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Scope 
 

The scope of this document is to report the test and validation of two visual target tracking 
algorithms: affine and SDOG (sign of difference of Gaussian) 2-D trackers. This algorithm 
validation process supports technology selection process before flight qualification of the 
software selected. The test validation matrix for the 2-D tracker software is shown below. 

 
Test Validation Matrix for the Affine and SDOG 2-D Trackers 

Affine 2-D Tracker SDOG 2-D Tracker Test item 
Software 
control 

parameters 

Tracking 
reliability 
and error 

Software 
control 

parameters 

Tracking 
reliability 
and error 

Transform X X   
Tracking window size X X   
Number of pyramid levels X X   
Template update X X   
Frame confidence threshold   X X 
Template confidence threshold   X X 
Different camera motions  X  X 
Different image-size rocks  X  X 
Lighting variation  X  X 
Maximum image displacement  X  X 
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Summary 
 
As part of the Instrument Placement Technology Validation Task, this report details experimental 
results of 2-D visual target tracking. Two visual target tracking software packages used in our test 
and validation were the pyramidal Lucas-Kanade affine tracker and the SDOG (sign of difference 
of Gaussians) tracker. Both were tested within the CLARAty (Coupled Layer Architecture for 
Robotic Autonomy) software environment. Since the 2-D tracking software did not support active 
camera control, forward motion tests were limited to 4 m. The full 10-m forward motion tests will 
be performed when the 2-D/3-D tracking software with active camera control is available. 
 
Performance evaluation of the pyramidal Lucas-Kanade affine tracker: 

1. Pure translation tracked more reliably, while affine transform tracked more 
accurately. Pure translation matching tracked more reliably than affine transform 
matching, but drifted more and was less accurate. Affine transform matching tracked 
more accurately when it tracked, but lost targets more easily than pure translation. 

2. A combined configuration of pure translation followed by affine transform 
performed best. Based on the above observation, the software was re-configured to 
allow a combined tracking configuration of pure translation followed by affine 
monitoring/correction. This combined tracking configuration demonstrated best tracking 
performance, and thus we conducted the test and validation of the “affine” tracker using 
this combined configuration. 

3. Low-texture targets needed larger window sizes.  The ideal window size was affected 
by two sources of error.  If the window is too small, there may not be enough texture to 
track well.  If the window is too large, the terrain may violate the planarity assumption of 
the affine tracker and not track well. Experiments indicated that typically 15×15 pixels 
appeared to be a good size for small rocks, and 29×29 pixels for large rocks. 

4. Increasing the number of pyramid levels helped to track larger image displacements 
between images.  Large image displacements require a large effective window size to 
prevent a target feature from leaving the tracking window entirely. As the number of 
pyramid levels increases by one, the effective window size doubles. For example, a 
15×15 window size with 4 pyramid levels has an effective window size of 15×23 = 120 
pixels at the top pyramid level. Likewise, 29×29 window size with 3 pyramid levels has 
the similar effective window size. Experimental results showed that combinations of 
widow size and pyramid levels having similar window size yielded similar tracking 
performance in terms of handling large image displacements between images. In terms of 
texture, however, the 15×15 window performed better for high-texture targets, while the 
29×29 window was better for low-texture targets on large-image-size rocks. 

5. The best template update was every 5% to 10% change in distance to target or 
every 5º to 10º change in roll and yaw motions.  Upper bounds for the template 
window update interval were about 2 m for straightforward motion at about 10-m target 
distance (20% change in distance to target) and 20º for roll and yaw motions. However, 
the optimal update interval depends upon targets and other factors. Typically, every 50 
cm change at 10-m target distance (5% change in distance to target) for forward motion 
and every 5º to 10 º change in roll or yaw motion appeared to be good template update 
intervals. Beyond monitoring the distance and orientation changes, it seems to be a good 
idea to monitor the affine tracker ssd (sum of squared differences) threshold to trigger the 
template update.  

6. The affine tracker using the 15×15 window with 3 pyramid levels tracked up to 
about 30 pixels as the maximum image displacement. Tracking experiments with 
various image skips to change image displacement sizes showed that up to about 30 
pixels image displacements were tracked for a 15×15 window with 3 pyramid levels. The 
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maximum displacement dictates the tracking range of the active camera control. We will 
investigate the maximum image displacement more carefully when we test the 2-D/3-D 
tracker supporting active camera control, since it is an important factor that affects the 
tracking reliability and determines the maximum rover motion between images. 

7. Tracking performance was fair with unfavorable sunlight directions, while it was 
poor with dramatic sunlight changes. The 9-AM images made dark shadow on the rock 
surfaces facing the camera. Even though the lighting and shadow condition for 9 AM was 
significantly poorer than those of 2 PM and 4 PM, the tracking performance for 9 AM 
was pretty good, demonstrating fair tracking performance even with unfavorable sunlight 
directions. In the next experiment, there were dramatic changes in ambient sunlight when 
patches of opaque clouds moved across the sun. For 8-mm images, automatic gain 
control (AGC) was helpful to tracking by maintaining the average intensity of the camera 
image relatively constant, resulting in 44% tracking percentage. For 4-mm images, AGC 
was not helpful due to “bright” sky in view, resulting in 0% tracking. Incidentally, this 
dramatic lighting change due to dark clouds would not happen in Martian environment. 

8. Tracking tests with Rocky8 mast cameras demonstrated the necessity of active 
camera control. Targets tracked well for the first 1.8 m until the rover went over a rock, 
which caused large image displacements (sometimes over 100 pixels). By 2.4 m, all 
targets were lost. This clearly indicates that active camera control with 2-D/3-D tracking 
is essential. 

9. Average tracking performances were above 80% up to 100% with the 15×15 
window for all forward, roll, and yaw camera motions. Targets on small rocks tracked 
100%, while several targets on large rocks were lost with the 15×15 window size. 
Forward-motion tests were limited to 4 m, since full 10-m forward-motion tests require 
active camera control. 

10. Increasing the window size to 29×29 with 4 pyramid levels resulted in near 100% 
tracking for low-texture targets on large rocks, and main causes of tracking failures 
were identified. Targets on large rocks often did not have enough texture to track well 
with small windows. When the window size was increased to 29×29, the tracking 
performance improved to or near 100%. Increasing the number of pyramid levels to 4 
from 3 also helped tracking some targets that often had large image displacements 
between images. Tracking failures occurred when there were problems with occlusions 
during the course of the tracking, significant background changes beyond occluding 
boundaries of the target rock, shadow changes, large image displacements, and target 
windows containing quite non-planar objects such as two or more portions of separate 
rocks. 

11. Potential improvements for tracking reliability were suggested. Items include: 1) 
active camera control with 2-D/3-D tracking, 2) brute-force translation matching based 
on normalized-cross-correlation or DOG (difference of Gaussian) filter, 3) reliable target 
loss detection, 4) template update triggered by some thresholds, 5) selective-region target 
window where the target may be off-centered. 

 
Performance evaluation of the SDOG tracker and comparison with the affine tracker: 

1. Peak tracking percentage resulted with 60% to 70% for the frame confidence 
threshold and 80% for the template confidence threshold.  For forward motion 70% 
frame confidence and 80% template thresholds were best, while 60% frame confidence 
and 80% template thresholds were best for roll and yaw motions. 

2. For forward motion, SDOG tracker performed slightly better than the affine 
tracker. For forward motions with 8-mm and 16-mm lenses, SDOG tracker yielded 96% 
to 100% tracking depending upon confidence threshold values, while the affine tracker 
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yielded 89% to 98% tracking depending upon window size and number of pyramid 
levels. 

3. For the roll and yaw motions, the affine tracker performed slightly better than 
SDOG tracker. For 8-mm-lens roll motion, SDOG tracker yielded 56% to 94%, while 
the affine tracker yielded 100%. For 8-mm-lens yaw motion, both SDOG and affine 
trackers yielded 100% tracking. 

4. SDOG tracker was robust for dramatic sunlight changes. The SDOG tracker yielded 
100% tracking for both 4-mm and 8-mm lenses with dramatic sunlight changes, while the 
affine tracker yielded 0% tracking for the 4-mm lens and 44% for the 8-mm lens. 

5. The maximum image displacement of the SDOG tracker was rather limited.  The 
maximum image displacement of the SDOG tracker was about 20 pixels, worse than 30 
pixels for the affine tracker of the window size 15 with 3 pyramid levels. This result was 
surprising, considering the SDOG tracker does brute-force search. More investigation is 
planned in the next 2D/3D tracker test and validation. 

6. The affine matching took about 4 times longer than SDOG matching. The execution 
time for the combined pure translation matching followed by affine matching was 20 ms, 
while the execution time for the SDOG matching was 5 ms in spite of the “brute-force” 
search as opposed to “iterative” search. This demonstrates the software implementation 
of the SDOG matching algorithm is computationally very efficient. 

 
Software bug findings: 
Tracking performance with the initial software delivery of the affine tracker was poor. Through 
collaborative efforts with technology providers, several software bugs were identified. The final 
software delivery after three critical bug fixes showed dramatic performance improvements. Five 
major bugs identified including the first three critical ones were listed here.  

1. Partial derivatives inverse matrices at different pyramid levels. Partial derivatives 
inverse matrices were not retrieved correctly at lower pyramid levels. This messed up 
feature matching at lower pyramid levels. 

2. Delta translation updates between pyramid levels.  The delta translation updates were 
not halved when the pyramid level for matching went down, and not doubled when it 
went up. This also messed up feature matching at lower pyramid levels. 

3. Interchange of width and height.  In two places, image width and height were swapped. 
This prevented tracking beyond the 768-pixel column of the 1024-column image. 

4. Crash after long runs with a large number of targets. There are memory leaks in 
Feature_Window and Image_Pyramid classes. Objects created with new() during class 
constructions could not be deleted upon class destructions. This bug not fixed yet. 

5. Crash for track windows at the image boundary. The program crashes when target 
windows are at the image boundary. This bug not fixed yet. 

In this report, experiments results were obtained by using the final affine tracker software 
delivery after the fixes of the first three critical bugs. The last two bugs remained to be fixed, but 
they should not affect the affine tracker experimental results. 
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1. Introduction 
 
At present, the baseline operation of the Mars Exploration Rover (MER’03) flight mission depicts 
the state of art technology for instrument placement on Mars. As illustrated in Figure 1, if a target 
rock is about 10 m away from the rover, the MER baseline operation requires 3 sols to place an 
instrument on the target position of the rock. After surveying the panoramic images received from 
the rover, scientists select a target rock to explore that might be 10 m away from the rover. 
Scientists then decide a waypoint that is, for example,  about 2 m away from the target, and send 
a go-to-waypoint command to the rover. The rover moves 8 m, takes images, and sends them to 
Earth. Using these images, scientists and ground operators determine the rover base or anchor 
position where the target rock is within arm’s reach, and send the corresponding go-to-waypoint 
command. The rover then travels 2 m reaching the target, takes close-up target images, and sends 
them to Earth. Scientists and ground operators determine the manipulator motion commands and 
send them to the rover. The manipulator moves according to the motion commands, placing an 
instrument on the target position of the rock.  
 
In Mars Science Laboratory (MSL’09) enhanced operation, it is desirable to achieve the entire 
target approach and instrument placement from 10 m away in a single sol, as shown in Figure 2. 
Reducing the 3-sol baseline operation to a single-sol operation increases Mars science return 
significantly. According to an MSL baseline document [Steltzner 2003], 8 to 10 sols are expected 
to be spent per rock on the average, assuming 3-sol baseline instrument placement. With the 
enhanced single-sol instrument placement capability, 8 to 10 sols/rock will be reduced to 6 to 8 
sols/rock, resulting in 20% to 25% increase in science return. 
 

Rover 
Travels 

8 m 

First 
Command 

Second 
Command

Third 
Command 

Arm 
Places 

Instrument

Rover 
Travels

2 m 

1 
sol 

1 sol 1 sol 

Figure 1. Mars Exploration Rover (MER’03) baseline operation requires 3 sols to place an 
instrument on a rock from 10 m away 
 
 

Rover 
Travels
10 m 

First 
Command 

1 sol 

Arm 
Places 

Instrument

Figure 2. Mars Science Laboratory (MSL’09) enhanced operation requires a single sol to place 
an instrument on a rock from 10 m away. 
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The single-sol target approach and instrument placement is technically challenging. In particular, 

e operation must be fail-safe and reliable. Target approach and instrument placement 

 to 

ent 
perations (Figure 3) are 1) visual target tracking for approach, 2) stereo vision, and 2) 

sion 
dation of 

 the 

king 
ftware packages within the CLARAty (Coupled Layer Architecture for Robotic Autonomy) test 

s a 

ew of the target approach system, and Section 3 presents the test 
lan and experimental setup. Sections 4, 5, and 6 describe the affine tracker software, 

 the affine 
, 

ponents to achieve single-sol target approach and instrument 
lacement operations

th
technologies were demonstrated earlier for some experimental conditions. However, fail-safe, 
reliable operations have not been demonstrated yet. Extensive experiments are necessary
produce fail-safe, reliable operations for target approach and instrument placement. 
 
Three main technologies to achieve single-sol target approach and instrument placem
o
manipulation to place an instrument. Previously, we tested and validated the JPL stereo vi
software [Kim, Steinke, Steele, Ansar, 2003]. In this report we describe the test and vali
the 2-D target tracking software, which is a critical portion of the 2-D/3-D target tracking 
software. Two 2-D target tracking software packages were evaluated: affine [Bajracharya et. al., 
2003] and SDOG [Bualat, et. al., 2004] trackers. In the next report we will test and validate
full 2-D/3-D tracking software [Nesnas et. al., 2004] supporting active camera control. 
  
Following the MSL technology infusion process guideline, we tested the 2-D target trac
so
bed. CLARAty [Volpe et. al., 2000 & 2001; Nesnas, et. al., 2000; Estlin et. al., 2001] provide
common software environment that enables implementing comprehensive control for planetary 
rovers and robotic systems.  
 
Section 2 describes an overvi
p
experimental procedure, and tracking performance results, respectively. Thereafter, Section 7 
describes SDOG tracker software and tracking performance results in comparison with
tracker. Section 8 lists suggestions for potential improvements of tracking performance. Finally
Section 9 is the conclusion. 
 
 

 
 
Figure 3. Three

Target 
Tracking 10m 

 technology com
p

During 
Approach 

 
Stereo 
Vision 

Arm’s 
reach 

 
Manipulation 

to place 

Range 
map 

Ground 
operator/ 

Mast cam. 
panoramic 
imagery 

scientist 
Target instrument 

Selection 

 11



2. An Overview of the Target Approach System 
 
2.1 Theoretical Computations of Target Approach Accuracy 
 
First we performed theoretical computations of the target approach accuracy with and without a 
visual target tracker. If no target tracker is used, two main factors contributing to the target 
positioning error after 10-m travel are the stereo range “sensing” error and the rover navigation 
error. The stereo range error ∆R is computed by 

d
Bf

RR
p

∆=∆
2

 , 

where B is the stereo baseline, R is the range, and fs is the camera’s focal length in pixels. The 
camera’s focal length f can be converted from mm to pixels by  

sizepixel
ff p =  . 

