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Abstract 
This paper describes how continuous planning and 
execution techniques can be used to perform intelligent 
decision-making for an autonomous Mars rover. The 
resulting system coordinates low-level rover functionality to 
achieve science objectives while respecting rover resource 
and operation constraints. It provides capabilities for 
schedule generation, execution, monitoring, and dynamic 
modification to recover from unexpected events or failures. 
To motivate our system framework, we discuss some of the 
particular challenges we examine to support an autonomous 
rover. These challenges include properly interacting with 
rover navigation software, handling uncertainty in state and 
resource estimations, as well as effectively balancing 
methods for deliberative and reactive reasoning. We also 
describe our experiences in testing this work on two JPL 
rovers, in an effort to demonstrate capabilities that will 
support future rover missions to Mars and other planets.  

Introduction 
NASA’s Mars Exploration Program plans to have us visit 
the red planet over six times in the next two decades. At 
least four of these missions will involve rovers or other 
robotic craft that will be used to explore the surface of the 
planet and perform numerous geological and atmospheric 
experiments.  In order to collect a high volume of science 
data, rovers will require capabilities for long-range 
traverses and autonomous operation. A key aspect of these 
capabilities is the generation and execution of rover 
command sequences. These sequences specify an ordered 
list of commands that achieve desired science goals while 
ensuring no rover operation or resource constraints are 
violated.  Sequences must often be changed or enhanced 
during execution in response to changing science goals or 
unexpected conditions. The model of rover operations used 
for the 1998 Mars-Pathfinder rover and planned for the 
2003 Mars Exploration Rovers (MER) is to generate 
sequences on the ground based on downloaded data 
describing the rover’s state (Mishkin, et al., 1998). If 
something unexpected happens during sequence execution, 
such as an out-of-range sensor reading or significant path 
deviation, the rover will have very limited recovery 
procedures onboard and will usually be safed until further 
communication from the ground can provide a new 
command sequence. This procedure often causes hours of 

lost science time and makes it very difficult to take 
advantage of unexpected science opportunities. 
 To address this problem, AI researchers have been 
developing several key pieces of software that 
automatically provide the necessary command sequence for 
achieving science goals. Planning and scheduling systems 
(Bresina, et al., 1999; Chien, et al., 2000; Jonsson, et al., 
2000) take as input a set of science goals, the current rover 
state, and a model of rover resource and operation 
constraints to produce a validated plan of activities. 
Executive systems (Gat, 1992; Simmons and Apfelbaum, 
1998) use rover state information to further expand the plan 
into a detailed set of commands and dispatch these 
commands to rover-hardware controllers for execution. 
Planning and scheduling systems typically focus on goal-
driven behavior, which enables a robotic system to produce 
a plan of actions based on a set of high-level goals and 
constraints. Executive systems typically focus on event-
driven behavior, which enables a robotic system to quickly 
react to changes in its environment and modify its actions 
accordingly. 

This paper describes an approach for using planning 
and execution techniques as part of a rover’s onboard 
software to provide autonomous sequencing capabilities. 
This system is intended to run with little communication 
with ground. It accepts science and engineering goals and 
creates a rover command sequence (or plan) that respects 
relevant constraints, while achieving as many goals as 
possible. The system executes the produced plan by 
dispatching commands to the rover’s low-level control 
software and monitoring relevant state information to 
identify current or potential problems. If problems are 
detected, the system is designed to recover from those 
situations by using re-planning techniques to add, move or 
delete plan activities. Through this work, we have also 
identified a number of challenges for an onboard planning 
and execution system to not only produce valid plans, but 
also promote robust and efficient rover behavior. These 
challenges include properly interacting with the appropriate 
rover navigation software, handling uncertainty in state and 
resource estimations, as well as effectively balancing 
methods for deliberative and reactive reasoning.   

In 2001, we spent a significant amount of time testing 
our current system on two different rovers in the JPL Mars 
Yard.  We will discuss our scenario design for this testing 



 

 

and give an overview of the results including a discussion 
of how the system handled major scenario elements. Our 
main objectives for testing included simulating situations 
that might arise in future rover missions, (such as the Mars 
Science Laboratory or MSL mission, planned for launch in 
2009), providing feedback on our approach, and 
identifying future directions that should be investigated.  
 The rest of this paper is organized in the following 
manner. First, we discuss some key challenges that we have 
identified for onboard decision-making software. Next, we 
present our current system approach and explain how this 
system fits into a larger rover architecture. We then 
describe a Mars rover scenario that was used to test our 
system on rover hardware, and describe how our system 
performed during that testing. Finally, we discuss issues we 
are addressing in current and future work, review related 
work, and present our conclusions.  

