
 1

Visual Target Tracking for Rover-based Planetary
Exploration1,2

1 0-7803-8155-6/04/$17.00 2004 IEEE
2 IEEEAC paper #1392, Version 1, Updated December 10, 2003

Issa A.D. Nesnas, Max Bajracharya,
Richard Madison

Jet Propulsion Laboratory
California Institute of Technology,

Pasadena, California 91109
818-354-9709

{firstname.lastname}@jpl.nasa.gov

Esfandiar Bandari, Clayton Kunz,
Matthew Deans, Maria Bualat
NASA Ames Research Center

MS269-3
Moffett Field, CA 94035

650-604-4250
{firstname.mi.lastname}@ mail.arc.nasa.gov

Abstract— To command a rover to go to a location of
scientific interest on a remote planet, the rover must be
capable of reliably tracking the target designated by a
scientist from about ten rover lengths away. The rover must
maintain lock on the target while traversing rough terrain
and avoiding obstacles without the need for communication
with Earth. Among the challenges of tracking targets from a
rover are the large changes in the appearance and shape of
the selected target as the rover approaches it, the limited
frame rate at which images can be acquired and processed,
and the sudden changes in camera pointing as the rover
goes over rocky terrain. We have investigated various
techniques for combining 2D and 3D information in order
to increase the reliability of visually tracking targets under
Mars like conditions. We will present the approaches that
we have examined on simulated data and tested onboard the
Rocky 8 rover in the JPL Mars Yard and the K9 rover in the
ARC Marscape. These techniques include results for 2D
trackers, ICP, visual odometry, and 2D/3D trackers.

 TABLE OF CONTENTS

1. INTRODUCTION ..1
2. USING ICP FOR ROVER TRACKING....................3
3. VISUAL ODOMETRY...5
4. THE 2D/3D VISUAL TRACKER7
5. ADAPTIVE VIEW-BASED MATCHING.................10
6. SURFACE NORMALS FOR POSE ESTIMATION....11
7. SUMMARY ..13
8. ACKNOWLEDGMENTS..13
9. REFERENCES ...13
BIOGRAPHIES...14

1. INTRODUCTION
On the Mars Pathfinder mission, the Sojourner rover used
an average of 5.2 Martian days (sols) to drive an average of
about 7 meters to a target designated by a scientist and then
place an instrument on the target. The Mars Exploration
Rovers, Spirit and Opportunity, which will land early in

2004, have a baseline of 3 sols for an approximately 10 m
target approach. Future rovers can maximize science return
by reducing the number of sols required to approach a
designated target, place an instrument, and collect science
data. Using fewer sols requires longer traverses between
course corrections, which, in turn, requires more accurate
navigation. Dead reckoned navigation over rock-strewn
terrain can produce navigation errors above the allowable
15% of distance traveled. We have explored the use of
visual tracking techniques that combine 2D and 3D
information to maintain lock on a designated target point as
the rover approaches it. With reliable target tracking, a
rover will be able to achieve single-sol instrument
placement from 10 to 15 rover lengths away on Mars-like
terrain.

The scenario we are exploring is as follows (Figure 1). A
scientist designates a target in the imagery downloaded
during the previous sol. The designated target location
(either the image location or the corresponding 3D location
computed from stereo processing) is uploaded to the rover.
Once the rover receives the designated target, it will
autonomously drive, keeping the target within the rover’s
field-of-view (FOV), until the target is within the
workspace of one of its arms. The rover will then deploy its
arm and place the desired instrument on the target for
science data acquisition and download to Earth.

Reliable target tracking from on-board rover platforms is
particularly challenging for the following reasons:

(i) The visual tracker needs to operate in parallel with a

navigator for the rover to safely avoid obstacles when
traversing rough terrain. Figure 2 shows Martian
terrain that the rover must be able to negotiate.

(ii) A rover experiences sudden changes in its tilt as a
result of a wheel dropping off a rock or dipping into
a gully, causing the target to leave the camera FOV

 2

(iii) The target changes appearance both in images as well
as in the reconstructed 3D model after it is recovered.
High-frame-rate image-acquisition and processing
are not feasible due to limited computational and
power resources

(iv) The articulated pan/tilt camera system has to meet
multiple mission objectives and cannot be fully
dedicated to meeting the visual tracking
requirements, so image frames may be taken quite far
apart in time.

Background

There has been considerable amount of research dedicated

to studying the problem of feature tracking. However, most
trackers require very small and/or well-estimated motion
between consecutive frames or some a priori knowledge of
the target geometry as in the case of high-speed tracking of
man-made objects in military applications. These
assumptions do not hold for a flight rover operating across
rough terrain. Researchers at NASA and participating
universities have been investigating the adaptations of well-
studied tracking techniques to the problem of tracking from
a rover platform.

Early work at ARC has investigated the use of binary
correlation to register individual features across multiple

(a)

Target

(b)

Designated

T t

Target Tracking

time = t2
(avoiding an obstacle)

time = t1

Figure 1: Scenario of rover tracking a designated target

(a) Scene from Mars Pathfinder Mission

Gully

Target

(b) “Rock Garden” - Pathfinder Mission (c) JPL Mars Yard

(a) Scene from Mars Pathfinder Mission

Gully

Target

(b) “Rock Garden” - Pathfinder Mission (c) JPL Mars Yard

Figure 2: Sample terrain from Mars missions (a) and (b), and the JPL Mars Yard (c)

 3

frames. This binary correlator matches the sign of pseudo
Difference of Gaussian (DOG) of filtered imagery. Such
pre-filtering has proven very stable in the presence of
lighting variations and camera noise. Binary sign
correlation was also implemented using logical operation
rather than arithmetic calculations, thus increasing the speed
while reducing the memory requirements for the tracker.
The instruction level parallelism of this correlative approach
makes it amenable to the limited processing requirements of
near-term rover missions. This technology was
demonstrated on the Marsokhod rover for navigating to a
desired location [16]. However, as the vehicle approaches
the target, the target's image size grows considerably
between updates, and a correlation search on the intensity
image tends to drift and fail. A recent development at ARC
explored the use of surface normals to reproject the 3D
terrain model into a virtual depth map, rendering the models
as they would be seen from a single range sensor [2]. This
approach showed promising results when tested on targets
within 5 m from the rover.