In our experiments, we used the Point Grey Research’s Dragonfly high-resolution digital camera 
equipped with the Sony ICX204AL 1/3-inch CCD image sensor of 1024×768 pixels resolution. 
Since the image size of the 1/3-inch format CCD is approximately 4.8 mm × 3.6 mm, we can 
estimate the pixel size by dividing the horizontal CCD size (4.8 mm) by the horizontal image 
resolution (1024 pixels), resulting in 4.69 µm. According to the manufacture’s specification 
which is more accurate than the above estimate, its pixel size is 4.65 µm × 4.65 µm. Thus, in 
computing the stereo range error for Table 1, we used the focal length conversion from mm to 
pixels by fp = f / 0.00465. Further, the stereo disparity error ∆d is assumed to be 1 pixel for the 3σ 
stereo range error [Kim et al, 2003]. Based on the above relations, stereo range errors for different 
cameras at 10-m distance are computed and listed in the fourth column of Table 1. The stereo 
range error ∆Rstereo,10m at a 10-m distance is 10.4 cm for 16-mm Pancam and 202.2 cm for 2.3-mm 
Hazcam. 
 
If no visual target tracking is used, the target positioning error after 10-m travel to the target is 
root-sum-square (RSS) of the stereo range “sensing” error at 10 m and the rover navigation 
estimation error for 10 m travel.  

2
10,

2
10,10,_ mnavmstereomtrackingno RRR ∆+∆=∆ . 

If we assume the rover navigation error based on the wheel and visual odometers is roughly 2% 
of the rover travel distance, the navigation error ∆Rnav,10m for 10 m travel is 20 cm. The 
computation results are listed in the fifth column of Table 1. The target positioning errors without 
visual tracking are all more than 20 cm. 
 

Focal 
length  

(1/3” CCD 
camera) 

Field of 
view 

angles 

Stereo 
baseline 

Stereo range 
error (3σ) 
at 10 m 
distance 

Target approach 
error (3σ) with 
2% navigation 

error 

Target approach error 
(3σ) with ideal visual 
tracking and camera 

handoff 
16 mm 17° × 13° 28 cm 10.4 cm 22.5 cm 1.5 cm 
6 mm 49° × 37° 20 cm 38.8 cm 43.7 cm 3.9 cm 
4 mm 65° × 49° 20 cm 58.1 cm 61.4 cm 5.8 cm 

2.3 mm 113° × 86° 10 cm 202.2 cm 203.2 cm 10.1 cm 
Table 1. Target approach error with and without visual target tracker for different camera lenses. 
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When a visual target tracker is employed, the target positioning error can be greatly reduced. 
Assuming the stereo-based manipulation is performed at 1-m distance, the positioning error of the 
target which is being tracked over camera images is approximately determined by the stereo 
range error at 1 m distance. Since a 1-pixel (±0.5-pixel) image expands to a 10-pixel (±5-pixel) 
image as the camera approaches the target from 10 m away to 1 m away, a 1-pixel target position 
accuracy at 10 m away can yield a ±5-pixel accuracy in 1 m away. Since the target position 
cannot estimated more accurately than ±5 pixels at 1 m distance, the 3σ error stereo disparity 
error ∆d = 5 pixels at 1 m distance if there was no camera handoff. However, assuming stereo-
based manipulation uses Hazcam (2.3 mm), camera handoff from Pancam (16 mm) or Navcam  
(6 mm or 4 mm) to Hazcam (2.3 mm) is generally required. When the camera focal length is 
reduced from fs1 to fs2, the corresponding stereo disparity error is also reduced by a factor of 
fs2/fs1. Therefore, the stereo range error is given by 

2 2
2

2 2 1 1 2

( )s

s s s

fR RR d d
f B f f B

∆ = ∆ = ∆ , 

where fs1 is the focal length of the initial camera used at 10 m away, B2 is the baseline of the final 
camera after handoff, and ∆d = 5 pixels for 3σ error value. This formula provides the theoretical 
target approach positioning error assuming ideal visual tracking with perfect camera handoff. The 
results are shown in sixth column of Table 1. The theoretical 3-σ error of the target positioning is 
1.5 cm with ideal visual tracking starting with Pancam and handing off to Navcam and then 
finally to Hazcam. 
 
2.2 Target Approach System with 2-D/3-D Tracker and Camera View Handoff 
 
A functional diagram of the target approach system consisting of the 2-D/3-D tracking and 
camera handoff software is shown in Figure 4. The 2-D tracking module is a feature image 
matcher, and does not require stereo camera views. The 2-D/3-D tracker is essentially the 2-D 
tracker with active camera control using stereo camera views. Active camera control points the 
camera to the target each time when the rover moves to a new position, so that the target is 
positioned at the center in subsequent camera images. Active camera control prevents the target 
moving out of the camera view, and greatly reduces the search area for the 2-D tracker feature 
image matching. Pointing the camera to the target requires the knowledge of the target position in 
3-D space relative to the rover position. The rover pose estimator such as the visual odometer 
provides the rover pose estimate, while the triangulation of the target image points in stereo 
camera views provides the target position estimate in 3-D space. 

2D/3D Tracking

Rover Pose 2D TrackingEstimator 
Arm’s(Visual 

 
 
Figure 4.  Target approach system with 2-D/3-D tracking and camera view handoff 

Rover 
Navigator 
 

Odometer) Active 
Camera
Control

Pure 
Translation
Matching 

Affine 
Matching 
 

reach 

Target 
Position 
(Stereo 
Vision) 

Optional
Camera 
View 
Handoff
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2.3 Hypothetical Calculations of Target Tracking Percentage and Placement Error 
 
For the given target approach system in Figure 4, we made an attempt to hypothetically calculate 
the overall target tracking percentage and placement error of the system. Table 2 depicts the 
system component and its associated errors affecting the tracking performance. As the rover 
navigator moves the rover, the resulting camera motion changes the target image size and 
orientation, which affect the tracking performance of the 2-D tracker. Large changes in target 
image size and orientation lower the tracking percentage and increase the error. 
 
The active camera control adjusts the fixed-mast pan/tilt angles for the Pancam and Navcam to 
point to the target. It uses the Visual Odometer (VO) based rover pose estimator and stereo vision 
based target position estimator to compute the desired pan and tilt angles. The rover pose and 
target position estimation errors together with pan/tilt mechanical errors determine how much the 
target image is off from the center of the next image. The target image displacement affects the 
tracking performance of the 2-D tracker. Large image displacements lower the tracking 
percentage and increase the error. 
 
Finally, the tracking performance of the 2-D tracker is described by the tracking percentage and 
error. It depends upon various experimental conditions, software algorithms, and software 
parameter settings, including the target image size and orientation change and the target image 
displacement as mentioned above. The camera view handoff error is also needed to compute the 
overall target tracking performance of the system. 
 
In our hypothetical calculations, the following baseline operational scenario is assumed. 

1. Pancam for 4 m (from 10 m to 6 m) 
2. Handoff from Pancam to Navcam 
3. Navcam for 4m (from 6 m to 2 m) 
4. Handoff from Navcam to Hazcam 
5. Hazcam for 1m (from 2 m to 1 m) 
6. Anchor rover and place instrument 

 
Further, since target tracking performance depends upon experimental conditions, important 
experimental test variables are listed here. 

• Straight flat, rocky, or winding path 
• Image collection interval 
• High-texture or low-texture targets 
• Lighting conditions 
• Software algorithms and configuration 
• Software parameter settings 

 
Table 3 is a hypothetical example of a simple error budget chart, comparing three experimental 
conditions: 1) straight forward motion on a flat-surface terrain, 2) straightforward motion on a 
terrain with small rocks that the rover can go over, and 3) winding or zigzag motion to avoid 
large-rock obstacles. All assumed to collect images every 20 cm. The tracking performance 
numbers in Table 3 are simply very rough approximate guesses, and actual experimental numbers 
may be quite different. However, this hypothetical calculation exercise helps to understand the 
overall system performance and experimental designs.
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Software system component 
 

Baseline operational scenario: 
1. Pancam for 4 m (from 10 m to 6 m) 
2. Handoff from Pancam to Navcam 
3. Navcam for 4m (from 6 m to 2 m) 
4. Handoff from Navcam to Hazcam 
5. Hazcam for 1m (from 2 m to 1 m) 
6. Anchor rover and place instrument 

 

Error budget for target approach 
 

Experimental test variables: 
• Image collection/process interval  
• Straight flat, rocky, or winding path 
• High-texture or low-texture targets 
• Lighting conditions 
• Software algorithms and configuration 
• Software parameter settings 

Rover navigator Rover motion changes the target image, 
affecting the matching performance: 
• Target image size change 
• Target image roll, pitch, yaw changes 

Rover pose estimator using visual odometer 
(VO) 

VO estimation error affect active camera 
control: 
• Rover pose distance error 
• Rover pose orientation error 

Target position estimation using stereo vision 
 

Stereo vision triangulation error affects active 
camera control: 
• Target position error on image plane 

Active camera control to point the fixed-mast 
to the target (for Pancam and Navcam only; 
use active gaze control for Hazcam) 

Fixed-mast pointing errors: 
• pan/tilt encoder resolution  
• pan/tilt backlash 

2-D target tracking using a combined 
configuration of pure translation matching 
followed by affine matching 
 

The above active camera control with VO and 
stereo vision determines the target image 
displacement, which affects the tracking 
performance:  
• Tracking percentage 
• Tracking error 
 
Effects of various experimental test variables 
on 2-D tracker tracking performance are 
described in this report. 

Camera handoff 
 

• Handoff success percentage 
• Handoff error 

 
Table 2.  Target approach software system components and their error contributions to tracking 
performance for error budget analysis.

 15



 
Terrain Flat Small rocks Large rocks 
Approach path straight straight winding 
Image frame interval 20 cm 20 cm 20 cm or 10º 
Rover navigator 
 Size change per frame 

 
 Pitch change 
 Yaw change 

 
2% at 10m 
10% at 2 m 

− 
− 

 
2% at 10 m 
10% at 2 m 

10º 
− 

 
2% at 10m 
10% at 2m 

10º 
10º 

VO rover pose 
 Distance error (2%) 
 Orientation error (2%) 

 
0.4 cm 

0.1º 

 
0.4 cm 

0.2º 

 
0.4 cm 

0.3º 
Target position error on image plane 1 pixel 1 pixel 1 pixel 
Pan/tilt (540:1, 16 CPR) 
 encoder resolution 
 backlash 

 
0.04º 
0.03º 

 
0.04º 
0.03º 

 
0.04º 
0.03º 

Overall orientation error for active 
camera control 

0.1º 0.2º 0.3º 

Target image displacement between 
frames 
 Pancam (17º FOV) 
 Navcam (45º FOV) 
 Hazcam (100º FOV) with active gaze 

 
 

6 pixels 
2.3 pixels 

1 pixel 

 
 

12 pixels 
4.6 pixels 
2 pixels 

 
 

18 pixels 
9.2 pixels 
3 pixels 

2-D target tracking and camera handoff 
(tracking percentage and error each step) 
1. Pancam for 4 m (from 10 m to 6 m) 
2. Handoff from Pancam to Navcam 
3. Navcam for 4m (from 6 m to 2 m) 
4. Handoff from Navcam to Hazcam 
5. Hazcam for 1m (from 2 m to 1 m) 
6. Anchor rover and place instrument 

 
 
  95%; 2 pixels 

1 pixel 
  95%; 3 pixels 

1.5 pixels 
  90%; 2 pixels 

1 pixel 

 
 

  90%; 3 pixels 
1 pixel 

  90%; 4 pixels 
1.5 pixels 

90%; 2.5 pixels 
1 pixel 

 
 

  85%; 4 pixels 
1 pixel 

  85%; 5 pixels 
1.5 pixels 

  85%; 3 pixels 
1 pixel 

Overall single-sol target approach and 
instrument placement 
(tracking percentage, pixel error, and 
placement error) 

 
81%; 3.0 pixels 

1σ = 2.0 cm 
3σ = 6.1 cm 

 
73%; 3.5 pixels 

1σ = 2.4 cm 
3σ =7.1 cm 

 
61%; 4.0 pixels 

1σ = 2.7 cm 
3σ = 8.1 cm 

 
Table 3.  A hypothetical example of an error budget analysis of the overall target approach 
system for three different test conditions. The numbers are very rough guesses and could be quite 
different in actual experiments.
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3. Test Plan and Experimental Setup 
 
3.1 Test Plan 
 
Day 1: Collect camera images using a linear motion stage on a sunny day 

 Three different sunlight directions 
o Morning (9 am) 
o Early afternoon (2 pm) 
o Late afternoon (4 pm) 

 Three different directions of linear motion (see Figure 5) 
o Straightforward (parallel to the camera axes) for all 
o Oblique (30 degrees to the camera axes) for morning only 
o Sideways (perpendicular to the camera axes) for morning only 

 Four lenses mounted on the camera head 
o 16 mm,   17° × 13° [e.g.: linearMotionStage/forward-9am/16mm/*.pgm] 
o 8 mm,   33° × 25° [e.g.: linearMotionStage/oblique-9am/8mm/*.pgm] 
o 4 mm,   65° × 49° [e.g.: linearMotionStage/sideways-9am/4mm/*.pgm] 
o 2.3 mm, 113° × 86° [e.g.: linearMotionStage/forward-2pm/2.3mm/*.pgm] 

 Collect hi-resolution camera images every 1 cm over 4 m for all above conditions 
o High resolution CCD images: 1024 pixels × 768 pixels 
o File examples: Hi-A-40.pgm to Hi-A-440.pgm (401 images) 

 
Day 2: Collect camera images using a linear motion stage on a cloudy day 

 Clouds moving across the sun, causing significant change in lighting condition 
o Shadow contrast changes as clouds move across the sun 
o Late afternoon (5 pm, cloudy) 

 Straight forward direction only 
 Four lenses mounted on the camera head 

o 16 mm,   17° × 13°  [e.g.: linearMotionStage/forward-5pmCloudy/16mm/*.pgm] 
o 8 mm,   33° × 25°  [e.g.: linearMotionStage/forward-5pmCloudy/8mm/*.pgm] 
o 4 mm,   65° × 49°  [e.g.: linearMotionStage/forward-5pmCloudy/4mm/*.pgm] 
o 2.3 mm, 113° × 86° [e.g.: linearMotionStage/forward-5pmCloudy/2.3mm/*.pgm] 

 Collect hi-resolution camera images every 1 cm over 4 m 
 
Day 3: Collect camera images for different roll and yaw orientations on a sunny day 

 One sunlight direction: Early afternoon (2 pm) 
 For roll (see Figure 6): 

o Collect images for every 1 degree roll of the tripod from –45 to +45 degrees 
o File example: linearMotionStage/roll-11am/16mm/*[0-90].pgm 

 For yaw (see Figure 6): 
o Collect images for every 2 cm on a linear motion stage placed sideways over 4 m 
o Re-orient the camera head to point to a target located 5 m straight in front 
o File example: linearMotionStage/yaw-3pm/8mm/*[0-200].pgm 

 
Day 4: Collect camera images using the mast on Rocky8 on a sunny day 

 One sunlight direction: Early afternoon (2 pm) 
 Straight forward direction only 
 Pancam and Navcam pairs mounted on the mast 

o 16 mm,   17° × 13°  [e.g.: rocky8Live/forward-2pm/16mm/*.pgm] 
o 4 mm,   65° × 49°  [e.g.: rocky8Live/forward-2pm/4mm/*.pgm] 

 Collect hi-resolution camera images every 1 cm over 10 m 
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Figure 5. Translational camera motion in straightforward (green), sideways (blue), and oblique 
(red) directions. The camera tripod platform can move up to 4 m along the wooden linear motion 
stage. Camera orientation (black arrows) is fixed. The Mars yard is approximately 20×20 m.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. In camera roll motion (green), the camera head position is fixed while its roll angle is 
incrementally varied. In camera yaw motion (blue), the camera head is translated and at the same 
time its yaw angle is incrementally varied so that the camera head sees the same target location.
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3.2 Experimental control variables 
 Window size 

o 7, 15, 29, 59, 75, 119 
 Number of pyramid levels 

o 1, 2, 3, 4, 5 
 Template window update interval 

o 1, 10, 20, 100 
 Transformation 

o 2-D translation, scale, z_rotation, affine transform 
 Image skip 

o 0, 1, 2, 3, 5, 10, 20 
 Camera motion 

o Straightforward, oblique at 30 degrees, and sideways 
o Roll 
o Yaw 

 Sunlight direction 
o The sun in front of, above, or behind the camera 

 Lighting variation 
o Abrupt changes in sunlight as an opaque clouds pass across the sun 

 Target selection to track 
o Different texture 
o Rock image sizes 
o Occluding boundaries 

 
3.3 Experimental Setup 
 
Four high-resolution firewire Dragonfly cameras manufactured by Point Grey Research were 
used for the experiments. The resolution was 1024 pixels × 768 pixels. Four kinds of lenses were 
used in the experiment: 2.3 mm, 4 mm, 8 mm, and 16 mm lenses for a 1/3-in CCD image format. 
Table 4 summarizes their field of view angles for the lenses used. 
 