Challenges for Onboard Decision Making 
Most mobile robot efforts at JPL and NASA have 
concentrated on building software infrastructure for 
navigation, manipulation and control.  High-level decision 
making for these efforts, including for the Mars Pathfinder 
mission, was typically done using very simple execution of 
linear sequences that were tediously created by ground 
controllers. For the upcoming 2003 MER mission, there are 
plans to use a ground-based AI planning and scheduling 
tool to support science plan creation, however, a command 
sequence will still be manually generated on the ground 
and uplinked to the rovers. In these models, when a rover 
encounters a situation that deviates from its uploaded 
sequence, the fault protection software may attempt some 
limited resolution methods. Failing that, the rover enters 
safe-mode and must wait for a new command sequence to 
be sent from earth.  This model of operations results in a 
significant loss in science return since the rover must 
remain idle, for hours or days at a time, until new 
commands are received. 

More autonomous rovers have the potential for reducing 
the need for entering safe-mode and, as a result, 
significantly increasing the science value of a mission. New 
missions are being considered that will require rovers to 
support more autonomous endeavors such as long-range 
traversals, complex science experiments, and longer 
mission duration. However, autonomy software designers 
face a number of challenges in providing software to 
support these types of operations. In this paper, we 
consider a few key challenges for using planning and 
execution techniques to provide onboard decision-making 
capabilities. 

To generate its own command sequence for carrying out 
a set of science goals, the rover will need to reason about a 
rich model of resource and temporal constraints. For 
example, it will need to predict power consumption of 
variable duration activities such as downlinks and 
traverses, keep track of available power levels, and ensure 

that generated plans do not exceed power limitations. 
When resources are over-taxed, the rover should be 
capable of making science/resource trade-offs in an effort 
to produce the highest science return. The rover will also 
require execution and monitoring capabilities to carry out 
the generated plan on the rover platform. An execution 
system must be capable of commanding the control 
software, collecting state updates from sensors, and dealing 
with activity failures or unexpected events.  
   Sequence generation for rover surface missions also 
raises a number of interesting challenges regarding spatial 
reasoning capabilities. One of the dominating 
characteristics of rover operations is traverses to designated 
waypoints and science targets. This element is especially 
key in future missions that intend to explore large 
geographic areas. Onboard planning and execution 
software needs to coordinate with several levels of rover 
navigation software to generate an efficient and achievable 
rover plan. This coordination will likely include querying a 
path planner for route information needed to generate a 
plan of rover activities, using position estimation values to 
track rover progress, and correctly modifying the plan 
when navigation and obstacle avoidance software cause the 
rover to move off the predicted route.  

Another predominant challenge in developing onboard 
autonomy software is dealing with the inherent uncertainty 
in predicting rover navigation and science operations. The 
difficulty is compounded by the tight resource and time 
constraints that a rover typically faces. At the resource and 
temporal level, the estimation of items such as power, 
memory and even activity duration can be highly uncertain. 
Rover missions are directed at exploring unknown 
planetary terrains. Requirements for traversing these new 
terrains are hard to predict. For instance, it is unknown 
what type of sand consistency a rover will be traversing, 
which can dramatically affect the required duration and 
power for a traverse. Similarly, the duration and resource 
requirements for science operations can vary as well. These 
variations could be simple, such as a lower then expected 
image compression ratio, or more complex, such as a 
drilling operation taking more power and time than 
originally estimated.  

