m 5.834 2.385 0.017 0.016 -0.149 0.017 

Ground 
Truth 

10 m 9.152 1.631 0.113 

 

-0.015 0.012 -0.325 
3 m 2.808 0.415 0.044 1.46% 0.038 -0.084 1.105 
5 m 5.935 2.433 0.046 1.83% 0.214 -0.159 0.479 

Baseline 

10 m 9.360 1.813 -0.205 4.53% 0.016 0.115 -0.290 
3 m 2.805 0.409 0.040 1.19% 0.039 -0.085 1.105 
5 m 6.083 2.157 0.246 6.47% 0.213 -0.222 0.442 

85% 

10 m 9.470 1.449 -0.057 4.34% 0.017 0.258 -0.332 
3 m 2.816 0.404 0.200 6.63% 0.013 -0.162 1.096 
5 m 7.028 0.95 0 29.6% 0 0 .436 

Best-15 

10 m 10.28 0.288 -0.128 19.0% -0.006 0.453 -0.306 
3 m 2.800 0.408 0.045 1.27% 0.040 -0.087 1.102 
5 m 6.672 1.069 0.387 25.4% 0.390 -0.138 0.286 

Best-30 

10 m 9.984 0.233 -0.405 18.4% 0.063 0.448 -0.332 

Figure 5: Surface normals on a sample terrain 
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and 10 m of commanded traverse.  Table 1 presents 
recovered translation in meters and rotation vector in 
radians.  
 
An important feature of the results above is that they depend 
significantly on the frequency with which visual odometry 
fails.  When visual odometry fails to track at least 8 
features, it reports zero for zr, xr, and yr.  This happened in 
the frame at 5 m for the best-15 case.  The baseline and 
85% cases had 4 frames that failed to track.  The resulting 
error in zr, xr, and yr is the likely cause of the poor recovery 
in those dimensions.  The best-15 case had 26 failures, and 
best-30 had 13 failures.  The increasing number of failures 
is clearly reflected in the reported error. 
 
To restate the conclusion, reducing the number of features, 
even the less accurate features, by normal filtering reduces 
the probability of successfully tracking 8 features, which 
increases the probability of a jump in accumulated visual 
odometry error.  It is safer to use more, lower quality 
features. 
 

4. THE 2D/3D VISUAL TRACKER  
Building from these results, we developed a visual tracker 
that controls an articulated mast to keep a designated feature 
in the camera FOV while driving towards the target. Figure 
6  shows the visual tracker system architecture. Initially, a 
scientist selects a point in one of the stereo images acquired 

from the mast (top left). The stereo triangulation algorithm 
computes a 3D location for the target. As the rover moves, 
its body-mounted cameras feed images to a visual odometry 
algorithm, which tracks 2D corner features and computes 
their old and new 3D locations. The algorithm rejects points 
whose 3D motion is inconsistent with a rigid world 
constraint, and then computes the apparent change in rover 
pose. Using this estimated change in rover pose, the 3D 
position of the target feature, and the mast kinematics 
model, we compute the pan and tilt angles of the mast to 
keep the target in the center of the camera’s view, 
minimizing the area over which the 2D tracker must 
operate. If the motion between consecutive frames is still 
large (i.e., 2D tracking was unsuccessful), the tracker 
applies an adaptive view-based matching technique (next 
section) to the new image. This technique uses correlation-
based template matching where it scales the feature template 
based on the depth ratio between the original template and 
pixels in the new image. This is repeated over the entire 
search window and the best correlation results indicate the 
appropriate match.  

The simplest method of selecting and approaching a target 
for instrument placement is to acquire a stereo image pair 
from the mast, compute the 3D location of the target, and 
then drive to the target using rover pose estimation.  
Unfortunately, even very small errors in stereo ranging or 
rover pose estimation translate to a very large error in the 
prediction of the target location after a 10 m traverse.  The 
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large initial distance makes stereo range accuracy sensitive 
(a 0.2 pixel disparity error of our 4 mm 640x480 cameras 
with a 9.9 µm pixel size and 19 cm baseline corresponds to 
a 25.4 cm range error) and good pose estimation prone to 
accumulated error (1% error would accumulate to 10 cm 
over 10 m).  After approaching 9 m toward a target 10 m 
away from a mast 1 m high, the error in the horizontal and 
vertical positions of the target is approximately equal to the 
range error at the starting point.  So if the range (or pose 
estimation) error is 10 cm from 10 m away, the target 
position error is approximately 10 cm when the rover is at 1 
m from the target. 
 