Manufacturer and Focal length Horizontal FOV × Vertical FOV 

Computar 2.3 mm 113° × 86° 

Fujinon 4 mm 65° × 49° 

Fujinon 8 mm 33° × 25° 

Fujinon 16 mm 17° × 13° 
Table 4. Lenses used for the 2-D target tracking experiments 

 
The images were collected using a laptop computer with an OrangeLink firewire card-bus PC 
card. The Point Gray’s Dragonfly image capture software had been modified to support the 
consecutive acquisition of camera images with new filenames. A firewire hub was used to allow 
up to 5 cameras to be connected to the computer simultaneously.  
 
We designed a wooden linear motion stage (Figure 7), which was necessary to move the camera 
head by a small increment over a long distance, avoiding large image displacements between 
consecutive images. As an example, we collected camera images every 1 cm over 4 m using this 
linear motion stage. The use of the linear motion stage was essential due to the lack of active 
camera control of the 2-D tracker. 
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Figure 7. A wooden linear motion stage was used in the Mars Yard to move the camera head 
linearly by small increments and collect image sequences. The camera head was mounted on the 
tripod. 
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4.  Affine Tracker Software 
 
The Visual Tracking Task led by JPL provided the affine 2-D visual target tracker within the 
CLARAty software environment for test and validation. A document “CLARAty Delivery for    
2-D Visual Tracking” [Bajracharya, et. al., 2003] describes basic software functionalities of the 
affine 2-D tracker. Main components are feature matcher, template update, and image display. 
 
4.1 Functional Description 
 
A functional diagram of the initial delivery of the affine 2-D tracker is illustrated in Figure 8. 
When the user designates a desired target position on a rover camera image received, the affine 
tracker creates a template image window centered at the designated target position with a user-
specified window size. As the rover moves a small distance and takes a new camera image, the 
pyramidal feature matcher in Figure 8 determines the new target image location in the new 
camera image by the Newton-Raphson style iterative method to minimize the difference between 
the template image and the new target image. The image motion parameters including the target 
position are updated for the next image matching. The template image needs to be updated 
occasionally to improve tracking reliability. Although threshold-triggered template update is 
desirable in practical applications, at present the only option available in the current version of the 
affine tracker software is to specify the template update interval N which updates the template 
image every N-th image. This template update interval parameter is thus used in our experiments. 
 

Current Image 

Template Image
Initial Updated Target Template Target PositionPosition 
Image Pyramidal & Motion & Motion 

Feature Parameters Parameters
Matcher Initial 

Target 
Position 

 
Figure 8. Functional diagram of the initial delivery of the affine 2-D tracker 

Template 
Update 

 
Figure 9 illustrated how pyramidal images are used for feature matching. First, pyramidal images 
are obtained by reducing the camera image repeatedly. At pyramid level 0, the image is at full 
resolution or 1024×768 pixels in our tests. At level 1, the image is a half-size (in both 
dimensions) or 512×384 pixels. At level 2, the image is a quarter-size or 256×192 pixels. At level 
3, the image is a one-eighth-size or 128×96 pixels. The pyramidal feature matching starts with 
low-resolution coarse matching at the highest pyramid level first, goes down to lower pyramid 
levels, and finishes with full-resolution fine matching at pyramid level 0. The pyramidal feature 
matcher uses the same target window size for all pyramid levels regardless of the image 
reduction. Increasing the pyramid level by one reduces the image size by half, doubling the 
effective window size. In general, if the window size = W×W pixels and the number of pyramid
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Pyramid level 0 

Pyramid level 1 

Pyramid level 2 

Pyramid level 3 

Figure 9.  Pyramidal feature matching starts with the highest (level 3) and finishes with level 0. 
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levels = L, the effective window size = (W. 2L−1) × (W. 2L−1) pixels at the highest pyramid level of 
L−1. In Figure 9, the target window size is 29×29 pixels. The effective window size is 232×232 
pixels at pyramid level 3, 116×116 pixels at level 2, 58×58 pixels at level 1, and 29×29 pixels at 
level 0. Note that the target window at pyramid level 0 covers only a small portion of the big rock 
image, while the same 29×29 target window at pyramid level 3 covers several rocks including the 
big rock. The window size is always adjusted to odd numbers so that the window is centered at 
the center of a pixel not the edge. 
 
The affine visual target tracker supports four options of transforms to match the template image 
of a feature to the current image: pure translation, z-rotation, scale, and affine transforms. As 
illustrated in Table 5, the pure translation uses 2 parameters, tx and ty, that shifts the feature in x 
and y coordinates to find the matching location of the feature in the new image. The scale 
transform uses a scale parameter in addition to 2 translation parameters. The scale parameter 
resizes the feature template image window for matching. The z-rotation transform uses a z-
rotation or roll parameter in addition to 2 translation parameters. The z-rotation parameter rotates 
the feature template image window in roll orientation for matching. The affine transform uses 6 
parameters: 4 deformation parameters in addition to 2 translation parameters. The four 
deformation parameters are the elements of a 2×2 affine deformation matrix A that allows 
scaling, rotation, stretch, and shearing of the 2-D planar template image window, assuming the 
feature can be approximated to be a planar surface. 
 
 

Image Motion Transform Parameters Image Motion Transform Model 
Pure Translation 2 parameters: 

tx ty
j xi

j yi

x tx
y ty
⎡ ⎤ ⎡⎡ ⎤

= +
⎤

⎢ ⎥ ⎢⎢ ⎥
⎣ ⎦

⎥
⎣ ⎦ ⎣ ⎦

 

Translation and Scale 3 parameters: 
tx ty s 

0
0

j xi

j yi

x txs
y tys
⎡ ⎤ ⎡⎡ ⎤⎡ ⎤

= +
⎤

⎢ ⎥ ⎢⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎥
⎣ ⎦ ⎣ ⎦

 

Translation and In-Plane 
Rotation 

3 parameters: 
tx ty ωz

1
1

j xiz

j yiz

x tx
y ty

ω
ω

−⎡ ⎤ ⎡⎡ ⎤⎡ ⎤
= +

⎤
⎢ ⎥ ⎢⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎥

⎣ ⎦ ⎣ ⎦
 

Affine Transform 6 parameters: 
tx ty a11 a12 a21 a22

11 12

21 22

j xi

j yi

x txa a
y tya a
⎡ ⎤ ⎡⎡ ⎤⎡ ⎤

= +
⎤

⎢ ⎥ ⎢⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎥
⎣ ⎦ ⎣ ⎦

 

Table 5. Four image motion models are supported by the affine 2-D tracker for feature matching 
between images I and J. The image motion model describes the geometric relation between the 
target image point (xi yi) in image I and the matching target image point (xj yj) in image J. 
 
 
The 2-D tracker that we test does not support active camera control. Namely, the camera is not 
actively re-oriented to eliminate the target image motion between consecutive images. Since no 
active camera control is involved in our experiments, we can run the 2-D tracker to track multiple 
targets for experimental efficiency. Instead of running the 2-D tracker 10 times with a single 
target each time, we run the 2-D tracker one time with 10 targets. It should be noted, however, 
that the user designates a single target and the tracker tracks the designated single target with 
active camera control in the actual single-sol target approach and instrument placement scenario. 
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4.2 Reconfiguration of the Affine Tracker 
 
Our experimental comparison of pure translation and affine matching, which is described in 
Section 4.2 in detail, indicated that pure translation matching has best reliability but is less 
accurate, while affine matching has best accuracy but is more susceptible to lose tracking. This 
experimental finding prompted us to re-configure the initial delivery of the affine 2-D tracker to 
explore a sequential combination of pure translation and affine matching. As shown in Figure 10, 
we first use the pure translation matching to determine an approximate feature match. This (tx1, 
ty1) position is then fed into the affine matching to get a more accurate match if possible.  The 
ssd (sum of squared differences) error is a good indicator of whether the affine matcher was 
successful.  Therefore, the affine position result is used only when its ssd error is less than the 
translation ssd error.  Otherwise the translation position is used. As described in Section 4.3, this 
combined tracking configuration resulted in best tracking performance. Therefore, we decided to 
use this combined tracking configuration throughout our test and validation experiments reported 
here. The combined tracking configuration was used for all experiments presented in this report 
except for those described in Sections 4.2 and 4.3. 
 

Current Image 

Template Image

 
 
Figure 10. A combined tracking configuration: pure translation matching followed by affine 
matching is used as the “affine” tracker in our experiments. 
 
 
4.3 Tracking Performance Metrics 
 
Two tracking performance metrics used in this report are tracking percentage and drift error. The 
tracking percentage is calculated as the percentage of the number of tracked targets over the total 
number of initially selected targets. In this report, the tracking percentage calculation is from the 
first image to the latest image. A normalized tracking percentage such as tracking percentage per 
meter or degree could be considered, but we have not conducted statistical experiments to show 
an exponential decaying of 2-D tracking percentage over tracking distance or orientation change. 
The tracking percentage normalized per iteration or image-to-image does not make much sense, 
because we are interested in overall tracking performance. Further, the relation between the 
number of images used and the tracking percentage is not that simple. 

tx2, ty2

Initial 
Target 
Position 

Initial 
Template 

Pyramidal Pyramidal Image 
Translation Affine tx1, ty1
Feature Feature 

tx0, ty0

Matcher Matcher 

Template Use tx, ty of smaller 
ssd for next iteration Update 
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To examine the tracking drift error, three different methods are used in this report. In the first 
method, the final target position of the 2-D tracker output is compared with the actual human 
measurements of the target position from the last image. In the second method, initial target 
positions are selected in a grid array pattern. Then, final target positions are visually examined by 
observing the relative positions in the grid. In the third method, affine transformed template 
windows (Figure 11) are superimposed. 
 

 
Figure 11. Close-up views of  beginning (left) and end (right) images after 40º roll (top right) 
using 29×29 window with 3 pyramid levels: affine transformed template windows (blue) in the 
end image depict the matching quadrilaterals corresponding to the square template windows of 
initial targets (red) in the beginning image. All affine transformed quadrilaterals are rotated about 
40º relative to the initial template square windows, illustrating good affine tracking performance. 
Badly deformed quadrilaterals imply poor tracking.

 25



4.4 Adding Supporting Capabilities 
 
For our test and validation of the affine 2-D tracker, we added the following several “helper” 
routines, which are briefly described here. 
 

1. Input file features_to_add.txt 
The user can specify initial x and y positions of all targets in the input file named 
features_to_add.txt. The 2-D tracker software reads the file and recognizes them as initial 
target positions to track. 
 

2. Output file posout.txt 
The 2-D tracker generates the output file named posout.txt, which prints out the target ID, 
x and y positions for each new image used for tracking. 

 
3. A combined 2-D translation and affine transform 

This enables feature matching by a sequential combination of 2-D translation followed by 
affine transform. 

 
4. Affine transformed template window 

We implemented an excellent way to observe how well affine tracking works by 
displaying the affine transformed windows (quadrilaterals) which are affine 
transformations of initial template windows (squares). The affine transform does 
translation, scale, stretch, and shear of the initial template image of a square window in 
order to match with the current target image. This capability enabled us to visually 
examine affine tracking behavior. 
 

5. Optional printouts of feature match parameters 
The 2-D tracker can optionally print out 2-D translation parameters after each feature 
match. It can also print out transform parameters for each pyramid level to examine the 
computational behavior of iterative match in more detail. 
 

6. Optional drawing of thick lines for tracking window 
The tracking window can optionally be drawn with three-pixel-wide lines on camera 
images instead of single-pixel-wide lines. Thick lines are needed to allow image 
reduction for use in reports, since thin lines are hard to see with image reduction. 
 

7. Mouse-click user interface for target selection 
Target positions can also be specified interactively by using a mouse in addition to the 
text-based entry using features_to_add.txt described above. The user can create and 
delete targets directly on the displayed image. 

 
Details of the mouse-click interface are described here. The 2-D tracker software is supposed to 
be used for a single-target tracking. However, for the test and validation purpose, the initial 
delivery of the affine 2-D tracker software provided the multiple-targets tracking interface, where 
the computer automatically selected targets to track based on corner detector scores. Since we 
needed to designate targets anywhere we wanted for the test and validation of the affine 2-D 
tracker, we added a user interface that allows the user to enter the target positions by mouse click. 
The following was the mouse-click user interface design specification we came up with. Upon 
running the affine 2-D tracking program, the initial image will be displayed for the user to select 
or specify targets via the user interface.  
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The two modes of the user interface are: 
• Point-click mode [User-specified target creation/selection mode] and 
• Region selection mode [Computer-generated target creation/selection mode]. 

 
The steps for the user-specified target creation/selection mode are: 

• Double-click the left mouse button outside of any existing targets to specify the target 
position. One click will request the user to click one more time. If the two click positions 
are farther apart than the 2-D track window size, the user interface goes to the region 
selection or computer-generated target creation/selection mode described below. 

• The goodness value for this target computed by the corner detector will be displayed. 
• To reject a target position, click the target with the right mouse button. 
• To accept this target, press the left mouse button. 
• To select an existing target, click the target with the left mouse button. The goodness 

values of the target will be displayed. To accept the target, click the left mouse button 
again to confirm it. To reject the target, click the right mouse button. 

• To reject an existing target without selecting it, click the target with the right mouse 
button. 