Furthermore, at the state level, the estimation of rover 
position is often a constant source of error. The Sojourner 
rover only used dead-reckoning capabilities to estimate 
rover position, which produced a position error of roughly 
5-10% of distance traveled and an average heading drift of 
13 degrees per day of traverse (Mishkin, et al., 1998). The 
MER rovers will use more sophisticated techniques to 
provide position estimation, including an Inertial 
Measuring Unit and a Sun camera. However, since these 
rovers will be traveling significantly longer distances then 
Sojourner, position estimation error will likely be 
significant for this mission as well. Since a large part of a 
rover schedule consists of rover moves to different 
locations, the onboard autonomy software must use 
estimations of position to predict the duration and resource 
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in response to the need for a robotic control architecture 
that can support future mission autonomy requirements. 
CLARAty uses a two-layered approach to organizing 
robotic capabilities, which is an evolution of the traditional 
three-layer architecture. The top Decision Layer (Estlin, et 
al., 2001) contains techniques for autonomously creating 
and carrying out sequences of rover actions that will 
achieve an input set of goals. It also provides a framework 
for using different types of planning and executive systems, 
and for enabling new ways of combining such systems. The 
bottom Functional Layer (Nesnas et al., 2001) provides a 
set of standard, generic robot capabilities that interface to 
system hardware.  
 Though CLARAty is a two-layered architecture it has 
been designed to support both traditional three-layer 
approaches to robotic control (which have a planner, 
executive and control layer) (Alami, et al., 1998; Bonasso, 
et al., 1998; Jonsson et al., 2000) as well as support new 
research in the field that is closely integrating the planning 
and execution processes (Myers, 1998; Chien et al., 2000; 
Fisher et al., 2002) and has moved towards collapsing the 
planning and executive layers into one. 

In this paper we are focusing on the first instantiation of 
the CLARAty Decision Layer, which is provided by the 
CLEaR unified planning and execution framework. Since 
CLEaR is integrated as part of the CLARAty architecture, 
it uses the CLARAty Functional Layer to both command 
the rover and access information about rover state 
including real-time updates and feedback. 

CLEaR Framework 
The CLEaR (Closed-Loop Execution and Recovery) 
unified planning and execution framework (Fisher, et al., 
2002) was developed to pursue a tight integration of 
planning and execution capabilities. Currently, CLEaR is a 

 



 

 

hybrid controller system that is built on top of the CASPER 
(Continuous Activity Scheduling, Planning, Execution and 
Re-planning) continuous planner and the TDL (Task 
Description Language) executive system, which are 
described further below. Previous versions of the CLEaR 
framework have been demonstrated for Deep Space 
Network (DSN) antenna control (Fisher, et al., 2000). 
Currently CLEaR is being extended to provide planning 
and execution support for planetary rovers. 
 CLEaR’s primary objective is to provide a tightly 
coupled approach to coordinating goal-driven and event-
driven behavior. Many past approaches have followed a 
three-level architecture style where the planning and 
executive processes are treated as black box systems. This 
is in contrast to how CLEaR enables the planner and 
executive to interact with each other and more effectively 
share the responsibility for decision making. In part this is 
managed through shared plan information and continual 
updates of state being made available to both the planner 
and executive. CLEaR also provides heuristic support for 
deciding when certain plan conflicts should be handled by 
the planner vs. the executive. For instance if a rover gets 
off track during a traverse, the reaction of the planner and 
executive need to be coordinated. If the executive believes 
it can resolve the navigation delay within the planned time 
constraints it will manage the plan changes. However, once 
the executive identifies that the repair will require more 
time or resources than allotted by the planner, it will then 
fail the task, which will result in the planner using its global 
perspective to fix the problem. 
 Planning in CLEaR is provided by the CASPER 
continuous planning system (Chien, et al., 2000). Based on 
an input set of science goals and the rover’s current state, 
CASPER generates a sequence of activities that satisfies 
the goals while obeying relevant resource, state and 
temporal constraints, as well as operation (or flight) rules. 
Plans are produced using an iterative repair algorithm that 
classifies conflicts and resolves them individually by 
performing one or more plan modifications. CASPER also 
monitors current rover state and the execution status of 
plan activities. As this information is acquired, CASPER 
updates future-plan projections. Based on this new 
information, new conflicts and/or opportunities may arise, 
requiring the planner to re-plan in order to accommodate 
the unexpected events.  
 The executive functionality in CLEaR is performed by 
the TDL executive system (Simmons and Apfelbaum, 
1998).  TDL was designed to perform task-level control for 
a robotic system and to mediate between a planning system 
and low-level robot control software. It expands abstract 
tasks into low-level commands, executes the commands, 
and monitors their execution. It also provides direct 
support for exception handling and fine-grained 
synchronization of subtasks. TDL is implemented as an 
extension of C++ that simplifies the development of robot 
control programs by including explicit syntactic support for 
task-level control capabilities. It uses a construct called a 