Another development in target tracking for rover platforms
occurred at JPL. One algorithm, known as visual odometry,
uses an interest operator to track intensity-based image
features [9][14]. By supplying an initial estimate of the
rover motion, this tracking system computes a refined
estimate of the rover position and orientation by matching
these features in consecutive images. We will present a
discussion on how this algorithm is used in our tracker and
some of its current limitations. Another algorithm
developed at JPL tracked targets in the three-dimensional
elevation map that is generated from stereo imagery [11].
This algorithm was developed to enable the autonomous
acquisition of targets selected from several meters away.
However, changes to the cameras’ FOV caused the tracker
to lose the designated target.

Another effort at JPL [6] used a homography-based tracking
kernel to track designated features. Results for short
traverses were promising. Building on these experiences
and looking into combining 2D and 3D information to
enhance tracking reliability and address the limitations
previously encountered, we designed our algorithm to be
robust to large changes in feature geometry and photometry
between frames and to handle tracking from mast mounted
cameras. In this paper, we will first present some of the
approaches we examined and why they failed to produce the
reliability that we were seeking. We will later show how
these initial approaches converge to the current solution
whose results are very encouraging.

2. USING ICP FOR ROVER TRACKING
We started by examining how 3D information generated
from stereo processing can be used to enhance the reliability
of the 2D target trackers. We have explored a number of

approaches for using iterative closest point (ICP) algorithms
to enhance the reliability of 2D tracking.

Background

The ICP approach [1] is suited for aligning point clouds
that represent non-corresponding points on a common
surface, which is what we expect from stereo data. Other
methods may give better results when the point clouds
represent corresponding points. ICP consists of a loop with
a two-step kernel. The first step pairs points from one cloud
with their nearest neighbors in the other cloud. The second
step determines the transform to apply to the points of one
cloud to minimize the distance between the nearest
neighbors. If, after the transform, some points are not
paired with their new, nearest neighbors, then repeating the
kernel on new pairings can refine the transform. ICP iterates
the kernel until the nearest neighbors do not change, or until
iteration produces, for instance, a suitably small average
distance between nearest neighbors or a suitably small
change in transform.

Most 3D tracking algorithms follow the two steps of the
ICP kernel – they find corresponding points in two scenes
and then determine the transform that accounts for the
motion of the points. The primary difference between the
algorithms seems to be in the approach to finding
corresponding points.

The ICP approach is suited for point cloud inputs, where it
is not necessarily possible to identify “collocated” pixels, or
where “gradients” between pixels may not be defined.
However, there are other methods for making point
correspondences. An example is RANdom SAmpling
Consensus (RANSAC) [3], which tests a number of
arbitrary pairings of points, finds the best transform to
explain each, and keeps the transform that best aligns the
two clouds overall.

In this work, we considered two approaches that used the
ICP algorithm to recover change in rover pose (position and
orientation). The first applies the ICP algorithm to full
frames. The second applies ICP to select matches
surrounding rock features in the point clouds. In both cases,
the algorithm uses a full 6D model of the change in the
camera/rover pose. One would expect a more accurate result
of either of these approaches as compared to an affine or
homography-based feature matcher, which uses an
approximate motion model.

ICP on Entire Frames

First, we evaluated the use of full frame ICP between
consecutive point clouds. We tested this algorithm on both
synthetic images of rocks with known and accurate depth
maps generated using a ray tracer as well as on images
generated from the rover cameras. We found that ICP
converged well when the motion between scenes had a good

 4

initial estimate that major features locked on properly in the
first iteration. However, when the algorithm was tested with
rover-based images and with estimates of rover motion, the
results were not as promising as those of synthetic images.
There were several problems that were encountered trying
to match terrain point clouds from real images.

The first problem that we encountered with full frame ICP
was the convergence of the algorithm on the wrong local
minima. ICP is essentially a gradient descent algorithm, and
thus it must begin operating in the correct valley of an error
surface. Poor initial estimates of the rover motion make it
challenging for ICP to converge to the correct minimum.

Figure 4: Sources of ICP false matches

To illustrate this point, consider the example of two,
differently shaped, squat rocks sitting on a planar patch
shown in Figure 4. Suppose two point clouds representing
the scene are nearly aligned, so that points on each rock in
the first cloud have nearest neighbors on the same rock in
the second cloud. Then ICP will pull the neighbors
together, improving the alignment of the two scenes. Now
rotate the second scene 180° so that the two rocks are
falsely matched. Points on each rock now have nearest
neighbors on the incorrect rock, but ICP will try to align to
them, converging to an exactly incorrect result (see above).
 Now, rotate the second patch 90° about the same axis so
that the rocks in each cloud sit above a planar part of the
other cloud. ICP will minimize the distance between
nearest neighbors by lowering the first cloud (to move rock
points toward the second cloud’s plane) and raising it (to
move plane points toward the second cloud’s rocks), giving
no net change. ICP will converge without modifying the
initial pose. Finally, separate the two clouds so that they do
not overlap. Now ICP may find that all points in one cloud
have the same nearest neighbor in the second cloud—the
single point closest to the first cloud. ICP will move the
centroid of the first cloud onto that single nearest neighbor,
and apply an arbitrary rotation, potentially producing any of
the situations described above. In summary, ICP must
begin with a reasonable estimate to converge properly. It
follows that ICP must supplement another tracking method,
such as 2D tracking or visual odometry.

The second problem stemmed from stereo noise, which was
present in point clouds generated by applying stereo
processing [9] to either synthetic or rover-based images.
Stereo contributed at least two error sources that hampered
ICP.

First, stereo-generated depth maps have fattened occluding
edges. Stereo finds the depth at an image pixel by
correlating a window around the pixel, across a second
image, and converting the offset ("disparity") that produces
the best correlation value into a distance from the cameras.
A window containing an occluding boundary can correlate
well at the disparity of the foreground object or the
background, and favors the more distinct foreground even
when the window is centered on the background. As a
result, several pixels outside an occluding boundary are
incorrectly assigned the distance of the foreground object.
When the scene rotates, the artificial edges stay with the
foreground object, but they do not rotate. ICP then
underestimates rotation as it averages the rotating and non-
rotating pixels.