• To exit this target designation user interface, click the right mouse button outside any 
exiting targets. A list of goodness values for all targets will be displayed. To confirm the 
exit, click the right mouse button again. To cancel the exit, click the left mouse button. 

 
The steps for the computer-generated target creation/selection mode are: 

• Click the two diagonal endpoints of a region with the left mouse button to indicate the 
region. If the region is smaller than the 2-D track window size, the user interface goes to 
the point-click or user-specified target creation/selection mode described above. 

• The affine 2-D tracker software will find targets in this region, and these computer-
generated targets will be displayed to the user. 

• To select a target, click the target with a left mouse button. The goodness values of the 
target will be displayed. To accept the target position, click the left mouse button again to 
confirm it. To reject a target position, click the target with the right mouse button. 

• To reject a target position without selecting it, click the target with the right mouse 
button. 

To exit the region selection mode and go back to the user-clicked target creation/selection mode, 
click the mouse outside the region. 
 
Although we implemented the above user interface, we ended up mostly not using it because 
computer-selected targets were not that useful at present, generating too many undesirable targets. 
This is because the corner detector of the affine 2-D tracker computes the goodness value per 
pixel, not per window, by considering only a very small local area independent of the window 
size. Instead, we implemented a much simpler text-based target entry using features_to_add.txt, 
which turned out to be very convenient in our experiments because it remembers the initial target 
positions without requiring the repeated entry of the same initial target positions. In our test and 
validation experiments, the text-based entry was much easier to enter exactly same initial target 
positions than the mouse-click entry. 
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4.5 Software Bug Findings and Fixes 
 

As shown in Figure 12, tracking performance with the initial delivery of the affine 2-D tracker 
software was poor (left-side two plots). The final delivery software after first three bug fixes 
(right-side two plots) showed dramatic performance improvements. 
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Figure 12. Tracking performance with different transforms for yaw (top row) and roll (bottom 
row) camera motions: before (left column) and after bug fixes (right column). The final delivery 
of the affine 2-D tracker after bug fixes showed impressive performance improvements. 
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In collaboration with technology providers, we identified the following five software bugs. 
1. Partial derivatives inverse matrices at different pyramid levels. Partial derivatives 

inverse matrices were not retrieved correctly at lower pyramid levels. This messed up 
feature matching at lower pyramid levels. 

2. Delta translation updates between pyramid levels.  The delta translation updates were 
not halved when the pyramid level for matching went down, and not doubled when it 
went up. This also messed up feature matching at lower pyramid levels. 

3. Interchange of width and height.  In two places, image width and height were swapped. 
This prevented tracking beyond the 768-pixel column of the 1024-column image. 

4. Crash after long runs with a large number of targets. There are memory leaks in 
Feature_Window and Image_Pyramid classes. Objects created with new() during class 
constructions could not be deleted upon class destructions. This bug is not fixed yet. 

5. Crash for track windows at the image boundary. The program crashes when target 
windows are at the image boundary. This bug is not fixed yet. 

 
Among these five bugs identified, the first three were fixed in the latest delivery of the 2-D 
tracker software. The last two bugs do not directly affect the tracking performance. However, 
sometimes we could not track several targets in a single run when the number of targets, window 
size, and/or the number of pyramid levels is large. In this case, we had to divide the targets and 
execute 2-D tracker in several runs. 
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5. Affine Tracker Experimental Procedure 
 
Here is the procedure on how to download, compile, and run the run_feature_tracker, which is the 
affine 2-D tracker main program. 
 
To check out the CLARAty stereo vision package from the CLARAty repository, 
 

tcsh   // csh causes an error 
klog user_name  // enable access of afs files 
start_claraty  // set environmental variables 
yam setup -nolink -nobuild -d dir_name 

 
When YAM.config comes up, edit it as shown below, or just copy and paste  
The content of WORK_MODULES, LINK_MODULES, and BRANCH* from 
/home/marstech/IPvalidation/2dtracking/claraty/*/YAM.config. 

 
 

 
WORK_MODULES =  corner_detect_op \ 

    feature_tracker \ 
    image_displayer 
 

LINK_MODULES =  SiteDefs/SiteDefs-R1-10l \ 
    arrays/arrays-R1-08b \ 
    data_io/data_io-R1-00d \ 
    draw_ops/draw_ops-R1-02 \ 
    image/image-R1-04c \ 
    image_io/image_io-R1-03b-Build01 \ 
    image_io_pnm/image_io_pnm-R1-01 \ 
    image_ops/image_ops-R1-04-Build02 \ 
    image_pyramid/image_pyramid-R1-01 \ 
    image_rgb/image_rgb-R1-01-Build02 \ 
    matrices/matrices-R1-09b \ 
    points/points-R1-08a \ 
    share/share-R1-09a \ 
    string_io/string_io-R1-02c 
 

BRANCH_corner_detect_op   =  corner_detect_op-R1-01  steele 
BRANCH_feature_tracker    =  feature_tracker-R1-01  steele 
BRANCH_image_displayer    =  image_displayer-R1-03  steele 

 
To compile: 

cd <sandbox> // <sandbox> is dir_name specified in the “yam setup” command above 
gmake all 
cd src/feature_tracker 
ymk all  // compile feature_tracker source codes to create run_feature_tracker 

 
A couple of source codes, feature_tracker_app.cc and feature_matcher_lk.h, can be 
compiled with different compiler options by either commenting or un-commenting define 
statements. 

  
 In feature_tracker_app.cc: 

#define NewTwoClickInterface   This option allows mouse click entry of target 
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positions. 
 #define noCombinedConfiguration If not defined, a combined 2-D translation and 

affine transform is used in matching 
#define AFFINE_POINTS Computes affine transformed template windows 

and superimposes the computed quadrilaterals 
on the image 

#define noAffineTemplateUpdate Affine template is not updated while 2-D 
translation template is updated 

#define DRAW_THICK_LINES Draw three-pixel-wide thick lines for tracking 
window; thick lines are needed to see well after 
image reduction for reports. 
 

 In feature_matcher_lk.h: 
#define REJECT_LARGE_DELTA  This option allows rejecting target positions if  

the iterative algorithm generates unexpected 
large displacements for next target positions 

 #define PRINT_DELTA_T  Prints the translation parameters tx and ty after 
the completion of feature matches over all 
pyramid levels 

#define PRINT_V   Prints the transform parameter vector v for each 
pyramid level 

 
To run run_feature_tracker using Drun: 
 
 ~/<sandbox>/bin/Drun      run_feature_tracker     params.txt 
 

Drun allows the user to use correct shared libraries by modifying 
LD_LIBRARY_PATH to point at <sandbox>/lib/$YAM_TARGET and PATH to 
point at <sandbox>/bin/$YAM_TARGET.  

 
To run run_feature_tracker without using Drun:  

First set  LD_LIBRARY_PATH to point at <sandbox>/lib/$YAM_TARGET. 
 

 run_feature_tracker     params.txt 
 

The input file params.txt specifies the input parameters for tracking. An example file is  
shown here. 

params.txt:  
{ 

    feature_window_size = 29; // 29×29 pixels window 
    feature_distance_threshold = 29; 
    use_fixed_detect_threshold = 1; 
    detector_threshold = 4000; 
   detector_percentage_of_max = 75; 
    detector_window_size = 3; 
    detector_derivative_size = 7; 
    use_fixed_match_threshold = 1; 
    matcher_max_num_iters = 20; 
    matcher_ssd_diff_threshold = 0.1; 
    num_pyramid_levels = 2;  // matching in level 1 then 0 
    base_filename = "/home/marstech/IPvalidation/ 

2dtracking/linearMotionStage/ 
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roll-11am-2003-08-21/16mm/Hi-C-%03d.pgm"; 
    window_update_rate = 100; // update template interval 
    max_num_of_images = 100; 
    min_num_of_features = 1; 
    debug_sleep = 0.1; 
    image_num_begin = 0; 
    image_num_end = 91; 
    image_num_skip = 0;  // no image skip 

} 
 

 
In addition to params.txt, run_feature_tracker checks to see if the following input file exists. 

features_to_add.txt: This file specifies x and y image coordinates of each target 
position per line. This input file has the same effect of the user 
entering all the listed target points with a mouse. 

 
After the run, run_feature_tracker produces the following outputs. 

posout.txt:  each line prints out the image number followed by all features containing 
feature number, feature position x, and feature position y 
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6.  Affine Tracker Performances 
 
6.1 Transforms  
 
As described in Section 4.1 and Table 5, the affine 2-D visual target tracker supports four options 
of transforms to match the template image of a feature to the current image: pure translation, z-
rotation, scale, and affine transform. These four transforms were applied to three sets of the image 
sequences collected earlier with 3 different camera motions of 4-m straightforward, 90º roll, and 
45º yaw. Only high-texture targets with salient corner features were selected. No template updates 
were used in these tests. Namely, the feature windows selected at the beginning images were used 
as template images all the way to the end images. 
 
For the forward camera motion (Figure 13), the tracking percentage was calculated as the ratio of 
the number of tracked targets to the total 14 initial targets during the course of tracking. After 
2.15-m forward motion, pure translation lost one target, reducing its tracking success rate to 93% 
(13 out of 14 targets). After the full 4-m run, pure translation tracked 9 out of 14 initial targets 
resulting in 64% tracking percentage. Tracking percentages for other transforms were similarly 
calculated and plotted in Figure 13. The plot shows that pure translation performed best, while 
affine transform did worst. 
 
For the yaw camera motion (Figure 14), 4 targets moved out of camera view during the course of 
tracking. The successful tracking percentage was calculated as the ratio of the number of tracked 
targets to the total number of targets remaining in the camera view. After the full 22° yaw motion, 
pure translation lost one target and another target was out of view, resulting in 92% (12 out of 13 
in-view targets). After full 44° run, pure translation tracked 6 targets out of 10 remaining targets 
in camera view, resulting in 60% tracking percentage. Tracking percentages for other transforms 
were similarly calculated and plotted at the top of Figure 14. Just like the forward motion, pure 
translation performed best, while affine transform did worst.  
 
The tacking percentages of four transforms for the roll camera motion are shown in Figure 15. 
Unlike the forward and yaw camera motions described above, z-rotation and affine transforms 
performed best, while scale transform did worst. Camera roll motion had the same effect of 
simply rotating the 2-D images, which is essentially 2-D planar transformation regardless of the 
3-D shapes of objects in the scene. Ideally, this allows perfect matches for both z-rotation and 
affine transforms. For this reason, z-rotation and affine transforms performed better than pure 
translation for the roll motion. Unlike the roll camera motion, forward and yaw camera motions 
generally involve 3-D non-planar transformation, and in these conditions pure translation resulted 
in more reliable tracking. Affine transform is more accurate when it tracks, but is more sensitive 
to discrepancies and easier to lose targets. This is because affine transform has 6 degrees of 
freedom compared to 2 degrees of freedom for pure translation. 
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Figure 13. Tracking performance of different transforms over 4-m forward motion with no 
template update: pure translation performed best, while affine transform performed worst. 
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Figure 14. Tracking performance of different transforms over 45° yaw motion with no template 
update: pure translation performed best, while affine transform performed worst. 
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Figure 15. Tracking performance of different transforms over 90° roll camera motion with no 
template update: z-rotation and affine performed best, while scale transform performed worst. 
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Figure 16 shows the rms (root-mean-square) intensity matching errors of pure translation and 
affine transform during the course of 2-D tracking of a target over the 3-m forward camera 
motion. The rms intensity error is the square root of the per-pixel normalized ssd (sum of squared 
differences) between the template window image and the matching current image, where 255 is 
the maximum intensity error. When the template image was not updated (Figure 16 top), the rms 
intensity error increased with the image number for both pure translation and affine transform. 
The affine transform yielded slightly lower rms intensity error when it tracked. However, it lost 
tracking at image number 350, while pure translation never lost the target. When the template 
image was updated (Figure 16 bottom) for every 100 images, the rms intensity error dropped 
sharply at each template update. With the template update, affine transform as well as pure 
translation did not lose the target. During this tracking, the affine transform yielded slightly lower 

Figure 16. The rms intensity errors of 2-D

rms intensity error than pure translation. 

 translation and affine transform matching over 3-m 
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straightforward camera motion from image number 100 to 400. No template update (top) and 
template update of every 100 images or 1 m (bottom). 
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Similarly, Figure 17 shows the rms intensity matching errors of pure translation and affine 
en the 

m 

 

ur experiments suggested that affine transform performed best with smaller tracking errors 

ra 

transform during the course of 2-D tracking of a target over the 90º-roll camera motion. Wh
template image was not updated (Figure 17 top), the affine transform yielded significantly lower 
rms intensity error when it tracked. This is because pure translation does not handle roll motion, 
while affine transform does. However, the affine transform lost tracking at image number 70, 
while pure translation never lost the target. This example clearly illustrates that affine transfor
is more accurate when it tracks, but less reliable. When the template image was updated (Figure 
17 bottom) for every 20 images or 20º roll change, the rms error dropped sharply at each template
update. With the template update, both pure translation and affine transform maintained low rms 
intensity error and did not lose the target. 
 
O
when it tracked, but was not as reliable as pure translation, losing targets more easily. More 
comparative experiments are presented in the next Section. 
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Figure 17. The rms intensity errors of 2-D translation and affine transform over 90° roll came
motion from image number 0 to 90; no template update (top) and template update of every 20 
images or 20° (bottom).
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6.2 Tracking Configuration 
 
Experimental results in section 4.2 indicate that 2-D translation has the best reliability while 
affine transform has the best accuracy. In order to maximize the tracking performance, we 
decided to investigate a combined configuration of the 2-D translation matching and affine 
matching as shown in Figure 10 of Section 4.2.  In order to compare the three methods of pure 
translation, affine transform, and the combined configuration, we performed 2-D tracking 
experiments on an image sequence (no image skip) of straightforward camera motion with an 8-
mm lens. The template update interval was set to 10 or every 10-th image. The tracking results 
are shown in Table 6. Affine transform alone was less reliable: 49% tracking for 15×15 window 
with 3 pyramid levels and 89% for 29×29 window with 2 pyramid levels. By contrast, the pure 
translation alone and the combined configuration were more reliable: 98% to 100%. 
 
 

 15×15 window with 
3 pyramid levels 

29×29 window with 
2 pyramid levels 

Translation alone 44/45 (98%) 44/45 (98%) 
Affine transform alone 22/45 (49%) 40/45 (89%) 

Combined configuration 44/45 (98%) 45/45 (100%) 
 
Table 6. Tracking success rates of pure translation, affine, and combined configuration for 
straightforward camera motion with 8-mm lens: pure translation and combined configuration 
were more reliable than affine matching alone. 
 