task tree to describe the tree structure that is produced 
when tasks are broken down into low-level commands.  
 For the work described in this paper, we used an early 
version of CLEaR, which integrated a planner and 
executive (i.e. CASPER and TDL) as separate modules. In 
this version, our approach is similar to that of previous 
three-layer architectural approaches. However, as 
compared to other three-layer approaches where planning 
is typically done in a batch fashion and takes on the order 
of minutes to hours, this integration uses a continuous 
planning approach, where plans are updated and repaired in 
a matter of seconds. This enables CLEaR to use planning 
techniques at a finer timescale for tracking the progress of 
plan execution, quickly identifying potential problems in 
future parts of the plan, and responding accordingly. As we 
expect minor portions of the plan to change frequently, we 
use a lightweight plan runner to dispatch activities to the 
executive a few seconds before the task’s scheduled start 
time. This approach differs from the more common batch 
approach of turning the entire plan over to the executive for 
execution. Executive techniques are then used in only 
reactive situations or at times where procedural reasoning 
is preferred. In the Discussion section, we discuss other 
steps we have taken towards tighter integration that have 
been tested in simulation.  
 Another way that CLEaR differs from previous 
approaches is in how the delegation between the planner 
and the executive is managed. We have primarily taken a 
planning centric approach to this management. The planner 
handles the decision of when an activity should be mapped 
to a task for execution as well as when to perform re-
planning. The re-planning process is driven by applying 
and propagating updates to the plan, and then taking 
corrective actions to address any conflicts or opportunities 
that may arise. Re-planning can also be performed 
synchronously with any already executing tasks. Once a 
planning activity has been mapped to an executive task for 
execution, control over that one task is given to the 
executive. The executive may then perform further task 
expansions as a result of updates and/or exception 
handling. The executive also provides task completion 
status back to the planner by either marking an activity as 
complete or failed. A task is marked as completed when the 
executive decides the task has met its objective, or marked 
as failed upon concluding that given constraints provided 
by the planner cannot (or even might not) be met. 

Global Path Planning 
To provide spatial reasoning capabilities to the CLEaR 
system, we are also employing a global path-planning 
module, which provides rover route information to the 
planner and executive based on a map of the rover’s 
environment. This module is intended to give a global 
perspective of the rover’s anticipated path as opposed to 
the local perspective that would be considered by obstacle 
avoidance software. We are assuming that for most rover 



 

 

operations some global map information would be 
available through orbital or descent imagery, or from 
panoramic imagery generated onboard the rover itself. We 
are also assuming that much of the global map information 
would be at a low resolution and thus a significant number 
of terrain features or obstacles may be missing and will 
need to be considered dynamically. 
 Currently, CASPER and TDL query for two main pieces 
of information from the path-planning module.  The first 
type of information is estimated distances between science 
targets and other major waypoints. The second type is a list 
of intermediate-waypoint coordinates that can be used to 
direct the rover’s traverse to a particular target. Path-
distance information is used by the planner to estimate the 
duration and power required for rover traverses between 
targets.  Intermediate waypoints are used by the executive 
to track the rover’s progress during a traverse.  During a 
traverse, the executive monitors the progress of the rover as 
position updates come in.  Because the executive knows the 
nominal velocity of the rover and the distance it must 
cover, it can predict how long it will take to reach its goal.  
If the executive anticipates that the traverse will take longer 
than the allotted time from the planner, then the executive 
may request new waypoints or it may halt the traverse and 
trigger the creation of a new plan. 
 For the tests reported in this paper, we used an 
implementation of the Tangent Graph path-planning 
algorithm (Latombe, 1991) to provide global path-planning 
capabilities. Tangent Graph operates by building a path 
through map free space as represented in a reduced 
visibility graph of 2-D polygonal obstacles. We are also 
currently extending our path-planning module to use other 
type of path planners.  

Rover Scenario Testing 
To test and validate our approach to planning and 
execution for rover operations, we are developing a number 
of rover scenarios that attempt to emulate mission 
conditions and goals.  This section describes the results of 
testing with one particular scenario using two different 
rovers. We have also tested our system using the ROAMS 
rover simulation tool (Yen & Jain, 1999), however we only 
focus on our hardware testing experiences for this paper.   