Tracking the target to even within several pixels after a 10 
m traverse improves the estimated target position 
considerably over even good stereo and pose estimation.  
Using 4 mm cameras on the mast of the rover, tracking can 
achieve better than 2.5 cm accuracy: a single pixel at 10 m 
corresponds to 2.5 cm; at 1 m 2.5 cm corresponds to 10 
pixels; in general we only see several pixels error after 
tracking over 30–40 iterations of 25 cm traverse per 
iteration. Even more accurate tracking can be done with the 
16 mm cameras.  However, because at 10 m, a 1.7 degree 
pointing error corresponds to 100 pixels error (compared to 
a 9.4 degree pointing error for the 4mm cameras), the mast 
must be pointed much more accurately to maintain a fix on 
the target.  Even with a large search window, the mast must 
be pointed to within several degrees of accuracy.   
 

Rover Pose Estimation 

In order to achieve the accuracy needed to point the narrow 
(16 mm) FOV cameras, we use an IMU to determine the 
vehicle's roll and pitch and visual odometry [14] to 
determine the vehicle's yaw and 3D position.  Although 
visual odometry is prone to accumulated error, we are only 
interested in the relative accuracy, which should be well 
within 1° pointing and 1% of the distance traveled between 
each iteration of the algorithm (25 cm, resulting in 0.25 cm 
position error).   
 
2D Tracking 

The tracking algorithm uses (only partially optimized) 
normalized cross correlation [7] between each frame to seed 
an affine matcher [8][15] that maintains a single original 
template and simply updates its affine parameters on each 
frame.  The fast cross-correlation matcher allows for very 
large motions of the feature window between frames while 
the affine matcher provides accurate localization and 
prevents accumulated error (drift) by using a single key 
frame.  Depending on the motion expected, the affine 
matcher can optimize on the feature translation and either 
all affine parameters, only scale parameters, or only in-
plane rotation parameters.  
 
Experimental Results 

For our experiments we used the Rocky 8 Mars rover 
prototype (Figure 7), which has an articulated mast with two 
stereo camera pairs: navigation and panoramic stereo pairs 
(Table 2). These are used for the visual tracker. The wide 
FOV, body-mounted cameras are used for visual odometry. 
In this example, the rover motion commands are simulated 
to mimick the onboard navigation algorithm.  These 
commands consisted of arcs ranging from 1-3m with a 
heading change of up to 45 degrees.  Images from two 
stereo pairs (4 mm and 16 mm camera pairs) were taken 
every 25 cm from a mast raised 1m off the top of the rover 
(approximately 1.5 m off the ground) and pointed at the 
target using the estimated rover pose and mast kinematics.  
Additionally, images from the front body cameras (hazard 
cameras) where taken and used for the visual odometry 
algorithm.  Accelerometers from an onboard IMU were 
used to determine pitch and roll of the vehicle (while 
stopped) every time images were taken.  The rover was 
driven over the most severe conditions it was designed to 
traverse (over rocks about 30 cm high), resulting in 
significant wheel slip and changes in roll and pitch. 

 
Figure 7: The Rocky 8 rover with the mast unstowed

 

Table 2: Camera Configuration for Rocky 8 
 
Camera 
Name 

Placed 
On  

Baseline Lens FOV CCD 
Resolution 

Pixel size 
(µm) 

Navigation Mast 19 cm  4 mm 60° 640x480 9.9 
Panoramic Mast 23 cm 16 mm 17° 1024x768 4.65 
Hazard Body 8.6 cm 2.8 mm 90° 640x480 9.9 
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Figure 8: Data from a 10 meter run tracking with both Pan and Nav cameras 
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Preliminary results of this algorithm (Figure 8) showed that 
targets were tracked through an 8 meter traverse under 
realistic Mars-like conditions. Several runs were completed 
and designated targets were successfully tracked within a 
pixel of the selected feature point. The implementation of 
the adaptive view-based matching is complete but being 
integrated with the current tracker to compensate for larger 
changes in motion.  
 