 
Tracking behaviors of pure translation, affine, and combined configuration for two targets are 
compared in Figure 18. For clearer comparison, no template image was updated, and two targets 
were chosen that were not tracked all the way by the affine tracker. The rms intensity error 
(normalized ssd per pixel) of the affine matching started lower, but eventually the affine matching 
lost the target. On the other hand, pure translation tracking had higher rms intensity error, but did 
not lose the target. Combined tracking basically chooses the better of the two matching results. 
This method effectively combines the strengths of both transforms.  Initially, the rms error of the 
affine transform stays low providing an accurate position estimate, and when the affine tracker 
loses the target, the pure translation matching maintains the approximate position of the target to 
bring the affine tracker back on target. 
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Figure 18.  Matching intensity errors as a function of the image number for pure translation, 
affine, and combined configuration for two different targets (top and bottom) without template 
update: the combined configuration chooses the better of the translation and affine matching, 
combining the strengths of both methods.
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Figures 19, 20, and 21 compare tracking results of three different transform methods. When 
translation matching without template update is used, target location shifted from the left corner 
to the right corner of the bigger rock at the end of the track (Figure 19). When the template is 
updated every 20º, the target location still shifted (Figure 20), but not as much as no template 
update of Figure 19. When the combined 2-D translation and affine transform was used, the target 
tracked very well (Figure 21) with lowest drift errors. 
 

pure 

plate update over 90º roll motion 
 

elded 

 
Figure 21. Combined configuration of pure translation with affine correction with template 
update every 20º yielded the tracking error of 1.7 and 1.0 pixels, respectively. 

 
Figure 20. Pure translation matching of two targets with template update of every 20º roll yi
the tracking error of 13 and 24 pixels, respectively.  
 
 

 
Figure 19.  Pure translation matching of two targets without tem
yielded the tracking error of 30 and 39 pixels, respectively.
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6.3 Window Size and Pyramid Level 
 
We investigated the effect of window size and pyramid level on 2-D tracking performance. 
Figure 22 shows the beginning and end images of the image sequence collected for a 4-m 
straightforward traverse with a 16 mm lens. The image sequence consisted of total 400 images 
with a 1-cm straightforward camera motion between consecutive images. We selected 11 targets 

 the beginning image based on corner detector values.  These targets were high-texture targets, 
and all the targets tracked 100% over a wide range of the window sizes and pyramid levels. In 
this initial test, no images were skipped, resulting in a 1-cm camera motion between images. In 
order to compare various window sizes and pyramid levels, we increased camera motion by 
skipping images until tracking performance was adequately degraded. We chose 19-cm camera 
motion between images by running the 2-D tracker on every 19-th image to perform multiple runs 
to compare various window sizes and pyramid levels. Every 19-th image (image skip of 18) was 
chosen simply because it hits the last or 400-th image (19 is a multiple of 399). Table 7 shows the 
results of those runs. Each entry shows the number of targets successfully tracked out of 11 total 
targets selected. It also shows the drift error in pixels of successfully tracked targets compared to 
accurate human measurements as ground-truth values. Accurate measurements of the final target 

ositions were obtained from the last image by carefully comparing with the initial template 

in

p
target images.  
 

 
Figure 22. Beginning and end images for a 4-meter straightforward traverse with 16 mm lens, 
where the 2-D tracker corner detector selected high-texture targets. 

Window size 
 
Pyramid 
levels 7x7 15x15 29x29 59x59 

1 0% (0/11) 18% (2/11) 
11.6 pixels error 

27% (3/11) 
14.4 pixels error 

36% (4/11) 
15.1 pixels error 

2 27% (3/11) 
11.7 pixels error 

45% (5/11) 
9.6 pixels error 

64% (7/11) 
2.6 pixels error 

100% (5/5) 
4.8 pixels error 

3 55% (6/11) 
12.3 pixels error 

91% (10/11) 
2.0 pixels error 

100% (5/5) 
3.2 pixels error 

 

4 100% (11/11) 
2.1 pixels error 

100% (5/5) 
2.2 pixels error 

  

Table 7. 2-D tracking success rate and drift error results for relatively large 19-cm camera motion 
4 between images. Diagonal entries have similar tracking performance. The 7×7 window with 

pyramid levels performed best for high-texture targets.
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As described in Section 4.1 and Figure 9, if the window size = W×W pixels and the number of 
yramid levels = L, the effective window size = (W. 2L−1) × (W. 2L−1) pixels. Increasing the 

ize 
me. In 

ee 
of the affine tracker that the target is a planar surface. As long as a 7×7 window 

as sufficient texture to track, 7×7 window with 4 pyramid levels tracks more accurately than 
59×59 with 1 level while the maximum image displacement to track is about the same. 
 
Next, we investigated tracking on low-texture targets. Figure 23 shows the beginning and end 
images for a 3-m straightforward traverse with 8-mm camera lens. We selected 25 targets in a 
grid pattern on a large rock with low texture. We then performed similar runs as the previous 
experiment but with 5-cm and 10-cm motions between images, using the image skip of 4 and 9, 
respectively. Smaller camera motions were used this time because the low-texture targets were 
harder to track. Tables 8 and 9 show the results of these runs.  Each entry shows the successful 
tracking percentage and the number of targets tracked out of 25 initial targets selected.  We did 
not compute the drift error because we did not feel human measurements of the low-texture target 
positions in the final image were sufficiently accurate as ground truth values.  Instead, a target 
was considered lost if it drifted too much from its relative position in the grid.  In Tables 8 and 9, 

 

ck keep changing during the course of tracking. Some of the targets near the 
 of the la ck get confused

 
As i able 7, th provin  in v
Tab 8 and 9, satura n o
improvement r of lps ag
If the numbe s su han e di
occurring, the nce w plate ored areas i Tables 
8 and 9 show t. A ateau for each window size in Table 9 is 
reac  about ower m  5-cm 

 increasing the larger number of pyramid 
levels. Some of these targets had adjacent occlusion and background interference problems. 

p
number of pyramid levels by one doubles the effective window size. Doubling the window s
while reducing the number of pyramid levels by one keeps the effective window size the sa
Table 7, doubling the tracking window size (adjusted to be an odd number) showed a similar 
effect of reducing the number of pyramid levels by one in terms of tracking performance. 
Namely, each upward diagonal in Table 7 shows similar tracking performance. The approximate 
effective window size is 7×7 pixels for the gray diagonal, 15×15 for purple, 30×30 for pink, 
60×60 for green, and 120×120 for yellow. The tracking performance gets better as the effective 
window size increases. The effective window size of 30×30 (pink) or below (purple and gray) 
was too small to handle large image displacements caused by a relatively large 19-cm camera 
motion between consecutive images. The effective window size is 60×60 (green) and 120×120 
(yellow) yielded good tracking performance. The effective window size is a major factor that 
determines the maximum image displacement that can be tracked.  In Table 7, all 11 targets had 
good features to track. In this case, a small 7×7 window with 4 pyramid levels performed best 
with low drift error. On the other hand, a large 59×59 window performed poorly. A large window 
size tends to include adjacent occluding or occluded objects that confuse tracking because their 
relative positions shift in the image during the tracking. Further, they violate to a greater degr
the assumption 
h

window size of 29×29 performed better unlike in Table 7 where 7×7 window performed better. 
The results indicate that targets with low texture need to have a larger window size. The 59×59

indows tend to include adjacent occluding or occluded objects whose image positions relative to w
the large ro
boundaries rge ro  and lost during tracking. 

n T e trend of im g performance with
tio eyo

creasing pyramid le
d w alm

el continues in 
st n e les but it exhibits n or plateau b hich there is o performanc

. Raising the numbe
r of pyramid levels i

 pyramid levels he
fficiently large to 

 to handle larger im
dle the large imag

e displacements. 
splacements 

 tr a
 this saturation effec

acking perform ill approach its 
s expected, the pl

au ol. The green-c n 

hed 1 pyramid level l th le 8, since i
ose from 10-cm m

an that in Tab age displacements from
camera motio of th otion. The best tracking success rate was, 
however, only 84% for 10-cm forward motion, much lower than 96% for 5-cm forward motion. 
The low saturation at 84% tracking success rate indicates that some of large image displacements 
of low-texture targets could not be overcome by simply

n are roughly half 
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Figure 23.  Beginning and end images of 3-m straightforward traverse with 8 mm lens, where a 
human operator selected a grid of low-texture targets from a large rock. 
 

Window size Pyramid 
levels 7x7 15x15 29x29 59x59 

1 0% (0/25) 16% (4/25) 44% (11/25) 52% (13/25) 
2 8% (2/25) 48% (12/25) 68% (17/25) 68% (17/25) 
3 8% (2/25) 64% (16/25) 84% (21/25) 68% (17/25) 
4 12% (3/25) 72% (18/25) 84% (21/25)  

Table 8. Tracking results for 10-cm camera motion between images (image skip of 9). Green a
shows the saturation of improvement in tracking performance with higher pyramid levels. 
 

Window size 

rea 

Pyramid 
levels 7x7 15x15 29x29 59x59 

1 4% (1/25) 40% (10/25) 68% (17/25) 76% (19/25) 
2 16% (4/25) 72% (18/25) 88% (22/25) 76% (19/25) 
3 16% (4/25) 80% (20/25) 96% (24/25) 76% (19/25) 
4 24% (6/25) 80% (20/25) 96% (24/25)  

Table 9. Tracking results for 5-cm camera motion between images (image skip of 4).  Green are
shows the saturation of improvement in tracking performance with higher pyramid levels. 
 
 
The tracking results with high-texture and low-texture targets of Tab

a 

les 7, 8, and 9 indicate two 
important effects of window size. 

• For small-image-size rocks, a small window of 7×7 or 15×15 pixels would be fine with 
enough texture to track well. Larger window sizes tend to increase the drift error due to 
non-planarity of the target.  

• For medium to large-image-size rocks, the window size needs to be appropriately 
increased to cope with less texture. At the same time, the window size should not be too 
large to keep the target reasonably planar and not to include adjacent occluding or 
occluded objects. A 29×29 window size appears to be a good compromise. 

 
Therefore, we recommend varying the window size depending on the planarity and texture of the 
target. This will require that the command generation interface allow the specification of window 
size at the time a feature is selected. 
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6.4 Template Window Update 
 
Previous experiments in Figures 13, 14, and 15 provide rough upper bounds for the template 
window update: 2 m interval for 4-m straightforward motion starting from about 10 m away from 
the target position (20% change in distance), and 20º change for roll and yaw motions. Beyond 
these upper bounds, the tracker starts losing targets due to a large discrepancy between the 
template image and the current image. So as we reduce the template update interval, the tracking 
reliability increases. However, if we update the template image too often with a smaller template 
update interval, the tracking position error increases again due to the template drift problem. 
 
Although threshold-triggered template update is desirable in practical applications as described in 
Section 2.1, at present the only option available in the current version of the 2-D tracker software 
is to specify the template update interval N to periodically update the template image window 
every N-th image. To examine the effect of the template update on 2-D tracking performance and 

w the results from two 
uch experiments for forward camera motion. The results indicate that different features may 

have somewhat different optimal values for template update interval. For instance, as illustrated 
in Figure 27, corner features are scale-invaria us require l ent template update. 
An update interval of ges (Fig ry 10 re 26
corresponds to 0.5 to 1 change a goo or st
motion ere targets w 0 m aw mm o fre f 
the tem te image window caused the tem  drift eased

is  the camera, the percent change in target distance appears to be a good threshold 
par  the threshol gered templat 6, the average target 
distances were both ro  th  upda
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find its optimal value, we ran 2-D tracking experiments by varying the template update interval 
for two different sets of initial targets (Figure 24).  Figures 25 and 26 sho
s
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24.  Two sets of initial target positions used in template update experiments 
c
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Figure 25. Tracking position error (in pixels) vs. template update interval (in number of images) 
from a set of 10 targets (Figure 24 left) for 4-m straightforward tracking: both too frequent (N > 
100) and too infrequent (N < 50) template updates increased the tracking error. No targets were 
lost over all template update intervals tested. 
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igure 26. Tracking position error (in pixels) vs. template update interval (in number of images) 

 
 tracking error. No targets were lost over all template update 

tervals tested. 

 
 

F
for another set of 7 targets (Figure 24 right) : both too frequent (N > 150) and too infrequent (N <
50) template updates increased the
in
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Figure 27.  A black rectangle inside the window is scale-variant (left), while a rectangular corner 
is scale-invariant (right). Thus, corner-feature need less frequent template update for forward 
camera motion where the target image size changes. 
 
 
Figures 28 and 29 show the effect of the template update interval on tracking error for the roll and 
yaw camera motions. For roll motion of Figure 28, a good template update interval is every 5 to 
10 images or every 5º to 10º roll change. For yaw motion of Figure 29, a good template update 
interval is every 20 images or approximately every 5º yaw camera motion. A good threshold 
value to trigger the template update for roll and yaw camera motions appears to be around 5º to 
10º change. 

 

ge size change by perspective image formation. 
The orientation change is another parameter to monitor for template update. The ssd value or rms 
intensity error of the affine tracker is also a good parameter to monitor for template update. The 
affine tracker ssd would remain relatively flat until the tracker started to lose the target and then it 
would spike. The tracker would cache the last few images seen. When the affine tracker ssd 
crosses a threshold, the template for that target would be updated using the one with the lowest 
ssd value among the saved images. The template window would be updated by whichever occurs 
first: distance percent change, orientation change, or affine tracker ssd. Actual experiments of the 
above or similar ideas were not performed, because the 2-D tracker without active camera control 
would be extremely labor-intensive to collect data for full 10-m target approach experiments. We 
plan to perform more concrete experiments on template window update in the next 2-D/3-D 
tracking experiments with active camera control.

 
Although the current version of the 2-D tracker only allows the periodic template update of every
n-th image or a fixed distance, it appears to be a better option to use the distance percent change 
to trigger template update, considering the ima
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Figure 28. Tracking position error (in pixels) vs. template update interval (in number of images) 
for a set of 14 targets for roll camera motion: targets were lost for large template update intervals 
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Figure 29. Tracking position error (in pixels) vs. template update interval (in number of images) 
for a set of 11 targets for yaw camera motion 
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6.5 Maximum Image Displacement for Active Camera Control 

Another goal was to determine the accuracy requirements for active camera control.  If the feature 
tracker can track large image displacements, then the active camera control subsystem does not 
need to be as precise.  To measure the capability of the feature tracker for tracking large image 
displacements, we first ran the tracker on images taken by the camera moved forward every 1 cm 
with a set of targets. All targets tracked successfully.  This provided a baseline of where each 
feature was located in each image which we used as an approximate ground truth.  The initial 11 
target positions selected and their final tracked positions after 4-m straightforward motion with 
the 16-mm lens are shown in Figure 30. We then increased image skip until targets were lost.  By 
comparing the runs where the targets were lost to the baseline run where no targets were lost, we 
evaluated exactly when a target was lost and what image displacement occurred at that time.  We 
also calculated the image displacement for all instances where targets successfully tracked. The 
tracking instances were binned by image displacement, and within each bin the fraction of 
instances that tracked successfully over the total number of both successful and unsuccessful 
instances was calculated.  This provides a statistical estimate of the probability of tracking a 
particular image displacement. This data is plotted in Figures 31 and 32. The 15×15 window with 
3 pyramid levels (Figure 31) tracked perfectly up to 12 pixels image displacement and quite well 
above 90% up to 30 pixels, while the 15×15 window with 2 pyramid levels (Figure 32) tracked 
perfectly up to 9 pixels and quite well up to 27 pixels. As a very rough approximation, if we 
assume the maximum trackable image displacement ∆dmax is about 1/3 of the effective window 
size, we can compute it by 
 

here W is the window size and L is the number of pyramid levels. For window size 15, dmax  
20 pixels with 3 pyramid levels, and ∆dmax ≈ 10 pixels with 2 pyramid levels. Vertical dashed 
lines in Figures 31 and 32 mark these values. It is, however, important to note that the tracking 
percentage plotted here is per frame not over the whole course of tracking. Even if the tracking 
percentage per frame is 90%, the overall tracking percentage after 10 frames is reduced to mere 
34%. Thus, in the next experiment, we measured the overall tracking percentage for different 
image skips. 
 