Scenario Description 
Figure 2A shows a map of the testing scenario. A number 
of science targets are identified on the map and dark shapes 
represent obstacles known a priori (e.g., from descent or 
orbital imagery). This map represents a sample mission-site 
location that would be explored in detail where data would 
be gathered using multiple instruments at a number of 
locations. 
 In this scenario, the types of science performed at the site 
include images (taken with a mast camera), spectrometer 
reads, and digs. An end of day communication activity with 

Earth is also required (though not reflected on the initial 
scenario map), and must be scheduled in a certain time 
window. Communication activities typically require a 
significant amount of power, thus the inclusion of this 
activity affects what science operations can be performed. 
We also made several assumptions in developing this 
scenario. One, we assume mission scientists have assigned 
a priority to each science target. Two, we assume that some 
map information is known ahead of time although other 
obstacles likely exist that are not identified on the original 
map and thus, need to be detected through rover sensors 
and obstacle avoidance software. Three, more science goals 
are specified than can be achieved given the resource levels 
allotted for the scenario time period and the rover planning 
software is responsible for deciding what subset of those 
goals will be achieved.  
 The model developed for the planner contains 15 
different types of activities where 6 of those are executable 
activities (e.g., science activities, navigation activities) and 
the rest are used to model exogenous processes or events 
(such as when the communication window with Earth 
opens and closes). A number of operation and resource 
constraints for these activities are also represented and 
maintained by the planner. Examples of constraints include 
ensuring limited memory and energy resources are not 
oversubscribed, ensuring that the rover is in the correct 
position and orientation for science operations, and 
handling a limited communication window with Earth. 
When executed, planning activities are mapped to tasks in 
the executive. The model developed for the executive 
contains 9 different task definitions and 10 monitor 
definitions, where a monitor handles the tracking and 
evaluation of state data from the low-level software to 
detect events such as when a task has successfully 
completed or when an error has occurred. Both planning 
and executive systems also monitored several rover states 
and resources, including current position, heading, energy 
level and memory level. 
 

Testing Environment and Setup  
To evaluate our system, we performed a series of tests in 
the JPL Mars Yard using two different rovers, Rocky 7 and 
Rocky 8, which are shown in Figure 3. Rocky 7 is 
approximately the same size and mass as the Mars 
Pathfinder rover, Sojourner. It employs a rocker-bogie six-
wheel configuration, and is a partially-steered vehicle, 
where it only has steering capability on two corners. In 
contrast, Rocky 8 is roughly an order of magnitude larger 
than Rocky 7 and is similar in size to the twin MER rovers.  
Rocky 8 also employs a rocker-bogie six-wheel 
configuration, however it is a fully-steered vehicle with all-
wheel drive and all-wheel steering. During testing, the 
planning and executive systems ran on an offboard 
workstation that communicated with the rovers using 
Wireless Ethernet. The CLEaR system runs on both Sun 
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Figure 2:  Sample Scenario Map for a Geological Site Exploration 

Solaris and Linux operating systems. Performance numbers 
reported in this paper were run on a Linux 1.7 GHz 
Pentium 4 workstation. The CLARAty low-level control 
software was run onboard each rover.   

During plan generation and re-planning, science-target 
visits are ordered by the planner’s TSP (Traveling 
Salesman Problem) heuristic solver so that the rover is 
choosing the shortest path allowable by constraints and 
based on its current map information. Currently, the path-
planner module is used to provide distance estimates for 
TSP. Though this requires the system to call the path 
planner on each pair of goals, the overall time required is 
small due to the relative speed of the path planner (i.e., 
each distance query took around .03 secs to complete).  
Furthermore, for a science site investigation, it is typical to 
only have a relatively small number of goals in the 
immediate area that are being considered. Thus, this testing 
simulates a realistic number of calls to the path planner.   
 We used two different modes of navigation on the rovers. 
For Rocky 7, obstacle avoidance capabilities were not 
available so we simulated a simple obstacle-avoidance 

behavior. If an obstacle appeared in the rover path and was 
in fairly close-range, we would manually abort the current 
move command and update the global map to allow the 
path planner to select a path around the obstruction. For 
Rocky 8, we used the GESTALT navigation system 
(Goldberg et al., 2002), which is providing obstacle 
avoidance and navigation capabilities to the MER rovers. 
Based on local terrain knowledge, the obstacle avoidance 
software decides the best direction for the rover to move 
that will allow the rover to efficiently reach its goal 
waypoint while avoiding obstacles or hazardous terrain. 
   Several other activities not available at that time were 
simulated for testing. First, the global map of the scenario 
was manually created based on the scenario rock layout in 
the Mars Yard. Second, science and communication 
operations were simulated since these modules are not 
currently available through the CLARAty Functional 
Layer. At each science target, the rover would stop for an 
appropriate amount of time, and energy and memory use 
for each science operation was estimated and reflected in 
state updates.  