Second, stereo-generated point clouds have “outlier”
regions, which appear in only one of two consecutive point
clouds that ICP must align. As any range sensor moves
around the scene, different parts of the scene become
occluded. The problem is aggravated for stereo as we
attempt to remove fluke results. Correlation-based stereo

18

ICP converges on the
 wrong local minima

Rock Rock

Rock

Outliers

Blue lines pull opposite directions.
Result: minimal correction

Filter lengths > 3σ. Removed
outliers but also good matches.
Result: minimal correction

Outliers

Blue lines pull opposite directions.
Result: minimal correction

Filter lengths > 3σ. Removed
outliers but also good matches.
Result: minimal correction

Figure 3: Top left shows the top view of two point clouds
computed from stereo processing acquired at time t (green)
and t+dt (red). Top right shows that areas of missing data
result in selected neighboring points that pull point cloud
in opposite directions. Bottom left shows overall resultant
change to match two clouds is very small. Bottom right
shows that even after filtering outlier regions, the overall
result does not cause the two point clouds to match up

 5

can produce occasional fluke results, given occasional hard-
-to-track features plus image noise. Solutions generally
involve eliminating or modifying pixels whose depths are
inconsistent with their neighbors, or small islands
surrounded by unrecoverable depths. If stereo cannot find a
dense map, eliminating disconnected, small patches can
remove coverage for large areas. Figure 3 (top left) shows
two point clouds (red and green), where a large area along
the bottom of the red cloud has been eliminated as described
here. ICP must realize that the region is an outlier, and then
eliminate it. Such outlier rejection is typically done by
eliminating pixels that are too far from their nearest
neighbor. However, as the picture shows, the outlier region
is as close to the green cloud as is another, valid, red
region. Eliminating both regions leaves nothing for ICP to
align, but retaining them causes ICP to give up, unable to
align both regions. In other instances, where regions did
not compete, outlier regions often caused ICP to iterate to a
poor transform before the outliers could be eliminated, and
ICP could rarely recover.

In summary, full frame ICP suffered from several problems.
It had to begin with a reasonably good estimated transform
in order to converge to the correct local minimum.
However, even with a perfect estimate, it was inclined to
diverge to account for large outlier regions and illusory
points on occluding boundaries. It should be possible to
eliminate both of the problems with stereo processing, at
which point ICP may deserve a second look.

ICP on Select Points

To avoid problems with full-frame ICP, we attempted to use
ICP to align small patches in one cloud with the entire
second cloud. Small patches being tracked into a second
image necessarily appear in the first image, and if they do
not appear in the second image, ICP-confusion would be
acceptable. Small patches also might be chosen to avoid
occluding edges. In addition, small patches may avoid
another ICP difficulty—aligning sparse rocks on a flat
terrain, where the good match between flat terrain in two
clouds masks poor alignment of the sparse rocks.

Once again, the results of this experiment on real images
were not promising. Because of the limited size of the
patch surrounding the feature, and because of an imprecise
initial pose estimate, the patch may not have significant
overlap with its proper mate in the second cloud. As
previously discussed, this can produce an arbitrary
transform. Second, because of the small size of the patch,
ICP becomes more sensitive to stereo noise in the patch
pixels. Third, because of the small size, it is more difficult
to distinguish rotation from translation. As with full image
stereo, the latter problems can be reduced, in this case by
treating several small patches as a single cloud, thus adding
a "lever arm." However, the need for rather accurate initial
alignment leaves ICP to be used as a post-processing step,
and increasing the amount of image coverage increases the

probability of including outlier regions.

Conclusion

Initially we considered using the Iterative Closest Point
matching algorithm (ICP) to aid the 2D/3D tracker to
improve the tracking accuracy. Stereo is sufficiently noisy
that it produces entire blobs of data that appear in only one
image of a pair. These areas must be rejected as outliers
before ICP can converge. However, when the images are
not initially well-aligned, these outliers look like any other
poorly aligned area. With no easy way to eliminate the
outliers, ICP will likely not converge to any credible answer
Because ICP requires both good initial estimate and good
stereo data with low noise, only select points with high
stereo confidence (i.e. small covariances) can be used
effectively. This degenerates to an algorithm that tracks
sparse 3D points that have high stereo confidence, and uses
them along with the rigid body assumption to eliminate
drifting points and track an obscured point. This algorithm
is known as visual odometry [9][14].

3. VISUAL ODOMETRY
The JPL Machine Vision group currently uses an
implementation of visual odometry based on Matthies’
dissertation [9], with several subsequent improvements to
speed and accuracy. This algorithm is the current visual
odometry pose estimation baseline in CLARAty (Coupled
Layer Architecture for Robotic Autonomy) [12]. CLARAty
is an architecture for reusable robotic software which
integrates a number of robotics and vision technologies into
its framework. The current implementation of visual
odometry is able to recover translation of the imager with
about 2% error of the total traversed distance [14], and
rotation with about 3% error of the heading change.

The current visual odometry implementation works as
follows. Start with a pair of images from a pair of cameras
with known relative geometrya stereo head. Choose
distinctive features in, say, the left image, stereo-match
them into the right image, and triangulate to get the 3D
positions of the features relative to the cameras. Move the
camera pair and acquire a new image pair. Track the
features from the old left image into the new left image.
Stereo match the features from there into the new right
image, and triangulate to find the 3D feature positions
relative to the new imager locations. Compare 3D distances
between features in the first frame with the distances
between corresponding features in the new frame, and
eliminate features that move with respect to their neighbors.
 Using a rigid world assumption, use a maximum likelihood
estimator to determine the 6D pose change of the imager
that best accounts for the apparent 3D motion of the features
[9].

Using visual odometry alone to estimate target location
results in accumulated errors that are too large for accurate

 6

instrument placement. The pose estimation errors from
visual odometry are cumulative and will lead to larger errors
in tracking accuracy compared to algorithms that use
designated target information and control the camera gaze
for that target. Hence we use the visual odometry as an
initial estimate of the rover change in pose to seed a tracker
that focuses on the designated target.

While the visual odometry algorithm produces promising
results for rover pose estimation, this algorithm can lose
track of the target if the change in rover pose is large
between consecutive frames. This occurs when a rover falls
off a rock during a traverse.

