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ABSTRACT  

Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air 

and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-

road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. 

Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 

30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the 

ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of 

forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local 

window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome 

the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were 

applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the 

disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and 

uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were 

employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors 

and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated 

on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base 

Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a 

passive, low-cost perception system for night-time autonomous navigation.   
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1. INTRODUCTION  

Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air 

and ground vehicles. An unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-

road terrain for many kilometers from a safe landing zone could significantly increase the safety and success rate of such 

resupply missions for warfighters. Autonomous UGVs can also increase the mobility and survivability of ground assets 

during dismounted operations by lightening the load. Passive night-time perception of terrain and obstacle features is a 

vital requirement for such missions. Under the Office of Naval Research (ONR) Expeditionary Maneuver Warfare and 

Combating Terrorism Applied Research program, a low-cost perception system with multi-sensor data fusion and passive 

night-time capabilities was desired to increase the effectiveness of the Marine Corps Air Ground Task Force (MAGTF). 

As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory (JPL) developed a low-cost perception architecture 

that fuses together data from electro-optical (EO), long wavelength infrared (LWIR), and laser (LIDAR) sensors. This 

paper focuses on the challenges, techniques, and experimental results of developing a low-cost passive night-time 

perception capability using stereo vision algorithms with LWIR cameras for autonomous UGV navigation. 

2. BACKGROUND 

Passive stereo vision algorithms find correspondences in stereo pairs of images to infer depth maps. These depth maps can 

then be used to create a representation of the surroundings for use in path planning and navigation. LWIR uncooled VOX 

microbolometer cameras offer low-cost and passive thermal imaging but produce lower image resolutions, higher noise, 

and longer integration periods than more expensive cooled semiconductor based approaches. The lower image resolutions 



 

 
 

 

decrease the range accuracy of the stereo vision algorithms and the higher noise decreases the ability of the stereo vision 

algorithm to find correspondences. Similarly, the longer integration periods of the microbolometer cameras increase 

artifacts from motion blur, potentially reducing stereo correspondence density. Another challenge in generating accurate 

range maps using passive stereo techniques is the stereo vision algorithms themselves generate spurious range data from 

mixed pixels, repeated textures, and low-texture regions. The system requirement challenges include a low-cost 

requirement that constrains the computing hardware to multi-core CPU-based processing and requires stereo processing 

at a minimum of 10Hz. The expected operating conditions for the UGV consist mainly of unimproved roads with both 

man-made and natural structures, with autonomous navigation targeting modest vehicle speeds of a maximum of 5 m/s. 

The requirements for the perception system are driven by safe stopping distance and obstacle detection range. We model 

the stopping distance D on an incline as the summation of the distance required by the frictional forces to decelerate, 

distance travelled during the time the autonomous system identifies and reacts to a stopping event, and a safe buffer 

distance: 

𝐷 =  
𝑣2

2𝑔(𝜇𝑐𝑜𝑠𝜃+𝑠𝑖𝑛𝜃)
+  𝑇𝑟𝑒𝑎𝑐𝑡 ∗ 𝑣 + 𝐷𝑏𝑢𝑓𝑓𝑒𝑟                                                            (1) 

where v is velocity, 𝜃 is the incline angle, g is the gravitational constant, 𝜇 is the coefficient of friction of the surface, Treact 

is the autonomous system reaction time, and Dbuffer is a buffer distance. For our expected operating conditions, we use 𝜇 =
0.6 for gravel, 𝑇𝑟𝑒𝑎𝑐𝑡 = 0.5 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, and 𝐷𝑏𝑢𝑓𝑓𝑒𝑟 = 2 𝑚𝑒𝑡𝑒𝑟𝑠. Figure 1a shows the stopping distances as a function of 

downhill slope angles at our maximum speed of 5 m/s.  

The expected stereo range accuracy is modelled as: 

∆𝑧 =  
𝑧2

𝑓𝐵
∆𝑝                                                                                  (2) 

where ∆𝑝 is the pixel correlation uncertainty, f is the focal length in pixels and B is the separation baseline of the stereo 

cameras. Figure 1b shows the theoretical stereo range accuracy for our 13mm focal length thermal cameras with a ∆𝑝 of 

a quarter of a pixel and a baseline of 0.75 meters. 