 

 

 ∆dmax ≈ 1/3 * W * 2L−1, 
 

∆ ≈w

 
 

 different image skips to investigate the effect of 
ifferent image displacements on tracking performance. 

Figure 30. An example of beginning (left) and end (right) images for 4-m forward motion with 
16-mm lens. Tracking data were collected with
d
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Figure 31. Tracking probability per frame vs. image displacement for the 15×15 window with 3 
yramid levels (effective window size of 60 pixels). The dashed yellow line of 20-pixel 
isplace verlap of the template and the matching window. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 32. Tracking probability vs. image displacement for the 15×15 window with 2 pyramid 

vels (effective window size of 30 pixels). The dashed yellow line of 10-pixel displacement 

p
d ment represents the 2/3 o
  
 
 
 
 
 
 
 
 
 

le
represents the 2/3 overlap of the template and the matching window. 
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Figur m and 
verage image displacements of the target images are also shown below the tracking percentage 
lot. For the window size 15 with 3 pyramid levels, the tracking percentage stayed above 90% for 
e image skip of up to 18. The maximum image displacement at the image skip of 18 was 35 

ixels, and the average was 14 pixels. For the window size 15 with 2 pyramid levels, the tracking 
ercentage stayed above 90% over the image skip of up to 4. The maximum image displacement 
t the image skip of 4 was 11 pixels, and the average was 4 pixels. This plot clearly demonstrates 
at higher number of pyramid levels can handle larger image displacements. 

e 33 shows the overall tracking percentage for different image skips. The maximu
a
p
th
p
p
a
th
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Figure 33. Overall tracking percentage with respect to the number of image skips for the window
size of 15 with 2 (pink in top figure) and 3 (blue in top figure) pyramid levels. The maximum an
average image displacements with respect to the number of image skips are shown right below
he tracking percentage plot. The affine tracker handled larger image d

 
d 

 
isplacements when three 

ramid levels compared to two pyramid levels. 
t
py
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6.6 Lighting changes 

 

re compared in 
igure 34 for 9 am, 2 pm, and 4 pm (5-pm images were shown separately in Figure 35). Left three 

images are from 16 mm lens, while right three images are from 8 mm lens. Since some of the 2 
pm images had data collection errors, only 3-m portions, instead of full 4-m runs, were used in 
this experiment. 
 
The 2-pm images (middle pair) did not show much shadow over the rock surfaces, and resulted in 
100% tracking. The 4- pm images had shadow in the left-hand side, behind rocks, but did not 
have much shadow on the rock surfaces facing the camera. They resulted in almost 100% 
tracking, where only one target for 8 mm drifted away about 10 pixels. 
 
The 9-am images had dark shadow on the rock surfaces facing the camera. At first glance, it 
appeared that the tracking performance would be very poor because of dark shadow. It turned out 
that surface images of rocks still had enough texture to track reasonably well even with dark 
shadow, resulting in 80% and 100% tracking performances. Only two targets for the 8 mm lens 
lost tracking. Even though the lighting and shadow condition for 9 am was significantly poorer 
than those of 2 pm and 4 pm, the tracking performance was pretty good, demonstrating 
robustness of tracking relative to the sunlight direction change. 
 

Image collection start time F/L: 8mm F/L: 4 mm 

 
The effect of lighting was studied by performing 2-D tracking on the four sets of straightforward 
image sequences collected in four different time of the day: 9 AM, 2 PM, 4 PM, and 5 PM. For 
the first three sets, it was bright, sunny with no clouds. For the 5 pm set, it was still sunny with
almost no clouds, but patches of dark opaque clouds happened to pass across the sun during the 
image collection. Each set has different sunlight direction, forming different shadows. 2-D 
tracking performances of the four sets using 15×15 window with 3 pyramid levels are 
summarized in Table 10. Images at the end of 3-m straightforward tracking we
F

9 am; sun was in front, no cloud 100% (18 of 18 targets) 80% (8 of 10 targets) 

2 pm; sun was above, no cloud 100% (18 of 18 targets) 100% (10 of 10 targets) 

4 pm; sun was behind, no cloud 94% (17 of 18 targets) 100% (10 of 10 targets) 

5 pm; a patch of cloud crossing sun 44% (8 of 18 targets) 0% (0 of 10 targets) 
Table 10. Tracking performance of 3-m forward motion at three different sunlight directions (9 
am, 2 pm, 4 pm) and at one condition with dramatic sunlight changes (5 pm) using 15×15 
window with 3 pyramid levels. 
 
Tracking performance at 5 pm (Table 10) with dramatic sunlight changes was very poor. For the 
8 mm lens, 8 out of 18 initial targets were suddenly lost after 0.75 m tracking, and 2 more targets 
were lost later, resulting in 44% tracking over 3 m. For the 4 mm lens, 7 out of 10 initial targets 
were suddenly lost after 0.75 m tracking, and all targets were lost by 1.75 m, resulting in 0% 
tracking over 3 m.  
 
Images in Figure 35 clearly explain why many targets were suddenly lost. The left three images 

e 
 

 pair). In order to compensate for lighting 

were from 8 mm lens, and the right three were from 4 mm lens. Three distinct images during the 
course of the tracking were shown from top to bottom.  Under bright sunlight, the shadows were 
stark (top pair in Figure 35). When a patch of opaque clouds partially covered the sun, the surfac
of the Mars Yard became darker, and shadows became dimmer (middle). When the sun was fully
covered, shadows completely disappeared (bottom
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change, automatic gain control (AGC) was activated for both 8-mm and 4-mm images during our 
ata collection. AGC tried to keep the average intensity over the entire image relatively constant 

 
f 

rast 
 shadows 

 
ed very high regardless of the lighting changes of the Mars Yard surface. 

herefore, AGC did not compensate for sunlight changes effectively for the 4-mm lens. When the 

e 

cidentally, this dramatic lighting change due to dark clouds (opacity > 10) would not happen in 

t 
r the 

with mountaintops and we won't 
e going there.  Dust will also occur on Mars and could reach opacities higher than the clouds.  In 

dust s s can get abo ver, these are lik y as well. 
 
Su ctio tude , of 
cou des ave
(5 d ” 
 
H w i hind o  a 

d
regardless of ambient light changes. In the images on the left side of Figure 35, the 8-mm lens did
not include the “bright” sky in view, and AGC was effective to maintain the average brightness o
the Mars Yard at about the same level, even with the dramatic reduction in direct sunlight 
(bottom left image in Figure 35). Thus, AGC significantly helped tracking performance with the 
8-mm lens during the dramatic sunlight changes. AGC, however, did not avoid shadow cont
changes: stark shadows (top left image in Figure 35) with bright sunlight and almost no
(bottom left image) when the sun was covered by opaque clouds. These shadow changes made 2-
D tracking for the 8-mm lens less reliable, resulting in mere 44% tracking success rate. 
 
By contrast, the 4-mm images included the “bright” sky in view, and the average intensity of the
entire image stay
T
sun was covered by opaque clouds, the whole image area of the Mars Yard surface got much 
darker (bottom right image in Figure 35) unlike the 8-mm lens. Large changes in intensity of th
image tracking area resulted in 0% tracking success rate for the 4-mm lens. 
 
In
Martian environment. Here is a direct email quote from Leslie Tamppari, who was Deputy 
Project Scientist for MSL, regarding Martian clouds and sun lighting [Tamppari, 2003]. 
 
“The clouds on Mars are very thin clouds - more like stratospheric clouds on earth.  The typical 
visible opacity is only around 0.4 or so.  They appear to form in haze layers most of the time, bu
there can be lee waves associated with topographic rises, but again the clouds are thin fo
most part.  Occasionally they are thicker, but usually associated 
b

torm conditions, the opacitie ve 2.  Howe ely to be haz

nlight conditions will vary as a fun n of time of year and lati (as well as time of day
rse).  If we are at far N or S latitu
egrees above for a few months).

during winter, we could h  the sun low in the horizon 

owever, it should be noted that shado mages, for instance, be ccluding boundary of
rock can change as the rover and its cameras move. Thus, a tracking window that includes 
changing shadows (by adjacent rocks, mountain, clouds, or the rover) can in general cause 2-D 
tracking to fail.
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Figure 34. Images at
for 8 mm lens (left) a
(bottom pair) 

 

8 mm
 the end of 3-m forward tracking using 15×15 wi
nd 4 mm lens (right): at 9 AM (top pair), at 2 PM

52
4 mm
 

 

 

ndow with 3 pyramid levels 
 (middle pair), and at 4 PM 



8 mm 4 mm
 

 
 

 
 

 
 

Images at the end of 3-m forward tracking using 15×15 window with 3 pyramid levels
r 8 mm lens (left column) and 4 mm lens (right column): with full sun (top pair) after 1 m 

Figure 35. 
fo

 

forward motion, with sun partially covered (middle pair) after 1.25 m forward motion, and with 
sun fully covered by a patch of clouds (bottom pair) after 2.75 m forward motion. 
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6.7 Tracking with Oblique and Sideways Camera Motion  

-D tracking was performed for the image sequences collected with oblique and sideways camera 
motions as depicted Figure 5 in Section 3.1. The camera was moved on a liner motion stage, so 
that consecutive images did not show large image displacements. Since the camera orientation 
was not changed during the image collection, oblique and sideways camera motions tended to 
lose targets out of the camera view more quickly than forward camera motion. For this reason, 
oblique motion allowed 2-D tracking up to 1.6 meters with a 16 mm lens (Figure 36) and over the 
entire 4 meters with 4 mm lens (Figure 37). Sideways motion allowed tracking up to 1.2 meters 
with a 16mm lens (Figure 38) and up to 3.3 meters with an 4 mm lens (Figure 39).  Oblique and 
sideways camera motions are similar to straightforward camera motions in terms of tracking, 
because they all cause translation and scale changes in images. Since oblique and sideways 
camera motions have the problem of targets going out of camera view quickly, we decided not to 
spend further time evaluating oblique and sideways camera motions. Instead, we focused on 
examining 2-D tracking with straightforward camera motions only for translation and scale 

anges in images.  

 
2

ch
 

 
Figure 36.  2-D target tracking with oblique camera motion using a 16 mm lens: initial image 
(left) and end image after 1.6 m oblique move (right). 
 

 
Figure 37.  2-D target tracking with oblique camera motion using a 4 mm lens: initial image (lef
and end image after full 4-m oblique move (right). 

t) 
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Figure 38.  2-D target tracking with sideways camera motion using a 16 mm lens: initial imag
(left) and the end image after 1.2 m sideways move (right). 
 

e 

 

 
Figure 39.  2-D target tracking with sideways camera motion using a 4 mm lens: initial image 
(left) and the end image after 3.3 m sideways move (right). 
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6.8 Tracking with Actual Rocky8 Mast Camera Images 
 
Figure 40 shows a series of the Rocky8 image data.  Rocky8 mast camera images were collected 
every 3 cm over a 10 m straightforward rover motion. Targets tracked well for the first 1.8 m (top 
right of Figure 40) until the rover went over a rock, which caused large image displacements 
(sometimes over 100 pixels). By 2.4 m, all targets were lost. Again, it clearly indicates that active 
camera control is essential. Since we will be evaluating 2-D/3-D tracking next and it provides 
active camera control, we decided not to spend further time evaluating actual Rocky8 mast 
camera images without active camera control. 

Figure 40. 2-D tracking with actual Rocky8 
mast camera images: at initial position (top 
left), after 1.8 m (middle left), after 2.1 m 
(bottom left), after 2.25 m (top right), and 
after 2.4 m (middle right) forward motion. 



6.9 Average Tracking Performances from Forward, Roll, and Yaw Camera Motions 

 

s 
s to 

image skip is set to 4 for forward motion and 0 for 
roll and yaw motions. The template update interval was set to 10 or every 10-th image processed 
for all motions. These parameter seetings makes the template update occur every 50 cm for 
forward motion, every 10° for roll moton, and every 2.5° for yaw camera motion. Table 11 shows 
the test results of 2-D tracking for forward, roll, and yaw camera motions with 16, 8, 4, and 2.3 
mm lenses. The average tracking performances were 80% to 100%. The travel distance of the 
forward motion was full 4 m for all lenses. The total roll motion was full 90° for the 8-mm lens 
but 50° for the 16-mm lens due to target images going out of  camera view. The total yaw motion 
was full 45° for both 16-mm and 8-mm lenses.  
 

 16 mm 
(17ºx13º) 

8 mm 
(33ºx25º) 

4 mm 
(65ºx49º) 

2.3 mm 
(113ºx86º) 

 
To collect a statistical overview of 2-D tracking performance, we ran 2-D tracking on three image
sequences of 4-m straightforward, 90° roll, and 45° yaw camera motions. Tracking targets were 
selected over several rocks of small, medium, and large image sizes. Tracking parameters were 
selected to be values based on experimental results described in previous Sections. The feature 
tracking window size was set to 15 pixels × 15 pixels in all tests. The number of pyramid level
was set to 3 for straightforward camera motion, and set  to 4 for roll and yaw camera motion
accommodate larger image displacements. The 

Forward 
Motion (4 m) 

65/65 
(100%) 

40/45 
(89%) 

31/31 
(100%) 

23/23 
(100%) 

Roll Motion 
(50°/90°) 

13/16 
(81%) 

14/14 
(100%)   

Yaw Motion 
(90°) 

10/12 
(83%) 

14/16 
(88%)   

Table 11.  Average tracking performance with forward, roll, and yaw camera motions. 
 
Figures 41-44 show beginning and end images of 2-D tracking of Table 11 for 4-m forward 
camera motions with 16, 8, 4, and 2.3 mm, respectively. For the 16 mm lens (Figure 41), all 
selected targets including the ones on large-image-size rocks tracked well with a 100% success 
rate. Each target seems to have sufficient texture to track. For the 8 mm lens (Figure 42), all 20 
targets on small-image-size and medium-image-size rocks tracked 100%, while 5 out of 25 
targets on large-image-size rocks failed. The failed targets do not seem to be not enough texture 
to track well. For the 4 mm lens (Figure 43) and 2.3 mm lens (Figure 44), all targets tracked well 
with 100% success. 
 
Figures 45 and 46 show beginning and end images of 2-D tracking of Table 11 for roll camera 
motions with 16 and 8 mm, respectively. Three targets were lost out of 16 selected targets for the 
16 mm lens (Figure 45), while all targets were tracked
lens allowed only 40° roll motion for tracking experim
selected to be contained in full 90° roll motion. The pr
to be at a far outer position of the camera head during 
motion.  
 