Filtering of non-flat features

Visual odometry tracks a large number of corner feature
using a homography transform. The tracker assumes that the
corner features fall on flat surfaces and not on occluding
boundaries. While outliers are filtered using a Maximum
likelihood estimator after being tracked, we explored
whether selecting fewer better features would improve the
robustness and the pose estimate computed by visual
odometry. Since trackers require flat features for tracking,
we applied a surface normal filter (Figure 5) that removes
features that are not flat.

Experimentally, normal filtering eliminates poor features,
but reducing the number of features reduces the probability
that visual odometry will succeed. Any improvement in
quality of tracking is masked by the errors that accumulate
on frames where visual odometry fails.

We came to this conclusion by testing visual odometry on a
rover commanded to traverse an S trajectory of about 10 m
using several forms of normal filtering (Table 1). We ran
this algorithm on imagery acquired from the hazard cameras
(body cameras). We collected data for four cases:

1. Baseline: is the CLARAty visual odometry. We
acquired 200 features and typically lost around 80
during tracking.

2. 85%: we generated a depth map of the scene using
JPL stereo, converted to a normal map, and recorded
the confidence associated with each normal. We
eliminated any features with normal confidence less
than 85%, as these represent non-flat features that do
not meet assumptions in visual odometry’s
homography transform. That typically eliminated
about 10 of the 200 features.

3. Best-15: we acquired 200 features, and then chose the
15 with the highest normal “confidence.” These
should be the flattest features, most suitable for
homography transform, and thus most likely to track
properly in visual odometry. In general, few of these
features were lost in tracking.

4. Best-30: analogous to Best-15, but with 30 features.

We recorded visual odometry after approximately 3 m, 5 m,

Table 1: Results of using surface normal filter on visual odometry features

Test Run Length

x (m) y (m) z(m) % Total
Error

xr (rad) xr (rad) zr (rad)

3 m 2.793 0.390 0.015 0.018 -0.094 1.115
5 m 5.834 2.385 0.017 0.016 -0.149 0.017

Ground
Truth

10 m 9.152 1.631 0.113

-0.015 0.012 -0.325
3 m 2.808 0.415 0.044 1.46% 0.038 -0.084 1.105
5 m 5.935 2.433 0.046 1.83% 0.214 -0.159 0.479

Baseline

10 m 9.360 1.813 -0.205 4.53% 0.016 0.115 -0.290
3 m 2.805 0.409 0.040 1.19% 0.039 -0.085 1.105
5 m 6.083 2.157 0.246 6.47% 0.213 -0.222 0.442

85%

10 m 9.470 1.449 -0.057 4.34% 0.017 0.258 -0.332
3 m 2.816 0.404 0.200 6.63% 0.013 -0.162 1.096
5 m 7.028 0.95 0 29.6% 0 0 .436

Best-15

10 m 10.28 0.288 -0.128 19.0% -0.006 0.453 -0.306
3 m 2.800 0.408 0.045 1.27% 0.040 -0.087 1.102
5 m 6.672 1.069 0.387 25.4% 0.390 -0.138 0.286

Best-30

10 m 9.984 0.233 -0.405 18.4% 0.063 0.448 -0.332

Figure 5: Surface normals on a sample terrain

 7

and 10 m of commanded traverse. Table 1 presents
recovered translation in meters and rotation vector in
radians.

An important feature of the results above is that they depend
significantly on the frequency with which visual odometry
fails. When visual odometry fails to track at least 8
features, it reports zero for zr, xr, and yr. This happened in
the frame at 5 m for the best-15 case. The baseline and
85% cases had 4 frames that failed to track. The resulting
error in zr, xr, and yr is the likely cause of the poor recovery
in those dimensions. The best-15 case had 26 failures, and
best-30 had 13 failures. The increasing number of failures
is clearly reflected in the reported error.

To restate the conclusion, reducing the number of features,
even the less accurate features, by normal filtering reduces
the probability of successfully tracking 8 features, which
increases the probability of a jump in accumulated visual
odometry error. It is safer to use more, lower quality
features.

4. THE 2D/3D VISUAL TRACKER
Building from these results, we developed a visual tracker
that controls an articulated mast to keep a designated feature
in the camera FOV while driving towards the target. Figure
6 shows the visual tracker system architecture. Initially, a
scientist selects a point in one of the stereo images acquired

from the mast (top left). The stereo triangulation algorithm
computes a 3D location for the target. As the rover moves,
its body-mounted cameras feed images to a visual odometry
algorithm, which tracks 2D corner features and computes
their old and new 3D locations. The algorithm rejects points
whose 3D motion is inconsistent with a rigid world
constraint, and then computes the apparent change in rover
pose. Using this estimated change in rover pose, the 3D
position of the target feature, and the mast kinematics
model, we compute the pan and tilt angles of the mast to
keep the target in the center of the camera’s view,
minimizing the area over which the 2D tracker must
operate. If the motion between consecutive frames is still
large (i.e., 2D tracking was unsuccessful), the tracker
applies an adaptive view-based matching technique (next
section) to the new image. This technique uses correlation-
based template matching where it scales the feature template
based on the depth ratio between the original template and
pixels in the new image. This is repeated over the entire
search window and the best correlation results indicate the
appropriate match.

The simplest method of selecting and approaching a target
for instrument placement is to acquire a stereo image pair
from the mast, compute the 3D location of the target, and
then drive to the target using rover pose estimation.
Unfortunately, even very small errors in stereo ranging or
rover pose estimation translate to a very large error in the
prediction of the target location after a 10 m traverse. The

Compute Mast
Pointing Angle

Compute Mast
Pointing AnglePan

T
ilt

Single Point
Stereo Process

Single Point
Stereo Process

Depth
Map

Pan & Tilt Angles

Stereo ProcessStereo Process

Harris Multiple
Feature Extractor

Harris Multiple
Feature Extractor

Adaptive View-
Based Matching

Adaptive View-
Based Matching

Affine Tracker
(DT)

Affine Tracker
(DT)

Large
Uncertainty?

Large
Uncertainty?

Designate
Target (DT)
(r,c) in right image

No

IMU

DT(r,c) to DT (x,y,z)

Mast Cameras

Hazard Cameras

NavigatorNavigator

R8 LocomotorR8 Locomotor

Rover Pose Estimate

Visual
Odometry

Visual
OdometryNon-flat Surface

Filter

Non-flat Surface
Filter

Yes

Rover Pose
Estimate +
uncertainty

?