3. METHODS 

The main challenges we faced in the development of our passive LWIR-based night-time perception system were 

overcoming the low signal-to-noise ratio of the input imagery, increasing the disparity density of the stereo correlator, and 

removing spurious false positive range data from the depth maps and world model representation. As shown in Figure 2, 

we apply a series of pre- and post-filters to address these issues in our passive night-time stereo pipeline. These techniques 

are described below. For the thermal imaging, we use a stereo pair of FLIR Tau A65 thermal cameras with an image 

  
  

(a) (b) 
Figure 1. Theoretical models of (a) stopping distance on a sloped downhill at 5 m/s and (b) range accuracy from stereo 

matching algorithms for 13mm focal length, pixel error of a quarter of a pixel, and a baseline of 0.75 meters at Level 0 

(640x512) and Level 1 (320x256).  Empirical accuracy results using the FLIR Tau A65 thermal cameras are shown in green.  
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resolution of 640x512, an integration time of 10-12 milliseconds, and a baseline of 0.75m. With a 13mm lens, the field of 

view is 45° horizontal and 37° vertical. Based on empirical data, the effective range data field of view is 33° horizontal. 

 

3.1 Pre-filters 

Local, window-based stereo correlators yield improved results with strong texture or features.  To condition the imagery 

without loss of vehicle capabilities, the 640x512 (Level 0) input image are first down sampled by a factor of 2 to 320x256 

images (Level 1). While down sampling reduces the inherent noise from the sensor through 2x2 block averaging, it also 

reduces the range accuracy proportional to the change in image resolution. From our modelling of the stopping distance 

and expected range accuracy as shown in Figure 1, down sampling to L1 provides detection of obstacles to 20 meters with 

an expected range error of 0.35 meters, which falls within the stopping distance for various terrain slopes at 5 m/s. Using 

the lower image resolution for stereo correlation also provides for more computation time for more scene analysis, such 

as our multi-resolution consistency check we employ to reduce the spurious range data in the disparity maps. 

Based on our previous work1,2, we apply band-pass pre-filtering to reduce the image pair intensity differences and a 

Laplacian of Gaussian convolution to enhance the underlying image texture through a difference of boxes (DoB) 

approximation. The normalization of the image intensities is required since approaches that compare local matches based 

on intensity differences, such as the sum of absolute differences (SAD), are sensitive to contrast changes. Finally, a gamma 

correction filter is applied to enhance image contrast before matching. 

 

3.2 Stereo Correlation 

As in our previous work2, we leverage the computational efficiency of the SAD similarity metric with SAD5 overlapped 

correlation windows. The constraints of using only CPU-based processors for stereo processing at 10Hz prohibited the use 

of algorithms with greater computational complexity, such as semi-global matching. In SAD5, the similarity score of a 

pixel is given by the SAD score of the center window plus the two best scores of the neighboring four overlapped 

windows3. The neighboring windows improve the correlator along disparity discontinuities by reducing the ambiguity 

between foreground and background objects. The overlapped windows also create a larger correlation area that helps 

increase correspondence. To further increase the disparity density, we use a rectangular 11x7 window that is more suitable 

for outdoor scenes with a receding ground plane. As shown by Kelly and Stentz4, the optimum aspect ratio of the 

correlation window is the inverse of the ratio of the corresponding components of the disparity gradient. For outdoor 

scenes, this translates to a correlation window that is wider than it is high. 
 

3.3 Post-filters 

To remove the spurious false positive range data generated by the stereo correlator, we use a blob filter, streamer filter and 

a multi-resolution consistency check. As in our previous work2, the blob filter examines the gradient of disparity data to 

find regions of similar disparity. Regions smaller than a given threshold are removed. The blob filter helps remove speckles 

of spurious range data. The streamer filter removes artifacts from mixed pixels which overlap both foreground and 

background depth values. This ambiguity results in a stream of false positive depth values emanating from the foreground 

object to the background. The streamer filter removes these disparities by examining a trio of range pixels and testing for 

receding depths above a given threshold.  

 
 

Figure 2. Passive night-time stereo pipeline for LWIR imagery. Applying subsampling to Level 1 (L1) and the pre-filters 

condition the low SNR imagery for improved disparity density. The post-filters remove spurious disparities to decrease the 

number of false positive range data. The multi-resolution consistency check compares the disparities at Level 2 (L2) and L1 

to remove noisy range data. 



 

 
 

 

 

The multi-resolution consistency check compares the range values at different image pyramid levels to ensure they agree 

within some threshold. We leverage the coarser and typically denser range values of the lower image resolution to identify 

false positives in the higher resolution. Our algorithm uses Level 2 (L2) to check the input Level 1 (L1) range data. It first 

uses the lower resolution as a mask: only the L1 pixels that have valid disparity values in corresponding L2 pixels are 

checked for consistency; all other L1 depth pixels are invalidated. The multi-resolution consistency check reduces the false 

positives from repeated textures that often plague local window stereo correlators.  