5. ADAPTIVE VIEW-BASED MATCHING 
When the rover drops off a rock, the mast cameras, 
especially the narrower FOV lenses experience large and 
sudden changes. Under these conditions, even the hazard 
cameras experience enough change that causes the visual 
odometry algorithm to fail. In the absence of a good initial 
estimate, the tracker has to search a large window in order 
to recover the correct pointing direction and do a finer 
search on the target using the narrower FOV cameras.  
 

Feature Template (FT)
(10x10)

(a) Time = t0

(b) Time = t0 + ∆t Large translation and 
rotation to FOV

Original FT matched over image (b)
No adaptive view-based matching used
No distinct peak (red spot) 

FT scaled at every pixel by depth from (d) and 
matched over image (b) 
Adaptive view-based Matching
Distinct peak (dark red)

(d) Depth Image - use depth ratio of FT and 
each pixel in image (b) to scale FT and then 
correlate over enite image (b) Original FT

Depth=2 m

D= 0.5 m 
@ P1

@ P1 Depth=0.5 m
So scale FT by 
2/0.5 = 4

Match new FT
in image (b) at
P1

Repeat for every pixel in image (b)

Feature Template (FT)
(10x10)

(a) Time = t0

(b) Time = t0 + ∆t Large translation and 
rotation to FOV

Original FT matched over image (b)
No adaptive view-based matching used
No distinct peak (red spot) 

FT scaled at every pixel by depth from (d) and 
matched over image (b) 
Adaptive view-based Matching
Distinct peak (dark red)

(d) Depth Image - use depth ratio of FT and 
each pixel in image (b) to scale FT and then 
correlate over enite image (b) Original FT

Depth=2 m

D= 0.5 m 
@ P1

@ P1 Depth=0.5 m
So scale FT by 
2/0.5 = 4

Match new FT
in image (b) at
P1

Repeat for every pixel in image (b)

Figure 9: An example of adaptive view-based matching with correlation results shown on the right 
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Correlating a template over an image may be an effective 
way to recover a feature being tracked if the feature has a 
unique appearance and its appearance has not changed 
significantly. However, correlation can be improved by 
using a template transformed with a scale and orientation 
adaptively selected based on the 3D information. This 
approach uses the notion introduced by Olson [13], and is 
similar to one utilized by Morency [10].  Instead of 
correlating a fixed template over a new image, the template 
is reprojected according to the depth and surface normal 
information at each point in the correlation. Essentially, the 
template is being shifted over the 3D surface of the terrain 
in order to register a match.   
 
Figure 9 (left) shows images taken in sequence after the 
rover has traversed some distance and driven its right side 
over a rock. The feature template representing the selected 
target is scaled at every pixel in the new image based on the 
depth information from image (b) at that pixel. Correlation 
results are shown on the right hand side of Figure 9, where 
the top image shows the results without appropriate depth 
scaling and the bottom image with the proper depth scaling. 
The latter image shows a region with a very dark red sport 
indicating the highest correlation results and the proper 
match for the original feature template. 
 
To reduce computational cost, the template is assumed to be 
planar, in which case a planar transformation can be applied 
to the template at each correlation point.  Without this 
planar assumption, a mesh will be needed for the feature, 
which would then be transformed in 3D based on 
information acquired from stereo processing. 
  
Because the adaptive technique relies mainly on relative 
depths, it should not be particularly sensitive to the stereo 
depth accuracy (as well as camera model accuracy).  
Furthermore, because the adaptive technique relies on the 
ratio of depths, it should be less sensitive to depth errors at 
far distances typical of stereo matching [18].  In addition to 
facilitating the recovery of a lost target, we plan to use an 
adaptive scale method to track a template over a longer 
distance and consequently reduce the accumulation of drift 
when tracking. 
 
While the adaptive correlation technique is more expensive 
than a conventional one, it can be done at a low resolution 
to simply find an initial match, and then refined at higher 
resolution with a more accurate matching technique that 
requires a good initial guess (such as an affine matcher) 
[8][15]. 
 
The approach still cannot account for one degree of 
freedom: the rotation around the optical axis (camera roll).  
However, the rotation will be recovered from the IMU’s 
accelerometers, which measure the vehicle’s tilt. This 
information will seed an algorithm that will match far-field 

features to refine the vehicle roll estimate. With stereo data, 
features that are far away are easy to detect, and matching is 
easier because features in consecutive images will be 
approximately the same scale.   
 