Output: DT(r,c) at t0+ ∆t

Mast
Images
Depth

Disparity

Motion Cmd

Wheel odo?

Predicted
2D location?

Navigator

Pan-Tilt
Controller

Pan-Tilt
Controller

Mast KinematicsMast Kinematics

Designated Point Visual
Tracking

Pointing
Vector

Compute Mast
Pointing Angle

Compute Mast
Pointing AnglePan

T
ilt

Single Point
Stereo Process

Single Point
Stereo Process

Depth
Map

Pan & Tilt Angles

Stereo ProcessStereo Process

Harris Multiple
Feature Extractor

Harris Multiple
Feature Extractor

Adaptive View-
Based Matching

Adaptive View-
Based Matching

Affine Tracker
(DT)

Affine Tracker
(DT)

Large
Uncertainty?

Large
Uncertainty?

Designate
Target (DT)
(r,c) in right image

No

IMU

DT(r,c) to DT (x,y,z)

Mast Cameras

Hazard Cameras

NavigatorNavigator

R8 LocomotorR8 Locomotor

Rover Pose Estimate

Visual
Odometry

Visual
OdometryNon-flat Surface

Filter

Non-flat Surface
Filter

Yes

Rover Pose
Estimate +
uncertainty

?

Output: DT(r,c) at t0+ ∆t

Mast
Images
Depth

Disparity

Motion Cmd

Wheel odo?

Predicted
2D location?

Navigator

Pan-Tilt
Controller

Pan-Tilt
Controller

Mast KinematicsMast Kinematics

Designated Point Visual
Tracking

Pointing
Vector

Figure 6: Overall Visual Tracker System Architecture

 8

large initial distance makes stereo range accuracy sensitive
(a 0.2 pixel disparity error of our 4 mm 640x480 cameras
with a 9.9 µm pixel size and 19 cm baseline corresponds to
a 25.4 cm range error) and good pose estimation prone to
accumulated error (1% error would accumulate to 10 cm
over 10 m). After approaching 9 m toward a target 10 m
away from a mast 1 m high, the error in the horizontal and
vertical positions of the target is approximately equal to the
range error at the starting point. So if the range (or pose
estimation) error is 10 cm from 10 m away, the target
position error is approximately 10 cm when the rover is at 1
m from the target.

Tracking the target to even within several pixels after a 10
m traverse improves the estimated target position
considerably over even good stereo and pose estimation.
Using 4 mm cameras on the mast of the rover, tracking can
achieve better than 2.5 cm accuracy: a single pixel at 10 m
corresponds to 2.5 cm; at 1 m 2.5 cm corresponds to 10
pixels; in general we only see several pixels error after
tracking over 30–40 iterations of 25 cm traverse per
iteration. Even more accurate tracking can be done with the
16 mm cameras. However, because at 10 m, a 1.7 degree
pointing error corresponds to 100 pixels error (compared to
a 9.4 degree pointing error for the 4mm cameras), the mast
must be pointed much more accurately to maintain a fix on
the target. Even with a large search window, the mast must
be pointed to within several degrees of accuracy.

Rover Pose Estimation

In order to achieve the accuracy needed to point the narrow
(16 mm) FOV cameras, we use an IMU to determine the
vehicle's roll and pitch and visual odometry [14] to
determine the vehicle's yaw and 3D position. Although
visual odometry is prone to accumulated error, we are only
interested in the relative accuracy, which should be well
within 1° pointing and 1% of the distance traveled between
each iteration of the algorithm (25 cm, resulting in 0.25 cm
position error).

2D Tracking

The tracking algorithm uses (only partially optimized)
normalized cross correlation [7] between each frame to seed
an affine matcher [8][15] that maintains a single original
template and simply updates its affine parameters on each
frame. The fast cross-correlation matcher allows for very
large motions of the feature window between frames while
the affine matcher provides accurate localization and
prevents accumulated error (drift) by using a single key
frame. Depending on the motion expected, the affine
matcher can optimize on the feature translation and either
all affine parameters, only scale parameters, or only in-
plane rotation parameters.

Experimental Results

For our experiments we used the Rocky 8 Mars rover
prototype (Figure 7), which has an articulated mast with two
stereo camera pairs: navigation and panoramic stereo pairs
(Table 2). These are used for the visual tracker. The wide
FOV, body-mounted cameras are used for visual odometry.
In this example, the rover motion commands are simulated
to mimick the onboard navigation algorithm. These
commands consisted of arcs ranging from 1-3m with a
heading change of up to 45 degrees. Images from two
stereo pairs (4 mm and 16 mm camera pairs) were taken
every 25 cm from a mast raised 1m off the top of the rover
(approximately 1.5 m off the ground) and pointed at the
target using the estimated rover pose and mast kinematics.
Additionally, images from the front body cameras (hazard
cameras) where taken and used for the visual odometry
algorithm. Accelerometers from an onboard IMU were
used to determine pitch and roll of the vehicle (while
stopped) every time images were taken. The rover was
driven over the most severe conditions it was designed to
traverse (over rocks about 30 cm high), resulting in
significant wheel slip and changes in roll and pitch.

Figure 7: The Rocky 8 rover with the mast unstowed

Table 2: Camera Configuration for Rocky 8

Camera
Name

Placed
On

Baseline Lens FOV CCD
Resolution

Pixel size
(µm)

Navigation Mast 19 cm 4 mm 60° 640x480 9.9
Panoramic Mast 23 cm 16 mm 17° 1024x768 4.65
Hazard Body 8.6 cm 2.8 mm 90° 640x480 9.9

 9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 8: Data from a 10 meter run tracking with both Pan and Nav cameras

 10

Preliminary results of this algorithm (Figure 8) showed that
targets were tracked through an 8 meter traverse under
realistic Mars-like conditions. Several runs were completed
and designated targets were successfully tracked within a
pixel of the selected feature point. The implementation of
the adaptive view-based matching is complete but being
integrated with the current tracker to compensate for larger
changes in motion.