 

3.4 Probabilistic Sensor Modelling 

The uncertainty of range measurements derived from stereo-vision algorithms are known to increase with range. To 

increase the fidelity of the 3D representation of the environment, our system leverages probabilistic sensor modelling to 

account for the uncertainty in the range data when creating occupancy grid maps. Occupancy grids are a common approach 

to integrate multiple sensors into a single obstacle map. Storing occupancy probabilities at each grid cell allows for 

representations reflecting the uncertainty of sensor properties such as range accuracy. Similar to other work5,6,7, we use an 

inverse sensor model to model the occupancy probability to reduce the propagation of false positives into the occupancy 

grid. We also use ray casting techniques to dynamically update free and occupied voxels as newer data is received. 

3.5 Modular architecture 

The Robot Operating System (ROS), a message passing based framework, is used as the software platform for the UGV. 

ROS nodelets enhance performance by eliminating the copy costs when passing messages intraprocess. We leverage ROS 

nodelets to achieve zero-copy, modular filters that can be interchanged as shown in Figure 3. Since it is the most 

computationally expensive component, the SAD5 correlator is multithreaded and uses SSE instructions to leverage the 

multi-core and vectorization capabilities of the target CPUs.  

4. RESULTS 

The passive night-time perception system was tested at JPL to quantify the stereo matching enhancements, at SPAWAR 

Systems Center Pacific (SSC Pacific) to quantify the autonomous behavior with our perception system in the loop, and at 

Marine Corps Base Camp Pendleton to evaluate the UGV in a real world, congested urban environment. 

4.1 Stereo Matching Enhancements 

Figure 4 shows the impact of our enhancements to the stereo matching results on a scene with unimproved roads using L1 

thermal images. The enhancement with the biggest impact on disparity density is applying SAD5 versus SAD1. With the 

overlapping windows, the near and far fields show an increase in disparity values.  Switching to a rectangular 11x7 

correspondence window generally increases the smoothness of the disparity values. Increasing the gamma, on the other 

hand, is more scene dependent as it helps increase the disparity density only in areas of low contrast, such as in the far 

field in Figure 4c. As shown in Figure 4b and Figure 4c, the disparity density decreases for on-the-move data but with our 

enhancements, the high priority areas of the unimproved road are clearly identified at our max speed.  

 
Figure 3. ROS nodelet filters. Each filter is interchangeable and implemented as a ROS nodelet to leverage the zero-copy 

message passing capability for enhanced performance.   
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(a) 49.7% density 66.7% density 68.3% density 70.5% density 

     

(b) 43.3% density 56.8% density 59.5% density 60.5% density 

     

(c) 35.5% density 49.9% density 59.7% density 63.6% density 

Figure 4. Stereo matching comparison with different configurations on a scene with unimproved roads with our passive LWIR 

night-time stereo pipeline with (a) static scene, (b) on-the-move near static scene, and (c) at peak speed of 4.87 m/s. The 

density is the percentage of pixels in the entire image with disparity values. SAD5 yields an increase in density at the near and 

far fields compared to SAD1. The 11x7 window increases the smoothness and the gamma helps improve the density in low 

contrast areas. 

 
 

Figure 5. Comparison of range histograms at three different vehicle speeds on the same course to quantify the effects of 

forward motion blur. At these target speeds, the motion blur does not significantly cause disparity drop outs. 

 



 

 
 

 

With the longer integration times of the uncooled microbolometer sensor, the disparity density may be reduced due to the  

pixel blur from motion. To test the impact of forward motion blur artifacts on our passive night-time stereo pipeline, the 

vehicle was manually driven at three different speeds on the same course with unimproved roads. To compare the results, 

a histogram of range values normalized by frame count was computed for each run. With strong motion blur, we would 

expect disparity drop outs closer to the vehicle since the pixel blur from motion would be greater at these ranges. As shown 

in Figure 5, for the modest speeds tested, motion blur did not significantly cause any disparity drop outs. 

