Follow this link to skip to the main content
  NASA Logo
Jet Propulsion Laboratory
California Institute of Technology
+ View the NASA Portal
Search JPL
JPL Home Earth Solar System Stars and Galaxies Technology
JPL Robotics
Search Robotics
 
Home Page
Applications
Projects
Tasks
Groups
People
Systems
Facilities
Publications
Patents
Awards
News
Image Gallery
Video Gallery
Charter
Links
 
COMPLETED RESEARCH TASK
underline
Task Page Publications Image Gallery Videos
Whole Rover-Arm Coordination

Description:
Task Image Right Shadow
Bottom Shadow
Click here for a larger image
This task will develop technology to enable the three degrees-of-freedom (DOFs) of rover mobility to be utilized in rover-based manipulator activities. The technology will be used to enable core sample acquisition from a low-mass rover. The technology will be valuable to future low-mass rover missions such as to the moon or mars. Specifically, the technology is anticipated to be valuable to the Mars Sample Return (MSR) mission if it proceeds with the current baseline plan of utilizing a small fetch rover to acquire rock core and regolith samples and return them to a lander-based mars ascent vehicle.

The three DOFs of rover mobility are the position of the rover on the terrain and the rover heading, together making up the three DOF rover pose. Active suspension provides additional rover mobility DOFs. The current state of the art in planetary manipulation considers the rover as a gross positioning stationary platform. Earth-based operators plan a path for the rover to place it such that in a subsequent uplink command sequence an arm motion can be specified to place an instrument or tool on a specified target. The arm must then have sufficient DOFs to place the instrument or tool since the rover is assumed stationary. Also, the rover must be massive enough to act as a stable platform for the arm-based activity.

To enable coring from a low mass rover, first a low-mass rover-tool system needs to be designed. Then the sensing and controls for positioning and coring from the rover needs to be developed. The work will be performed in three phases: rover-tool design in phase I, controls development in phase II, and controls implementation and testing in phase III.

This proposed effort will be performed as a collaboration between the Robotics Laboratory at Stanford University and the Mobility and Robotic Systems Section at JPL. Experimental validation will be conducted at JPL and use its facilities. While JPL and Stanford will collaborate in all aspects of the task, JPL will focus on rover-tool designs and controls implementation and Stanford will focus on dynamics analysis and controls analysis.

Completion Date:  08/31/2007

Point of Contact:  Paul Backes - Jet Propulsion Laboratory

Other Contributors:
Curtis Collins

Sponsored by:  Mars Technology Program



Privacy/Copyright Image Policy Glossary Sitemap Feedback Contact Us
  National Aeronautics and Space Administration website.