5. ADAPTIVE VIEW-BASED MATCHING
When the rover drops off a rock, the mast cameras,
especially the narrower FOV lenses experience large and
sudden changes. Under these conditions, even the hazard
cameras experience enough change that causes the visual
odometry algorithm to fail. In the absence of a good initial
estimate, the tracker has to search a large window in order
to recover the correct pointing direction and do a finer
search on the target using the narrower FOV cameras.

Feature Template (FT)
(10x10)

(a) Time = t0

(b) Time = t0 + ∆t Large translation and
rotation to FOV

Original FT matched over image (b)
No adaptive view-based matching used
No distinct peak (red spot)

FT scaled at every pixel by depth from (d) and
matched over image (b)
Adaptive view-based Matching
Distinct peak (dark red)

(d) Depth Image - use depth ratio of FT and
each pixel in image (b) to scale FT and then
correlate over enite image (b) Original FT

Depth=2 m

D= 0.5 m
@ P1

@ P1 Depth=0.5 m
So scale FT by
2/0.5 = 4

Match new FT
in image (b) at
P1

Repeat for every pixel in image (b)

Feature Template (FT)
(10x10)

(a) Time = t0

(b) Time = t0 + ∆t Large translation and
rotation to FOV

Original FT matched over image (b)
No adaptive view-based matching used
No distinct peak (red spot)

FT scaled at every pixel by depth from (d) and
matched over image (b)
Adaptive view-based Matching
Distinct peak (dark red)

(d) Depth Image - use depth ratio of FT and
each pixel in image (b) to scale FT and then
correlate over enite image (b) Original FT

Depth=2 m

D= 0.5 m
@ P1

@ P1 Depth=0.5 m
So scale FT by
2/0.5 = 4

Match new FT
in image (b) at
P1

Repeat for every pixel in image (b)

Figure 9: An example of adaptive view-based matching with correlation results shown on the right

 11

Correlating a template over an image may be an effective
way to recover a feature being tracked if the feature has a
unique appearance and its appearance has not changed
significantly. However, correlation can be improved by
using a template transformed with a scale and orientation
adaptively selected based on the 3D information. This
approach uses the notion introduced by Olson [13], and is
similar to one utilized by Morency [10]. Instead of
correlating a fixed template over a new image, the template
is reprojected according to the depth and surface normal
information at each point in the correlation. Essentially, the
template is being shifted over the 3D surface of the terrain
in order to register a match.

Figure 9 (left) shows images taken in sequence after the
rover has traversed some distance and driven its right side
over a rock. The feature template representing the selected
target is scaled at every pixel in the new image based on the
depth information from image (b) at that pixel. Correlation
results are shown on the right hand side of Figure 9, where
the top image shows the results without appropriate depth
scaling and the bottom image with the proper depth scaling.
The latter image shows a region with a very dark red sport
indicating the highest correlation results and the proper
match for the original feature template.

To reduce computational cost, the template is assumed to be
planar, in which case a planar transformation can be applied
to the template at each correlation point. Without this
planar assumption, a mesh will be needed for the feature,
which would then be transformed in 3D based on
information acquired from stereo processing.

Because the adaptive technique relies mainly on relative
depths, it should not be particularly sensitive to the stereo
depth accuracy (as well as camera model accuracy).
Furthermore, because the adaptive technique relies on the
ratio of depths, it should be less sensitive to depth errors at
far distances typical of stereo matching [18]. In addition to
facilitating the recovery of a lost target, we plan to use an
adaptive scale method to track a template over a longer
distance and consequently reduce the accumulation of drift
when tracking.

While the adaptive correlation technique is more expensive
than a conventional one, it can be done at a low resolution
to simply find an initial match, and then refined at higher
resolution with a more accurate matching technique that
requires a good initial guess (such as an affine matcher)
[8][15].

The approach still cannot account for one degree of
freedom: the rotation around the optical axis (camera roll).
However, the rotation will be recovered from the IMU’s
accelerometers, which measure the vehicle’s tilt. This
information will seed an algorithm that will match far-field

features to refine the vehicle roll estimate. With stereo data,
features that are far away are easy to detect, and matching is
easier because features in consecutive images will be
approximately the same scale.

Initially, off-line tests of scenarios where large changes in
viewing directions occur yielded very promising results
using depth information only to scale the template. Future
work will integrate this with the visual tracker system.

6. SURFACE NORMALS FOR POSE ESTIMATION
The computing of surface normals from 3D point clouds
that we visited earlier can also be used to recover rover
pose. Surface normals for corner features that are tracked
can be used between consecutive steps to recover the
change in rover pose. This approach is similar to the visual
odometry approach except that is uses the surface normal
instead of the 3D locations of the features. The steps for this
algorithm are as follows:

• Extract features
• Fit planar surfaces to features using stereo depths
• Choose features on most planar surfaces
• Track these features using affine matching
• Compute an estimate of the delta pose from surface

normals
Given that the surface normals are more stable than the
feature locations, this algorithm will yield a more robust and
accurate estimate of the pose change. Locating flat regions
in the 3D map make good candidate targets for instrument
placement and drilling operations.

Figure 5 shows a 3D textured mapped image and its densely
calculated surface normals from stereo data. To reduce the
amount of computation, we restrict the surface fitting to the
extracted corner features of the images. This will retain the
best planar fit features and eliminate points that will be hard
to track. Alternatively, one can reverse the order of this
operation—one can extract the best planar patches first, and
then look for the most textured planes. However, the first
approach is computationally more efficient.

Affine tracking with gain and offset

Similar to the visual odometry and the tracker algorithms,
we use an affine tracker [8][15] to track features between
two consecutive frames. Calculating affine distortions may
reduce or eliminate the effects of geometric distortions, but
changes in surface orientations also introduce photometric
variations between the same regions in two images. These
variations are often modeled in terms of gain and offset.
For affine matchers—or their earlier predecessors such as
KLT [8] that use intensity derivatives—offset values do not
pose a problem. But the effects of the gain still remain.
Figure 10 shows the resulting drift caused in tracking as a

 12

function of variations in gain between a stereo pair from 0.5
to 1.53.

To overcome this problem, which is common in outdoor
imagery, we incorporated estimating gain and offset along
with the 6D affine parameters. The affine kernel can be
used with different modes: x, y matcher; x, y, rotation
matcher; 6D affine matcher; and 8D matcher with
photometric balancing.