 

4.2 Post-filters 

Figure 6 shows the impact of the multi-resolution consistency check filter. A container with repeated texture causes 

ambiguity in the stereo correlator and a false wall to appear behind the container wall. In Figure 6a, the multi-resolution 

consistency check algorithm preserves all L1 data and only applies the consistency check if there exists corresponding 

data in L2. While this approach yields higher density, it also preserves possible spurious data. In Figure 6b, the multi-

resolution consistency check algorithm uses L2 as a mask and the consistency check is only applied to pixels in L1 with 

corresponding valid depths in L2. In our example, the spurious range data behind the container wall with repeated textures 

is removed. This approach relies on the coarser L2 disparity having broad density coverage, which is typically the case 

with the lower resolutions. In the cases where there are gaps in the L2 data, this approach can potentially remove good 

pixels.  

 

Figure 7 illustrates the impact of the post-filters in reducing the false positives in an L-shaped test apparatus. Without the 

post-filters, the far wall appears thicker at the exit. This causes the autonomous system to plan a reverse route to circumvent 

the perceived closed opening. With the post-filters, the false positives are removed, allowing the autonomous system to 

plan a route as expected. 

 

 

 

(a) (b) 

Figure 6. Multi-resolution consistency check uses the coarser but typically denser range data at a lower resolution to remove 

false positives. The lower left image in (a) shows a container wall with a repeated pattern that causes ambiguity in the correlator 

and a false wall to appear behind the actual wall. The consistency check in (a) preserves all values in L1 and only performs 

the consistency check if there exists corresponding range data in L2. This leads to the preservation of the false positive range 

data. In (b), L2 is used as a mask for the consistency check. Only those values in L1 with corresponding valid depths in L2 

have the consistency checked performed. All other pixels in L1 are invalidated, resulting in the removal of the spurious range 

data behind the container wall. 

 



 

 
 

 

4.3 Constrained environment performance 

To evaluate the night-time autonomous performance in a real world environment, test trials were carried out in a realistic, 

constrained urban course with building structures, unimproved roads, small and large vegetation, and barrel obstacles. 

Each segment of the course stressed different components of the autonomous system. Human intervention counts for safety 

stops and planner timeouts were collected for each trial segment. Safety stops are interventions from the human safety 

driver to stop the autonomous vehicle due to safety concerns from system performance. Planner timeouts occur when the 

autonomous vehicle stops moving and is unable to plan a suitable path for a period of 5 seconds. The UGV with our 

passive night-time perception system was tested an hour after sunset. To mitigate navigation issues with the limited field 

of view, the planner was configured to be more conservative by increasing the cost for navigating into unknown areas. 

For the 17 segments tested, the UGV successfully navigated 8 of the segments without any interventions, 7 segments were 

halted due to safety stops, and 2 segments were halted due to planner timeouts. The mitigations we employed to reduce 

the spurious false positives yielded accurate obstacle detections throughout the course. Barrels were detected at 15-18 

meters giving the navigation system suitable distance to plan appropriate maneuvers. The majority of building structure 

footprints were detected without spurious data from repeated textures of the wall studs.  

In the segments where the obstacles were clearly in the field of view of the thermal cameras, the UGV performed well. In 

the segments where a wider field of view of the environment was necessary to navigate successfully, false negatives were 

the major cause of safety stops. Corridors slightly wider than the narrow field of view and tight corners caused missing 

barriers to appear in the system, yielding undesirable route planning or latent obstacle detection. 

5. CONCLUSION  

We have described our passive LWIR-based night-time perception system that overcomes the low signal-to-noise ratio of 

the input imagery, increases the disparity density of the stereo correlator, and removes spurious false positive range data 

from the depth maps through a series of pre- and post-filters, stereo correlator enhancements, and probabilistic sensor 

modelling. Our approach reduces the false positive range data to generate suitable representations of the environment for 

night-time UGV navigation. Terrain and obstacles are detected at suitable distances for maneuver decisions and the 

spurious false positives associated with mixed pixels and repeated textures are greatly reduced. With the limited field of 

view, however, false negatives are more prevalent which inhibits successful autonomy. Improving the field of view is the 

focus of future work and could be addressed by using a shorter focal length lens, modifying the navigation software to 

drive for perception before entering unknown areas, or moving toward a pan-tilt camera system. 

  

(a) (b) 

 

Figure 7. Impact of the post-filters to remove false positive range data on world model cost map. The black areas are 

obstacles, the white areas are clear areas without obstacles, and the dark grey are unknown areas. The orange line represents 

the target input navigation path and the green line represents the planned path by the autonomous system. Without the post-

filters in (a), the autonomous system detects a false obstacle and reroutes to circumvent the blockage. With the post-filters 

in (b), the spurious false positive are removed and the autonomous system plans as expected. 
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