 

 

Testing Results 
Figures 2B and 2C show the results from running Rocky 8 
on this testing scenario. Figure 2B shows the results of 
initial plan generation. The plan contained 53 different 
activity instances and took the planner 3.7 seconds to 
construct. As previously mentioned, more science goals 
have been provided to the planner than can be supported by 
onboard memory and energy levels. Thus, CASPER 
excludes a low priority science target from the initial plan 
due to an energy conflict in order to allow enough energy 
to complete the remaining science activities as well as the 
end-of-day communication activity, which is performed at 
the same location as the last science target. 
 Figure 2C shows the results of plan execution and re-
planning. The solid line shows the actual path of Rocky 8 
during scenario execution.  The dashed lines show what the 
rover’s planned path was at different stages of execution. 
There are several points of execution where either the 
CASPER planner or the TDL executive revised the rover’s 
plan based on current state and resource information. Each 
re-plan took an average of 2 seconds to complete. 
 The first point of plan revision is during the traverse 
between the spec1 and image2 targets.  During this traverse 
the rover encounters several unexpected obstacles that 
block its path to the next target. The navigation system 
causes the rover to veer off its planned path and attempts to 
find a new route to the goal location. TDL monitors this 
path change and iteratively checks how far behind schedule 
the rover has fallen. Once TDL estimates the rover will not 
be able to complete the current move activity within an 
allowable time range, it halts the current move and signals 
to CASPER that the move activity has failed. CASPER 
then repairs the plan, taking new map information about the 
obstacles into account, and finds that a new target ordering 
will still achieve all remaining science targets. 
 The second point of plan revision comes after the 
completion of the image3 science activity. For each science 
activity, an expected duration and resource usage has been 

encoded in the planner’s model of rover operations. 
However, since these values cannot always be accurately 
predicted, they are monitored during execution and the 
planner stands ready to update the plan based on new 
information. At the image3 science activity, the Functional 
Layer simulates that the acquired image data cannot be 
compressed as much as originally estimated. The new 
memory level is forwarded from the Functional Layer to 
TDL and then to CASPER, which updates the activity plan. 
This update causes a plan conflict to arise since now 
memory will be oversubscribed before the plan is 
completed. CASPER resolves this conflict by deleting a 
later spectrometer read (spec2), which ensures enough 
memory is available to collect data at the remaining targets.  
Again, CASPER deletes a low-priority science activity and 
attempts to preserve as many high-priority activities as 
possible. After the science activity is deleted, the plan is 
updated to reflect new traverse routes between science 
targets. 
 A third revision occurs during the traverse from image3 
to dig2.  Another unexpected obstacle is encountered and  
obstacle avoidance software moves the rover off the 
planned path.  TDL monitors rover progress and finds that 
this time there is enough time to avoid the obstruction and 
no re-planning on CASPER’s part is required. 
 The last point of plan revision comes after the 
completion of the dig1 science activity. This situation is 
similar to the previously explained memory over-
subscription, however this time the activity uses more 
energy than anticipated causing a conflict. Again, CASPER 
resolves this conflict by deleting one of the remaining 
lower-priority science goals whose deletion will release 
enough energy to successfully complete the communication 
activity.  The dig2 science activity is deleted and a new 
path is calculated to the remaining targets. The remainder 
of the plan then executes as expected.  

                         
 

Figure 3: Rocky 7 and Rocky 8 Rovers 
 



 

 

Discussion 
Though testing of this scenario was successful for both 
rovers, we did encounter a number of issues that need to be 
resolved in order to provide a more robust and stable 
system. Some of these issues are particular to our approach, 
however, many of them will apply to the general use of 
planning and execution techniques to this application area. 
 One issue that consistently arose was the planning and 
execution system’s reliance on accurate position 
estimation.  This reliance affects not only the estimated 
durations and power requirements for a traverse but also 
affects the system’s determination of whether an activity 
has completed successfully. There are several factors 
contributing to this issue. One factor was that only very 
limited position estimation capabilities were available on 
Rocky 7 and 8 during this testing. Position estimation was 
based solely on wheel odometry, which can incur 
significant drift error, especially when navigating on sand 
or over rocks. Currently, CLARAty is developing a more 
sophisticated position estimation approach that includes a 
Kalman-Filter technique and the use of additional sensor 
data.  