Pose Estimation from Surface Normals

Unlike the visual odometry algorithm described earlier
which uses the 3D location of points to recover change in
rover pose, this algorithm uses the surface normal
information at the feature points. Horn [4][5] showed a
closed form solution to the change in camera pose from
surface normals.

Olson [13] showed that the largest contributor to errors in
visual odometry and rover pose drift is errors in the rotation
estimation. Motivated by this fact, we decided to examine
the calculated surface normals as well as the position of the
tracked points to get a better estimation of rover's pose. The
rationale for this approach is as follows. We can detect
outliers among 3D points in the visual odometry by looking
at distances among 3D points which violate a rigid world
assumption. Those with large relative displacements are
outliers. But drifts of points collectively due to systematic
errors may still occur.

On the other hand, surfaces and lines—being extended
features—will not suffer from such limitations and will
have smaller absolute errors than simple point tracking.
Additionally, to calculate the relative orientation of two
frames only requires two surface normals. Calculating
translation however still requires three planar patches.

One can derive this formulation as follows. Assume we
have two planes at time t that have normals u and v. At time
t+1, these normals change orientation resulting in u' and v'.
If the rotation between time steps is given R, we then have
u' = Ru and v' = Rv. But we can use the cross products w =
u × v and w' = u' × v' to solve for the relative orientation
matrix R. Furthermore we would like to calculate a rotation
matrix R that maximizes the following function:

() ' ' 'T T Tf u u v v w w= + +R R R R

subject to RtR being the identity matrix I. The superscript
T denotes the matrix transpose.

3 In reality gain also has a secondary effects involving the deformation of
the correlation surface and its shifts upward. This vertical shift was
removed since it has no effect in the translational drift.

One solution, often used in factorization based structure
from motion, is to solve for the nine elements of the R
matrix using least squares and then enforce the
orthonormality of the matrix by using the QR factorization
on the result to find the best orthonormal estimate for R.
While extremely fast this approach is susceptible to
degradation with noise.

A more accurate approach is to find the rotation matrix, R
that maximizes the above expression and satisfies the
constraint: Q = I - RT R = 0, where I is the identity matrix
and 0 is the zero matrix. Using a Lagrange multiplier
approach, we can maximize the expression:

T() (() 0.5 Trace(()) 0dG f
d

= − − =R R M R R I
R

where the matrix M, similar to the matrix Q, which we like
to minimize (hence the negative multiplier used to
maximize expression for G) is a symmetric matrix of
Lagrange multipliers and 0.5 is a constant used for
convenience. The trace takes care of the element by element
multiplication of the Lagrange multipliers and the elements
of Q. Using the formulas Trace(A B) = Trace (BT AT) and
d/dA(Trace(AB)) = B, we further calculate G (R) to be:

' ' ' 0T T T T Tu u v v w w+ + − = + =MR K MR

which leads to:

=M KR
or alternatively:

1−=R K M

X (pixels)

Gain Variation

M
at

ch
in

g
Er

ro
r (

pi
xe

ls
)

X (pixels)

Gain Variation

M
at

ch
in

g
Er

ro
r (

pi
xe

ls
)

Figure 10: Variations in gain between image regions
produce drift on the position of the minimum—i.e. the best
match

 13

With the K matrix being a known 3x3 matrix that can be
summarized as:

lSurface Norma

'Ti in n= ∑K

where ni and n’i are surface normals at t and t+1
respectively. Noting that M is symmetric and that RT R is
identity, where:

1 1()T T− −= =R R I MK K M

which leads to

2 T=M K K

that is M is the symmetric square root of the K KT. If we
write K in terms of its SVD decomposition U Σ VT, with D
the diagonal matrix of non-negative singular values, then

T= ΣM U U

Using the above M in R = K-1 M we get R = (U Σ VT)-1 U
Σ UT which leads to the final solution:

T=R V U

One can easily verify that the constraint RT R = I is
satisfied.

What makes this approach interesting is its simplicity and
speed. Given matching surface normals, or matching point
clouds distances from their centroids, or the direction of
matching lines in two frames of reference, once can easily
construct the 3x3 matrix K and calculate the rotation matrix
R from the two components of its SVD.

Initial testing of this algorithm on simulated data indicate
that this formulation is robust to noise to the presence of
noisy data constituting a planar patch. Further comparative
analysis with traditional techniques are currently under way.

7. SUMMARY
We have presented a number of techniques that were
studied to enhance the tracking of a designated target from a
rover platform in Mars-like conditions. Our conclusion
regarding the use of ICP was that it will not lead to
enhancements in the accuracy of the tracked target because
of the absence of a good initial estimate and the presence of
noisy stereo data at 10 m range. Alternatively, the use of
visual odometry to seed the designated target tracker yields
good results. The 2D/3D target tracker used a normalized
cross correlation between consecutive frames and an affine

refinement of the new feature location relative to the
original designated target at every step. The use of an
adaptive view-based matching technique will increase
robustness by recovering from failures in obtaining an
estimate of the motion from the visual odometry. This
occurs when the rover falls off a rock. Tracking with 4 mm
navigation camera is robust but not accurate enough to lead
to 1 cm error at the end of a 10 m traverse. Tracking the
target with 60° FOV cameras and seeding this information
to the mast to point the 17° FOV cameras for a high
accuracy tracking produces the best overall results. So the
2D/3D tracker achieves desired accuracy by tracking with
two cameras with different lenses. The use of surface
normals to filter out features that feed the visual odometry
did not produce any improved results. However, computing
the change in rover pose from surface normals holds some
promise. The reported results were from tests conducted on
the Rocky 8 rover at JPL and the K9 rover at ARC.

8. ACKNOWLEDGMENTS
The work described in this paper was carried out under the
competed task “Combining 2D/3D Visual Information for
Target Tracking” within the Regional Mobility and Surface
Access Mars Technology Program. This work was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under contract to the National Aeronautics and
Space Administration and at NASA Ames Research Center.

9. REFERENCES
[1] P.J. Besl, and H.D. McKay, “A method for

registration of 3-D shapes.” IEEE Transactions Patt.
Analysis and Machine Intelligence (PAMI); 14(2), pp
239-256 1992.