Initially, off-line tests of scenarios where large changes in 
viewing directions occur yielded very promising results 
using depth information only to scale the template. Future 
work will integrate this with the visual tracker system. 
 

6. SURFACE NORMALS FOR POSE ESTIMATION 
The computing of surface normals from 3D point clouds 
that we visited earlier can also be used to recover rover 
pose. Surface normals for corner features that are tracked 
can be used between consecutive steps to recover the 
change in rover pose. This approach is similar to the visual 
odometry approach except that is uses the surface normal 
instead of the 3D locations of the features. The steps for this 
algorithm are as follows: 

• Extract features 
• Fit planar surfaces to features using stereo depths 
• Choose features on most planar surfaces 
• Track these features using affine matching  
• Compute an estimate of the delta pose from surface 

normals 
Given that the surface normals are more stable than the 
feature locations, this algorithm will yield a more robust and 
accurate estimate of the pose change. Locating flat regions 
in the 3D map make good candidate targets for instrument 
placement and drilling operations.   
 
Figure 5 shows a 3D textured mapped image and its densely 
calculated surface normals from stereo data.  To reduce the 
amount of computation, we restrict the surface fitting to the 
extracted corner features of the images.  This will retain the 
best planar fit features and eliminate points that will be hard 
to track.  Alternatively, one can reverse the order of this 
operation—one can extract the best planar patches first, and 
then look for the most textured planes.  However, the first 
approach is computationally more efficient. 

 
Affine tracking with gain and offset  

Similar to the visual odometry and the tracker algorithms, 
we use an affine tracker [8][15] to track features between 
two consecutive frames. Calculating affine distortions may 
reduce or eliminate the effects of geometric distortions, but 
changes in surface orientations also introduce photometric 
variations between the same regions in two images.  These 
variations are often modeled in terms of gain and offset.  
For affine matchers—or their earlier predecessors such as 
KLT [8] that use intensity derivatives—offset values do not 
pose a problem.  But the effects of the gain still remain.  
Figure 10 shows the resulting drift caused in tracking as a 
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function of variations in gain between a stereo pair from 0.5 
to 1.53. 
 
To overcome this problem, which is common in outdoor 
imagery, we incorporated estimating gain and offset along 
with the 6D affine parameters.  The affine kernel can be 
used with different modes: x, y matcher; x, y, rotation 
matcher; 6D affine matcher; and 8D matcher with 
photometric balancing. 
 
Pose Estimation from Surface Normals 

Unlike the visual odometry algorithm described earlier 
which uses the 3D location of points to recover change in 
rover pose, this algorithm uses the surface normal 
information at the feature points. Horn [4][5] showed a 
closed form solution to the change in camera pose from 
surface normals.   
 
Olson [13] showed that the largest contributor to errors in 
visual odometry and rover pose drift is errors in the rotation 
estimation. Motivated by this fact, we decided to examine 
the calculated surface normals as well as the position of the 
tracked points to get a better estimation of rover's pose.  The 
rationale for this approach is as follows.  We can detect 
outliers among 3D points in the visual odometry by looking 
at distances among 3D points which violate a rigid world 
assumption. Those with large relative displacements are 
outliers. But drifts of points collectively due to systematic 
errors may still occur.   
 
On the other hand, surfaces and lines—being extended 
features—will not suffer from such limitations and will 
have smaller absolute errors than simple point tracking.  
Additionally, to calculate the relative orientation of two 
frames only requires two surface normals. Calculating 
translation however still requires three planar patches. 
 
One can derive this formulation as follows. Assume we 
have two planes at time t that have normals u and v. At time 
t+1, these normals change orientation resulting in u' and v'. 
If the rotation between time steps is given R, we then have 
u' = Ru and v' = Rv.  But we can use the cross products w = 
u × v and w' = u' × v' to solve for the relative orientation 
matrix R. Furthermore we would like to calculate a rotation 
matrix R that maximizes the following function: 
 

( ) ' ' 'T T Tf u u v v w w= + +R R R R   
 
subject to RtR being the identity matrix I.  The superscript 
T denotes the matrix transpose.   
 