Figures 47 and 48 show beginning and end images of 2-D tracking of Table 11 for yaw camera 
motions with 16 and 8 mm, respectively. One target was lost out of 12 selected targets for the 16 
mm lens (Figure 47), while two targets were lost out of 16 for the 8 mm lens (Figure 48). We 
investigated on why some targets lost tracking and on how to achieve more reliable tracking. 
These investigations are described in next several sections. 

 for the 8 mm lens (Figure 46).  The 16-mm 
ents because target images could not be 
oblem was that the 16-mm lens happened 
the image collection with camera roll 
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Figure 41. Beginning (left) and end (right) images of 4-m straightforward camera motion with 1
mm lens. Targets were selected on several rocks of small, medium, and large image sizes in grid 
patterns by using a text-based entry.  

6 

 

Figure 42.  Beginning (left) and end (right) images for 4-m forward motion with 8 mm lens 
 

Figure 43.  Beginning (left) and end (right) images for 4-m forward motion with 4 mm lens 
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ets 

 
Figure 46.  Beginning (left) and end (right) images for 90º roll motion with 8 mm lens. 

 
Figure 44.  Beginning (left) and end (right) images for 4-m forward motion with a 2.3 mm lens 
 
 

 
Figure 45.  Beginning (left) and end (right) images for 40º roll motion with 16 mm lens. Targ

ere out of camera view beyond the 40º roll motion selected. w
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igure 47.  Beginning (left) and end (right) images for yaw camera motion with 16 mm lens 

 
Beginning (left) and end (right) images for yaw camera motion with 8 mm lens 

ince the average tracking performance was only 80% to 100% as described in Section 4.11, we 
investigated further as to when tracking fails and how it can be improved. More careful 
examination revealed that 2-D tracking with small-image-size rocks was 100% successful for all 
forward, roll, and yaw camera motions, as long as target rocks were not occluded during the 
course of tracking. Figure 49 shows such an example of tracking targets on several small-image-
size rocks with roll camera motions. Red squares superimposed on the images represent updated 
tracking windows, which were always reset to the upright orientation for computational 
efficiency. Thus, four corners of tracking windows between images do not correspond to each 
other; only the center position does. A good way to observe how well a combined pure translation 
and affine transform tracking works is to display the affine transformed quadrilateral windows 
corresponding to the initial tracking square windows. In Figure 49, after tracking over 70° roll 
camera motion, all affine transformed quadrilateral windows (blue) are about 70° rotated relative 
to the upright feature square windows (red) without much scale change. This clearly depicts an 

king performance. 

F
 

Figure 48. 
 
 
6.10 Tracking with Small-Image-Size Rocks 
 
S

excellent trac
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windows in red squares. All targets tracked well using a 15×15 window with 3 pyramid levels. 
Some targets were about to move out of field of view of the camera at roll = 25° (bottom right). 
Affine transformed windows (blue quadrilaterals) show an excellent tracking performance. 
 

 

Figure 49.  2-D tracking of small-image-size rocks over 70º roll camera motion with 8 mm lens. 
A portion of the beginning image (top) was enlarged (bottom left), showing initial target feature 
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6.11 Forward-Motion Tracking with Large-Image-Size Rocks 
 
For forward camera motion, the biggest problem was to track targets selected on large image-size 
rocks with the 8mm lens. Unlike targets on small-image-size rocks, some of these targets lost 
tracking. Figure 50 show tracking results for 15×15 window with 4 pyramid levels. Only 7 out of 
12 targets or (58%) tracked. Affine transformed windows for these lost or strayed targets were 
often greatly deformed. It appeared that the lost targets did not have sufficient texture within the 
tracking windows. So we approached this problem by increasing the feature tracking window size 
to include more texture. In this study, the effective window size was kept the same. Namely, 
when the window size is doubled, the number of pyramid levels is reduced by 1. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

id levels. 

 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 50.  Initial image (top) and end image after tracking over 4-m forward motion (bottom) 
using 15×15 window with 4 pyram
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When the window size was increased to 29×29 with 3 pyramid levels, all 12 targets tracked, 
clearly demonstrating that low-texture targets on large-image-size rocks need a larger window 
size. However, one target on the leftmost rock in Figure 51 drifted noticeably over the surface of 
the rock and its affine transformed window collapsed. The 6-parameter affine transform was a lot 
more sensitive to low-texture targets than the 2-parameter pure translation, resulting in the affine 
transformed window badly deformed for some “sensitive” targets. Since we used a combined 
configuration of pure translation and affine transform, pure translation helped not to lose these 
“senstive” targets.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 51.  Initial image (top) and end image after tracking over 4-m forward motion (bottom) 
using 29×29 window with 3 pyramid levels. 
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When the feature track window size was further increased to 59×59 with 2 pyramid levels 
igures 52 and 53), again all 12 targets tracked. Since the current software could not run all 12 (F

targets in a single run for the large-size window (due to the item 4 bug in Section 4.5), we ran in 
two separate runs. All 12 targets tracked well with no noticeable drifts in terms of the center 
positions of the targets. We noted, however, that affine transformed windows were pulled towards 
adjacent occluding/occluded rocks. In this example, 59×59 window with 2 pyramid levels 
performed slightly better than 29×29 window with 3 pyramid levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 52.  Initial image (top) and end image after tracking over 4-m forward motion (bottom) 
using 59×59 window with 2 pyramid levels. More targets were selected in Figure 53.  
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Two affine transformed quadrilaterals were oriented quite differently for the lower-left rock in
bottom image of Figure 53. One was pulled towards the occluding rock in the front, while the 
other was pulled towards the occluded rock behind. Several affine transformed quadrilaterals for 
both upper-right and lower-middle rocks were also pulled by the occluded distinct rocks behind. 
As the camera moves, relative rock locations in the image change. This causes the affine 
transform to be distorted inaccurately. 
 

 the 

 
Figure 53.  Initial image (top) and end image after tracking over 4-m forward motion (bottom) 
using 59×59 window with 2 pyramid levels. Different targets were selected here. 
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6.12 Roll-Motion Tracking with Large-Image-Size Rocks 
 
Among three different tests with roll camera motions, for a couple of times all targets selected 
from large-image-size rocks tracked 100% successfully even with the relatively small 15×15 
window. In the first example shown in Figure 54 for an 8 mm lens, all 15 targets selected from a 
large rock tracked well over the entire 90º roll using 15×15 window size with 4 pyramid lev
 

els.  

igure 54. All 15 targets selected on two large-image-size rocks for the 16-mm lens tracked well 

n of the 
end image after the 90º roll (bottom right). 

  

 
 
F
through a 90° roll camera motion, using a window size of 15×15 and 4 pyramid levels: initial 
image (top), its close- up (bottom left) showing targets selected, and an enlarged portio
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A second example of good tracking is shown in Figure 55 for 16 mm lens. All 5 targets tracked 
well through a 60° roll using 15×15 window with 3 pyramid levels. 

 
Figure 55. All 5 targets selected on the face of another large-image-size rock also tracked well 
using a window size of 15×15 and 4 pyramid levels: initial image (top), its close-up (bottom left) 
showing targets selected, and an enlarged portion of the end image after 90º roll (bottom right). 
 
In the third example, however, 15×15 window with 3 pyramid levels did not yield 100% tracking 
for the 16 mm lens. As shown in Figure 56, one target out of 12 on a large-image-size rock lost 
tracking over 40° roll change. Further, several of affine transformed windows were quite poor. 
The tracking was performed only up to 40°, because the rock went out of camera view 
afterwards. Increasing the pyramid level alone did not help; 15×15 window with 4 pyramid levels 
yielded almost identical tracking performance. When the window size was increased to 29×29 
with 2 pyramid levels, the same one target still lost tracking for some unknown reason while all 

ther 11 targets showed excellent tracking with very good affine transformed windows. However, 
 

ample clearly 
demonstrates that larger window helps tracking for low-texture targets. 

o
when the 29×29 window with 3 pyramid levels (Figure 57) is used, finally all 12 targets tracked
very well. In particular, affine transformed windows were also very good. This ex
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Figure 56. Beginning (top left) and end image after 40º roll (top right) using 15×15 window with 
3 pyramid levels. Their close-up views are in bottom left and bottom right. 
 

ith 
3 pyramid levels. Their close-up views are in bottom left and bottom right.
Figure 57. Beginning (top left) and end image after 40º roll (top right) using 29×29 window w
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6.13 Yaw-Motion Tracking with Large-Image-Size Rocks 
 

  

The yaw camera motion in this report actually involves both camera translation and yaw motion 
 along the linear motion stage, its ya

located at about 5-m, and the total yaw change 
adjustment of the camera head was done 

rge image displacements, in particular, for the 
ments between images, 2-D 

 a larger effective window size or one highe
 motion tracking. In the example shown in 

vels was good enough for the 8-mm lens. All 16 
 yaw. 

as illustrated in Figure 58. As the camera head travels 4 m w 
orientation was changed to point to a same target 
was about 44° from -22° to +22°. Since the pointing 
visually, the collected image sequence introduced la
16-mm lens. In order to track a target with large image displace
tracking with the yaw camera motion often needed r 
number of pyramid levels compared to forward or roll
Figure 58, the 15×15 window with 3 pyramid le
targets on large-image-size rocks tracked over the entire 45º

 
Figure 58.  Beginning (top left), end (top right) images for 45º yaw camera motion with 8 mm 
lens. Enlarged close-up views show target tracking windows at yaw of 0º (middle left), 15º 
(middle right), 30º (bottom left) and 45º (bottom right). 
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As in forward and roll camera motions, 15×15 window size was often not large enough to track 
low-texture targets on large-image-size rocks for yaw camera motion. Further, the yaw camera 
motion with the 16-mm lens required higher number of pyramid levels due to large image 
displacements introduced during the image collection. In an example shown in Figure 59, the 
29×29 window with 3 pyramid levels did not provide good tracking performance. Out of total 12 
targets selected, two targets were lost and two other targets drifted much. There were quite a few 
image displacements over 30 pixels up to 38 pixels. To handle these large image displacements, 
the number of pyramid levels was raised to 4. Tracking performance using 29×29 window with 4 
pyramid levels (Figure 60) provided good tracking performance except two affine transform 
windows were a little off. It was interesting to observe that an effective window size of about 120 
pixels was not enough to handle 30-pixel or larger displacements, while an effective window size 
of 240 pixels was able to handle them reliably. We also ran 59×59 and 75×75 windows with 3 
pyramid levels, both of which showed good tracking performance with reasonable affine 
transformed windows (Figures 61 and 62). Since the affine transform assumes the planar target, 
larger window size helps tracking only if the target surface is approximately planar within the 
target tracking window. Also doubling the window size (in each dimension) increases the 
computational time by a factor of 4. 
 

  
 

Figure 59. Begin/end images after 45º yaw motion using 29×29 window with 3 pyramid levels: 
full images (top) and enlarged views of 12 targets (bottom). 

 70



 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
Figure 60. Begin/end images for 45º yaw motion using 29×29 window with 4 pyramid levels: 
enlarged views for six targets (middle) and for six others (bottom) 
 

Figure 61. Begin/end images for 45º yaw motion using 59×59 window with 3 pyramid levels for 
two targets (top) and for two others (bottom) 
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Figure 62. Begin/end images for 45º yaw motion using 75×75 window with 3 pyramid levels for 
three different targets (top, middle, and bottom)
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Tracking performance was further tested with another large-image-si
hown in Figure 63, only 6 targets out of 9 tracked for both 15×15 a

ze rock for 16 mm lens. As 
nd 29×29 windows with 4 

 
 
 
 
 
 
 
 
 
 

º 
: 

s
pyramid levels. Top three targets lost tracking, while six others tracked well. We noted that the 
background above the top occluding boundary of the rock changed dramatically from white to 
black during the course of tracking due to the shift of the dark shadow of an adjacent rock as the 
camera yaw changes. More cautious target selection is required in a clutered environment. It is 
best if the target image does not encounter dramatic shadow changes as well as occlusions. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 63. Enlarged close-up views showing target tracking windows at yaw of 0º (top row), 15
(second row), 30º (third row) and 45º (bottom row) for 45º yaw camera motion with 16 mm lens
15×15 window (left column) and 29×29 window (right column) with 4 pyramid levels. 
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To avoid the dramatic background change, we selected the target window so that it just fits the 
rock using a 75×75 window as shown in Figure 64. However, both 1 and 2 pyramid levels with 
75×75 window showed poor tracking performance. Only when the number of pyramid leve
increased to 3, it showed good tracking performance. Poor performance with 1 or 2 pyramid 
levels was due to large image displacements between images up to 38 pixels. An effective 
window size of 75×75 or 150×150 could not overcome large image displacements reliably, while 
an effective size of 300×300 pixels using 3 pyramid levels could. 

ls 

Figure 64. Enlarged close-up views showing target windows at the 0º (top row), 15º (second 
row), 30º (third row) and 45º (bottom row)  yaw for a total 45º yaw camera motion with 16 mm 
lens: 75×75 window with 1 (left column), 2 (middle column), and 3 pyramid levels (right 
column).
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6.14 Alternate Template Update Method 

 the combined translation and affine transform configuration (Section 4.2) that we used in this 
port, the affine template was updated every time the translation template was updated. An 

lternate update method was tried, where only the translation template was updated while the 
ffine template was never updated. When the end images of the two methods after 4-m forward 
otion were compared (Figure 65), tracking performances of these two update methods appeared 
 be similar at first glance.  

Figure 65. Beginning image of 4-m forward-motion tracking is shown at the top panel. The end 
image resulted from the method updating both translation and affine templates (left) was similar 
to the end image resulted from the method updating translation template only (right). 
 

 a different example run with the yaw motion (Figure 66), however, the method updating both 

ed window (blue) when it tracked. Careful 
aminations of the alternate method revealed that the ssd (square-sum-of-differences) value 

from affine matching kept increasing because the affine template was never updated, while the 
ssd value from pure translation matching reduced to near zero whenever the template was 
updated. Thus, except for the very beginning portion of tracking, the ssd value from affine 
matching was consistently higher, and affine matching was never used again later. This clearly 
indicates that the alternative method is not a good option. 

 
In
re
a
a
m
to
 

In
translation and affine templates showed a better tracking performance than the alternate method. 
The alternate method of updating only the translation template tracked poorly at the end, although 

 tended to yield more accurate affine transformit
ex
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Image#1 
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Image#51 

(0.5 m) 

  
Image#101 

(1 m) 

  
Image#151 

(1.5 m) 

  
Image#200 

(2 m) 

  
 
 
Figure 66. Comparing two update methods to track a target with yaw camera motion using 
100×100 window with 3 pyramid levels: the method of updating both translation and affine 
templates (left column) and an alternate method of updating translation template only (right 
column). The alternate update method tracked poorly at the end.