 Although we can expect some improvements from the 
estimation software, the issue remains that planning and 
execution software cannot expect perfect position estimates 
and this software must be flexible enough to operate using 
uncertain state information. For these tests, we added 
flexibility to our plan in two simple ways. One, we adjusted 
the determination of a successful traverse so that the rover 
was only required to be in a certain neighborhood of a goal 
target or waypoint for that traverse to be considered 
successful. Two, we had the planning system automatically 
build in some buffer room between plan activities so that 
slightly longer-than expected traverses did not disrupt the 
overall plan. Development of a more robust and efficient 
solution to the problem of shifting a grounded plan (due to 
overruns or underruns) is an area of future work. One 
approach taken in related planning work is to generate and 
execute a temporally flexible plan (Jonsson, et al., 2000). 
However, working with a temporally grounded plan has 
been shown to enable fast planning and re-planning speeds 
and thus contributes to the responsiveness of the system.  
We are currently investigating a hybrid approach to this 
problem where plans are generated and repaired using a 
grounded-time representation, and are mapped to flexible 
time for execution using the underlying plan constraints.  
 A second identified issue was that the executive could 
only be given limited ability to modify the plan since it had 
little or no knowledge of many state and resource 
constraints maintained by the planner. Currently, the 
domain knowledge encoder must ensure that the executive 
can only modify the plan within certain limits to ensure that 
no operations constraints are violated. In our scenario 
testing, we added some simple heuristic knowledge to the 
executive that defined when it could attempt local fixes and 

when it needed to fail an activity and ask the planner to 
replan. 
 We have further addressed this issue in recent work by 
developing two techniques that enable the executive to take 
a larger role in plan modification:  1) Atomic Resource 
Manager (ARM) and 2) Execution Time Query (ETQ) 
(Fisher, et al., 2002).  Both techniques have been tested in 
simulation and in future work we will experiment using 
rover hardware. 
 ETQ enables the executive to use the planner’s constraint 
knowledge to “ask permission’’ to violate planner-imposed 
constraints on a task.  This gives the executive the ability to 
successfully complete a task that is using an unexpected 
amount of a resource. If some look ahead is encoded into 
the executing tasks then this query can be made in advance 
of the constraint violation.  Through the use of the query 
mechanism this allows the unified system to perform an 
appropriate action. This action might be to abandon the 
current task or might be to adjust the remainder of the plan 
to accommodate the current task with its modified 
constraints. If the system chooses to abandon the current 
task, then CASPER will produce a newly modified 
sequence and provide the executive with the new course of 
action.  
 ARM provides additional capabilities to the executive by 
allowing it to coordinate tasks that require intermittent use 
of some resource. We have developed a rapid scheduling 
algorithm for managing the intermittent allocation of an 
atomic resource (such as a camera) to more than one 
concurrently running task.  

Future Work 
In the previous section, we identified issues that arose 
during testing and discussed progress that we have made to 
address them. We have also identified several areas of 
future work. 
 One of the ongoing goals of the CLEaR system is to 
tightly unify the planning and execution processes. A step 
towards this goal is to make the executive aware of 
constraints represented or generated by the planner.  The 
ARM and ETQ techniques presented in the Discussion 
section represent further progress toward our objective. 
Also previously mentioned is the ongoing work in the area 
of grounded time planning and flexible time execution. 
 Another step towards integrating planning and executive 
is to enable procedural capabilities to be accessed by the 
planner during plan generation and repair.  This step will 
enable procedural constructs, such as conditionals, to be 
easily used during plan search. These types of constructs 
are difficult to represent in a declarative representation, 
however as previously mentioned, it would be beneficial to 
have such constructs when reasoning about certain activity 
types at the planning level.  Eventually, we hope to fully 
integrate CASPER and TDL, where both planning and 
executive functionality use a shared representation and 
operate on one planning database. This integration would 



 