                                                           
3 In reality gain also has a secondary effects involving the deformation of 
the correlation surface and its shifts upward.  This vertical shift was 
removed since it has no effect in the translational drift. 

One solution, often used in factorization based structure 
from motion, is to solve for the nine elements of the R 
matrix using least squares and then enforce the 
orthonormality of the matrix by using the QR factorization 
on the result to find the best orthonormal estimate for R.   
While extremely fast this approach is susceptible to 
degradation with noise. 
 
A more accurate approach is to find the rotation matrix, R 
that maximizes the above expression and satisfies the 
constraint:  Q = I - RT R = 0, where I is the identity matrix 
and 0 is the zero matrix. Using a Lagrange multiplier 
approach, we can maximize the expression: 
 

T( ) ( ( ) 0.5 Trace( ( )) 0dG f
d

= − − =R R M R R I
R

 

 
where the matrix M, similar to the matrix Q, which we like 
to minimize (hence the negative multiplier used to 
maximize expression for G) is a symmetric matrix of 
Lagrange multipliers and 0.5 is a constant used for 
convenience. The trace takes care of the element by element 
multiplication of the Lagrange multipliers and the elements 
of Q.  Using the formulas Trace(A B) = Trace (BT AT)  and 
d/dA(Trace(AB))  =  B, we further calculate G (R) to be: 
 

' ' ' 0T T T T Tu u v v w w+ + − = + =MR K MR  
 
which leads to: 

=M KR  
or alternatively: 

1−=R K M  
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Figure 10: Variations in gain between image regions 
produce drift on the position of the minimum—i.e. the best 
match 
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With the K matrix being a known 3x3 matrix that can be 
summarized as: 

lSurface Norma

'Ti in n= ∑K  

 
where ni and n’i are surface normals at t and t+1 
respectively. Noting that M is symmetric and that RT R is 
identity, where: 
 

1 1( )T T− −= =R R I MK K M  
 
which leads to 

2 T=M K K  

that is M is the symmetric square root of the K KT.  If we 
write K in terms of its SVD decomposition U Σ VT, with D 
the diagonal matrix of non-negative singular values, then 
 

T= ΣM U U  
 
Using the above M in R = K-1 M we get  R = (U Σ VT)-1 U 
Σ UT which leads to the final solution: 
 

T=R V U  
 
One can easily verify that the constraint RT R = I is 
satisfied.  
 
What makes this approach interesting is its simplicity and 
speed.  Given matching surface normals, or matching point 
clouds distances from their centroids, or the direction of 
matching lines in two frames of reference, once can easily 
construct the 3x3 matrix K and calculate the rotation matrix 
R from the two components of its SVD. 
 
Initial testing of this algorithm on simulated data indicate 
that this formulation is robust to noise to the presence of 
noisy data constituting a planar patch.  Further comparative 
analysis with traditional techniques are currently under way. 
 

7. SUMMARY 
We have presented a number of techniques that were 
studied to enhance the tracking of a designated target from a 
rover platform in Mars-like conditions. Our conclusion 
regarding the use of ICP was that it will not lead to 
enhancements in the accuracy of the tracked target because 
of the absence of a good initial estimate and the presence of 
noisy stereo data at 10 m range. Alternatively, the use of 
visual odometry to seed the designated target tracker yields 
good results. The 2D/3D target tracker used a normalized 
cross correlation between consecutive frames and an affine 

refinement of the new feature location relative to the 
original designated target at every step. The use of an 
adaptive view-based matching technique will increase 
robustness by recovering from failures in obtaining an 
estimate of the motion from the visual odometry. This 
occurs when the rover falls off a rock. Tracking with 4 mm 
navigation camera is robust but not accurate enough to lead 
to 1 cm error at the end of a 10 m traverse. Tracking the 
target with 60° FOV cameras and seeding this information 
to the mast to point the 17° FOV cameras for a high 
accuracy tracking produces the best overall results. So the 
2D/3D tracker achieves desired accuracy by tracking with 
two cameras with different lenses. The use of surface 
normals to filter out features that feed the visual odometry 
did not produce any improved results. However, computing 
the change in rover pose from surface normals holds some 
promise. The reported results were from tests conducted on 
the Rocky 8 rover at JPL and the K9 rover at ARC. 
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