[2] M.C. Deans, C. Kunz, R. Sargent, L. Pedersen,
“Terrain model registration for single cycle instrument
placement,” International Symposium on Artificial
Intelligence,
Robotics and Automation in Space, Nara, Japan, May,
2003

[3] M. A. Fischler and R. C. Bolles, ”Random sample
consensus: a paradigm for model fitting with
application to image analysis and automated
cartography”, Communication Association and
Computing Machine, 24(6), pp.381-395, 1981

[4] B.K.P. Horn, "Closed-form solution of absolute
orientation using unit quaternions", JOSA 4(4), pp
629—642, April 1987.

[5] B.K.P. Horn, H. Hilden and S. Negahdaripour,
“Closed-form solution of absolute orientation using
orthonormal matrices", JOSA 5(7), pp 1127—1135,
July 1988.

[6] T. Huntsberger, "Rover Autonomy for Long Range
Navigation and Science Data Acquisition on Planetary

 14

Surfaces," IEEE International Conference on
Robotics and Automation, Washington, DC, May
2002.

[7] J. P. Lewis, “Fast normalized cross-correlation,” In
Vision Interface, 1995

[8] Bruce D. Lucas, Takeo Kanade. "An Iterative Image
Registration Technique with an Application to Stereo
Vision", Proceedings of the DARPA Image
Understanding Workshop, 1981.

[9] L. Matthies, “Dynamic Stereo Vision,” Ph.D.
Dissertation, CMU-CS-89-195, October 1989.

[10] Louis-Philippe Morency, Ali Rahimi, Trevor Darrell.
"Adaptive View-based Appearance Model", IEEE
Conf. on Computer Vision and Pattern Recognition,
2003.

[11] I. A. Nesnas, M. W. Maimone, H. Das, “Autonomous
Vision-Based Manipulation from a Rover Platform,”
Proceedings of the 1999 IEEE International
Symposium on Computational Intelligence in Robotics
and Automation, pp. 351-356, November 1999,
Monterey, California.

[12] I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons,
T. Estlin, Won Soo Kim, “CLARAty: An Architecture
for Reusable Robotic Software,” SPIE Aerosense
Conference, Orlando, Florida, April 2003.

[13] Clark F. Olson. "Adaptive-Scale Filtering and Feature
Detection Using Range Data", IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2000.

[14] Clark Olson, Larry Matthies, Marcel Schoppers, Mark
Maimone, “Robust Stereo Ego-motion for Long
Distance Navigation,” IEEE Conference on Computer
Vision and Pattern Recognition, June 13-15, 2000

[15] Jianbo Shi, Carlo Tomasi. "Good Features to Track",
IEEE Conf. on Computer Vision and Pattern
Recognition, 1994.

[16] Wettergreen, D., Thomas, H., and Bualat, M., “Initial
results from vision-based control of the Ames
Marsokhod rover,” IEEE Int’l Conf on Intelligent
Robots and Systems, pp. 1377-1382, France, 1997

[17] Wilcox, B. and Nguyen, T. “Sojourner on Mars and
Lessons Learned for Future Planetary Rovers,”
Society of Automotive Engineers publication 981695,
1997.

[18] Yalin Xiong, Larry Matthies. "Error Analysis of a
Real Time Stereo System", IEEE Conf. on Computer
Vision and Pattern Recognition, 1997.

BIOGRAPHIES

Issa A.D. Nesnas, Ph.D. is the
principal investigator for the
visual tracking task and the
principal investigator for the
Architecture and Autonomy
Research collaborative task. His
research interests include sensor-
based robot control and software
and hardware architectures for
robotic systems. Issa received a
B.E. degree in Electrical Engineering from Manhattan
College, NY, in 1991. He earned the M.S. and Ph.D.
degrees in Mechanical Engineering from the University of
Notre Dame, IN, in 1993 and 1995 respectively. Prior to
joining JPL in 1997, he worked as a senior engineer at
Adept Technology Inc. Issa is a member of Eta Kappa Nu
and Tau Beta Pi National Honor Societies.

Max Bajracharya received his
Bachelors and Masters degrees in
computer science and electrical
engineering from MIT in 2001. He
works on rover-based vision
research and is currently a lead
systems and software engineer for
the CLARAty software project and
the Rocky 8 research rover.

Esfandiar Bandari recieved his
BS and one Masters from UC
Berkeley, and another Masters
from Stanford University and his
Ph.D. from University of British
Columbia. He was a memeber of
the research team at Vancouver
General Hospital Medical
Imaging Group, Mac Donald
Dettwiler and Associates research
team, and the General Reality Corp. Currently he is at
NASA Ames Research Center in Mountain View, California.

Richard Madison is a member of
the Machine Vision group at JPL.
His recent work includes 2D/3D
tracking, modularization of in-
house computer vision code, and
vision-based object-pose-
estimation for on-orbit rendezvous
and capture. Previously, he has
worked for the Air Force Research
Laboratory and in industry, on various programs related to
autonomous satellite servicing and semi-automated target
recognition, respectively. He holds a BS in Engineering
from Harvey Mudd College and MS and PhD in Electrical

 15

and Computer Engineering from Carnegie Mellon
University.

Clay Kunz is the lead software
engineer for the K9 rover at NASA
Ames. He is also the head of the
math and data structures subgroup
of CLARAty. He's been an employee
of QSS Group, and has had his
hands inside K9, at Ames since
2001, before which he spent time
making robot tour guides at a start-
up company in Pittsburgh, PA. Clay holds BS and MS
degrees from Stanford University, and lives in San
Francisco.

Matthew Deans earned a BS in Physics and a BS and MS in
Electrical Engineering at Lehigh University, followed by a
PhD. in Robotics fromCarnegie Mellon University in 2002.
He is now working with the Autonomy and Robotics Area at
NASA Ames Research Center under contract with QSS
Group, Inc. His work has primarily focused on vision and
localization for planetary rovers.

Maria Bualat is the project
manager and lead systems
engineer for the K9 rover an
NASA Ames Research Center.
Maria received her BSEE from
Stanford University in 1987, and
her MSEE, emphasis Control
Systems, from Santa Clara
University in 1992. She has been
a researcher on vision and
navigation tasks for mobile robots since 1996. Prior to
working on robots, Maria was a member of the Ames
Photonics research group, developing optical matrix and
fourier processors and fiber optic microphones