 

alleviate the need for two different domain models and 
would enable planning and executive capabilities to more 
easily interact and operate on all levels of activity 
granularity. 
  We also plan to develop more sophisticated techniques 
for dealing with activity/task failures involving exception 
handling.  For instance, our system should handle science 
operations failing in different fashions such as an 
unsuccessful science data acquisition (e.g., an over-
exposed or miss-targeted frame or an unsuccessful grasping 
of a rock). While we already have the mechanisms in place 
to handle retry-type recoveries, such would be used in the 
rock example, however procedures for other types of 
exception handling will likely require extensions to our 
current system. For instance, the planning and execution 
system may need to closely coordinate with other onboard 
software that can evaluate whether a science operation was 
successful.  
 Another area of current work is to provide more realistic 
map information to the planning and execution system and 
to incorporate different types of path planners.  For 
instance, we plan to interact with the TEMPEST path 
planner (Tompkins, et al., 2001), which can input 
additional constraints that affect the path selection process. 
Most path planners search for only the shortest path 
between two points, however there are many other 
constraints that may affect path selection for rovers, such as 
shadowing, communication opportunities, terrain risk, etc. 
Constraints that are important for the current rover plan 
could be identified by the activity planner and used to focus 
the path search in TEMPEST.  
   One last area of future work is to dynamically identify 
times that new science goals could be added to the plan. In 
our past scenario, we focused on how to repair the plan 
when things went wrong, which usually resulted in low-
priority science activities being discarded from the plan. 
We would also like our planning and execution system to 
be able to handle situations were things go better than 
expected. For example, a rover traverse may be much 
shorter than expected or a new and high-priority science 
opportunity could dynamically arise that wasn’t previously 
identified.  In both of these situations the planning and 
execution system could improve the quality of the plan by 
adding in additional science activities. These could be 
previously requested science observations that were 
discarded due to limited resource availability, or brand new 
opportunities that rover sensors or onboard data analysis 
algorithms have identified as valuable. 

Related Work 
A number of planning and executive systems have been 
successfully used for robotic applications and have 
similarities to the approach we describe in this paper.  Most 
of these approaches have used some combination of 
planning and execution, however they differ in not only the 
behavior of these individual components, but also in how 

these systems interface with each other and with other 
system modules.   
 The Remote Agent Experiment (RAX) (Jonsson, et al., 
2000) was flown on the NASA Deep Space One (DS1) 
mission.  It demonstrated the ability of an AI system to 
respond to high-level spacecraft goals by generating and 
executing plans onboard the spacecraft. The planner in 
RAX takes as input a schedule request and produces a 
flexible, temporal schedule for execution by its executive. 
A major limitation to this approach was that planning was 
only performed in a batch fashion.  If re-planning was 
required, the spacecraft was “safed” until a new plan had 
been generated (which could be on the order of hours).   
Furthermore, since RAX was applied to a spacecraft, it did 
not handle issues with surface navigation and path 
planning. 
 Another approach directed towards rover command 
generation uses a Contingent Planner/Scheduler (CPS) that 
was developed to schedule rover-scientific operations using 
a Contingent Rover Language (CRL) (Bresina, et al, 1999). 
CRL allows both temporal flexibility and contingency 
branches in rover command sequences. Contingent 
sequences are produced by the CPS planner and then are 
interpreted by an executive, which executes the final plan 
by choosing sequence branches based on current rover 
conditions.  In this approach, only the executive is onboard 
the rover; planning is intended to be a ground-based 
operation.  Since only a limited number of contingencies 
can be anticipated, our approach provides more onboard 
flexibility to new situations. In the CRL approach, if a 
situation occurs onboard for which there is not a pre-
planned contingency, the rover must be halted to wait for 
communication with ground.   
 Other similar approaches include Atlantis (Gat, 1998), 
3T (Bonasso, et al., 1997), and a robotic control 
architecture developed at the LAAS-CNRS lab (Alami, et 
al., 1998) which all use a deliberative planner and 
executive (or sequencing component) on top of a set of 
reactive controllers. These approaches have distinctly 
separated planning and execution techniques, and have not 
closely interacted with navigation software used for rover 
missions. Also, the CPEF (Continuous Planning and 
Execution Framework) (Myers, 1998) is a similar 
framework to CLEaR for combining planning and 
execution. However, CPEF is designed to cull out key 
aspects of the world to monitor and has been primarily 
tested in military air-campaign domains.  

Conclusions 
This paper discusses a number of challenges for using 
planning and execution techniques to provide autonomous 
rover capabilities for future NASA missions. We describe 
our approach for using an onboard planning and execution 
system and explain how it provides capabilities for 
sequence generation, execution, monitoring, and re-
planning. We also describe how our system interacts with 
other software modules such as path planning and low-level 



 

 

control software. Finally we discuss our experiences with 
testing our planning and execution system in providing 
decision-making capabilities for two JPL rovers. 
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