7.  SDOG Tracker Performances 
 
7.1 Software Functional Description 
 
The SDOG (Sign of difference of Gaussians) tracker tracks a target by matching the binary sign 
images extracted from the difference of Gaussian operations of images. The algorithm exploits 
the invariance of the sign of the zero-crossing in the Laplacian of the Gaussian of an image. The 

iffe  a 
and-pass filter suppressing DC and low spatial frequency components while emphasizing 
tensity edges. The sign of difference of Gaussians builds a binary image from the gray-scale 

rithmetic operator such as sum of squared differences (SSD), is used for computationally 
fficient binary sign correlation. In the SDOG tracker software delivered, the template binary 

age size is set to a 32×32 window of 1024 bits. Thus, the maximum value for 32×32 binary 
orrelation is 1024, while the minimum is 0. The uncorrelated value is actually 512 due to the 
0% random chance of matching. The search for the binary correlation peak is the brute-force 
ethod of computing the correlation values for all possible positions in the specified search area. 
y contrast, in the previous iterative affine tracker, the search is done by successive 
pproximations to the solution, which can be a local minimum. 

o run the SDOG tracker, three input parameters need to be specified. Two binary correlation 
reshold parameters are frame confidence and template confidence thresholds. The target is 

onsidered tracking if the maximum correlation value is above the frame confidence threshold. 
he template is updated if the maximum correlation value is below the template confidence 
reshold. The third input parameter is the search area window size. In our tests, the search area 
indow size was set to 3 times the template window size, or 96×96 pixels. 

.2 Forward-Motion Tracking 

he 4-m forward-motion image sequences, which were used in the affine tracker experiments 
arlier, were also used to test the SDOG tracker (Figure 67). The frame and template confidence 
resholds were varied from 60% to 100% for every 10% step. Since it does not make sense to 

pdate the template when the tracking performance in the current image is not confident, the 
mplate confidence threshold is equal to or greater than the frame confidence threshold. The 
acking experimental results with the SDOG tracker are shown in Table 12 for the 8-mmm lens 

tables, 70% frame confidence and 80% template 
onfidence thresholds resulted in best tracking performance with 100% tracking for both 8-mm 
nd 16-mm lenses, while 60% frame confidence and 80% template confidence thresholds resulted 
 the second best performance with 96% tracking for 8-mm lens and 100% for 16-mm lens.  

 Table 14, the tracking performances of the SDOG tracker were compared with those of the 
ffine tracker. The affine tracker was run using the same 4-m forward-motion image sequences 
nd initial target positions. For the 8-mm lens, the affine tracker yielded 89% tracking rate with 
5×15 window with 3 pyramid levels, while 98% with 31×31 window with 2 pyramid levels. The 
1×31 window performed better because some low-texture targets on large rocks needed the 
rger window size for good tracking performance. The one lost target with the 31×31 window is 

hown in Figure 68. The red arrow indicates the drift direction of the lost target. To determine the 

d rence of Gaussians effectively generates the Laplacian of Gaussian, which is essentially
b
in
Difference of Gaussians image. The XOR (exclusive OR) logical operator, as opposed to 
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cause of the tracking failure, we examined the beginning image which is essentially the same as 
the one shown at the top of Figure 67 for the SDOG tracker. We noted that the initial target 
window for the lost target actually included two separate rocks: one small rock in the middle and 
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a portion of another rock at the bottom side of the target window. The SDOG tracker somehow 
managed to track the small rock in the middle, while the affine tracker ended up drifting away th
target to a position in between the two rocks. Thus, for this small rock, a smaller 15×15 windo
should have used to avoid including a separate rock within the target window. 
 
For the 16-mm lens, the SDOG tracker tracked 100% (Figure 69). The affine tracker yielded 98% 
tracking rate with 15×15 window and 3 pyramid levels, while 91%

e 
w 

 with 15×15 window and 2 
pyramid levels. Interestingly, the smaller 15×15 window performed better this time. For the 16-
mm lens images tested here, targets on large rocks appeared to have enough texture to track 
except one lost target, which is marked with a red arrow in Figure 70. For the larger 31×31 
window size, six targets were lost out of 65 total targets as shown in three groups in Figure 71 (a), 
(b), and (c). We identified the causes of tracking failures. The lost target in Figure 71 (a) was due 
to the nearby occlusion by the front rock. Among the three targets lost in Figure 71 (b), one target 
in the big rock was lost due to the background rock interference, and another target above the big 
rock was lost because its initial target window included two separate rocks (see the top image of 
Figure 69). The third lost target on Figure 71 (b) and two more lost targets in Figure 71 (c) are all 
for the same tiny rock. Since the target is so small, a smaller window size should have been used. 
 
The comparison of the SDOG and affine trackers in Table 14 indicates that the SDOG tracker 
performed slightly better than the affine tracker for the forward motion. The “iterative search” 
affine tracker appeared to be more susceptible to poor target window selection than the “brute-
force search” SDOG tracker. 
 

Frame Confidence Threshold Template 
Confidence 
Threshold 

60% 
(614) 

70% 
(717) 

80% 
(819) 

90% 
(922) 

100% 
(1024) 

60% (614)  24%     
70% (717)  62%  11%    
80% (819)  96% 100%   0%   
90% (922)  93%  98% 91% 0%  

100% (1024)  93%  96% 89% 0% 0% 
Table 12.  SDOG tracker tracking performance for 4-m forward motion with 8-mm lens 
 

Frame Confidence Threshold Template 
Confidence 
Threshold 

60% 
(614) 

70% 
(717) 

80% 
(819) 

90% 
(922) 

100% 
(1024) 

60% (614)  51%     
70% (717)  89%  15%    
80% (819) 100% 100%   0%   
90% (922)  95%  97% 94% 0%  

100% (1024)  94%  94% 94% 6% 0% 
Table 13.  SDOG tracker tracking performance for 4-m forward motion with 16-mm lens 
 

SDOG, 32x32 window Affine Camera motion, 
Lens focal length FC=60% FC=70% 31x31 window 15x15 window

TC=80% TC=80% 2 pyr. levels 3 pyr. levels 
Forward, 8-mm 96% (43/45) 100% (45/45) 98% (44/45) 89% (40/45) 

Forward, 16-mm 100% (65/65)  100% (65/65)  91% (59/65) 98% (64/65) 
Table 14. SDOG tracker performed slightly better than affine tracker for 4-m forward motion. 
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Figure 67. Beginning (top) and end (bottom) images of 45 targets for the 4-m forward moti
with 8-mm lens after running SDOG tracker using 70% frame confidence and 80% template 
confidence thresholds: all 45 targets tracked. 

on 
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(a) 

 
(b) 

Figure 68. End images of 45 targets for the 8-mm-lens forward motion after running affine 
tracker using 31×31 window with 2 pyramid levels: one target is lost. 
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Figure 69. Beginning (top) and end (bottom) images of 65 targets for the 16-mm-lens forward 
motion after running SDOG tracker using 70% frame confidence and 80% template confidence 
thresholds: all 65 targets tracked. 
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(b) 

 
(c) 

r Figure 71. End images of 65 targets for 16-mm lens forward motion after running affine tracke
using 31×31 window with 2 pyramid levels. Targets were partitioned into 3 groups for better 
observation: (a), (b) and (c). All 6 lost targets were caused by bad selection of target windows.
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7.3 Roll and Yaw Motion Tracking 
 
Tracking performances of the SDOG tracker were tested with roll and yaw camera motions by 
varying the frame and template confidence thresholds from 50% to 100% for every 10% step. The 
tracking results are shown in Table 15 for the 8-mm-lens roll motion and in Table 16 for the 8-
mm-lens yaw motion. In these two tables, 60% frame confidence and 80% template confidence 
thresholds resulted in best tracking performance with 94% tracking for 8-mm-lens roll and 100% 
for the 8-mm-lense yaw. The 70% frame confidence and 80% template confidence thresholds, 
which yielded the best tracking performance for the forward motion, resulted in lower tracking 
performance with 56% for the 8-mm-lens roll motion and 100% for the 8-mm-lens yaw motion. 
 
Poor tracking performance of the 8-mm-lens roll motion with the 70% frame confidence and 80% 
template confidence thresholds are shown in Figure 72. Five targets exhibited significant drift. 
This is understandable because the SDOG tracker does only pure translation matching. 
 
The tracking performance comparison between the SDOG and affine trackers are shown in Table 
17. The affine tracker yielded 100% tracking for both 8-mm-lens roll and yaw motions, 
demonstrating that the affine tracker performed slightly better than the SDOG tracker for the roll 
and yaw motions. 
 

Frame Confidence Threshold Template 
Confidence 
Threshold 

50% 
(512) 

60% 
(614) 

70% 
(717) 

80% 
(819) 

90% 
(922) 

100% 
(1024) 

50% (512) 0%           
60% (614) 0% 0%         
70% (717) 31% 19% 0%       
80% (819) 56% 94% 56% 0%     
90% (922) 56% 88% 63% 69% 0%   

100% (1024) 63% 56% 63% 69% 0% 0%
Table 15.  SDOG tracker tracking performance of 16 targets for 90º roll motion with 8-mm lens 
 

Frame Confidence Threshold Template 
Confidence 
Threshold 

50% 
(512) 

60% 
(614) 

70% 
(717) 

80% 
(819) 

90% 
(922) 

100% 
(1024) 

50% (512)   19%      
60% (614)   19%   19%     
70% (717)   69%   69%   13%    
80% (819)   94% 100% 100% 100%   
90% (922) 0%  100% 100% 100% 100% 

100% (1024)   13%     0%   20%     0% 6% 0% 
Table 16.  SDOG tracker tracking performance of 16 targets for 45º yaw motion with 8-mm lens 
 

Camera motion, 
Lens focal length 

SDOG 32x32 
FC=60%, TC=80% 

SDOG 32x32 
FC=70%, TC=80% 

Affine 31x31 
3 pyramid levels 

Roll, 8-mm 94% (15/16) 56% (9/16) 100% (16/16) 
Yaw, 8-mm 100% (15/16) 100% 100% (13/16) 

Table 17. The affine tracker performed slightly better than SDOG tracker for the roll and aw 
motions.

y
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igure 72. Beginning (top) and end (bottom) images of 16 targets for 8-mm-lens roll motion after 
 

 

 
F
running SDOG tracker using 70% frame confidence and 80% template confidence thresholds: 5
targets drifted a lot.
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7.4 Lighting Changes 
 
For the dramatic lighting changes, the SDOG tracker performed much better than the affine 
tracker as shown in Table 18. The image sequences used were the 5 PM data. During the 5 PM 
data collection, patches of opaque clouds happened to move across the sun, causing dramatic 
sunlight changes (Figure 35 of Section 6.6). Under these dramatic sunlight changes, the affine 
tracker performed very poorly (Table 10 of Section 6.6), yielding 0% tracking with 4-mm lens 
and 44% with the 8-mm lens, even with the AGC (automatic gain control) of the camera. The 
SDOG tracker yielded 100% tracking for both 4-mm and 8-mm lenses. 
 
Since the SDOG tracker uses the difference of Gaussian operations which is essentially a band-
pass filter suppressing DC and low spatial frequency components, it is quite robust to lighting 
intensity changes of DC spatial frequency components. By contrast, the current version of the 
affine tracker software simply relies on the camera AGC and does not compensate for the lighting 
changes. 
 

Camera motion, 
Lens focal length 

SDOG 32x32 
FC=60%, TC=80% 

Affine 29x29 
3 pyramid levels 

Forward, 4-mm; Cloudy 100% (10/10) 0% (0/10) 
Forward, 8-mm; Cloudy 100% (18/18) 44% (8/18) 

Table 18. SDOG tracker showed very robust tracking performance against lighting changes, 
while the affine tracker showed poor tracking performance. 

r Active Camera Control 

In order to determine the maximum image displacement of the SDOG tracker, we ran SDOG 
tracker with different image skips. Two different search window sizes of 100×100 pixels and 
200×200 pixels were tested. Figure 73 shows the overall tracking percentages of the SDOG 
tracker for different image skips. The affine tracker results of Figure 33 in Section 6.5 were also 
overlaid for easy comparison. As in Figure 33, the maximum and average image displacements of 
the target images with respect to the number of image skips are shown right below the tracking 
percentage plot. For both window sizes of 100 and 200, the overall tracking percentage of the 
SDOG tracker stayed above 90% for the image skip of up to 10. The maximum image 
displacement at the image skip of 10 was 21 pixels, and the average was 8 pixels. When the 
number of image skips increased greater than 10, the overall tracking percentage dropped very 
sharply. This abrupt degradation was surprising that the SDOG tracker does brute-force search 
not iterative search. Two plausible causes of the abrupt degradation are: 1) use of signed binary 
image as opposed gray-scale image for matching and 2) high sensitivity to image size change. 
Three potential improvements are: 1) use of gray-scale DOG (difference of Gaussians), 2) use of 
down-sampled image (pyramidal image reduction), and 3) proper scaling of the matching image 
using the knowledge of the distance change to the target based on stereo vision triangulation. In 
terms of the tracking range of the image displacement, SDOG tracker was better than the affine 

 pyramid levels, but worse than the affine tracker of the 
window size 15 with 3 pyramid levels. With improvements, we anticipate that a brute-force 
search method should probably be better than an iterative search, but more investigation is 
needed. We plan to perform further experiments in the next 2-D/3-D tracker test and validation. 

 
 
 
7.5 Maximum Image Displacement fo
 

tracker of the window size 15 with 2
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Figure 73. Overall tracking percentage with respect to the number of image skips for the SDOG 
tracker of search window size of 100 (cyan in top re) and 200 (yellow in top figure) pixels as 
well as for the affine tracker of the wind nk in top figure) and 3 (blue in top 
figure) pyramid levels. The maximum and average image displacements with respect to the 
number of image skips are also shown right below the tracking percentage plot. The overall 
tracking percentage of the SDOG tracker dropped sharply when the number of image skips 
increased greater than 10. 

 figu
ow size 15 with 2 (pi
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7.6 Execution Timing 
 
The matching computation times for the SDOG and affine trackers were measured using the 
Linux “time” command. In order to exclude the overhead time such as image read/display/write, 
the user CPU times were measured for two runs: one with 1 target and the other with 11 targets
Both runs tracked 50 images. The difference of the two CPU times divided by 500 (10 targets, 50
images) provided the matching computation time per target per frame. Similarly, matching 
computation times for the affine tracker were obtained and summarized in Table 19. The 
combined configuration of pure translation followed by affine matching took about 4 times long
than SDOG matching. 

. 
 

er 

 
 

Affine tracker, 29×29 window with 3 pyramid levels SDOG tracker, 
32×32 window Pure translation Affine alone Comb96×96 search area ined 

5 ms 5 ms 15 ms 20 ms 
Table 19. Matching computation times for the SDOG and affine trackers  
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8.  Improving Tracking Performance 
 
Here is a list of items to be considered for potential improvement of tracking reliability 

1. Restrict the selection of target windows that may cause tracking failures due to 
occlusions, two separate rocks within the target window, background interference, and 
shadow change. 
− Avoid the target window that may be occluded during the course of tracking 
− Avoid the target window that includes portions of two or more separate rocks 
− Avoid the target window that includes occluding boundaries with cluttered 

background 
− Avoid the target window that includes the area with large shadow change 

2. Use a combined configuration of pure translation matching followed by affine matching. 
For pure translation matching, it is probably better to use a brute-force search not a 
iterative search to cover a large search space, although more investigation is needed. 
Examples of brute-force pure translation matching include:  
− SDOG matching 
− Normalized cross-correlation matching 
− 2-dimensional difference of Gaussian (DOG) filtered matching (2-D extension of the 

JPL Stereo correlation) 
3. Use the difference of Gaussian (DOG) filter or the normalized cross-correlation to cope 

with poor lighting conditions and lighting changes. This applies to both pure translation 
and affine matching. 

4. It is essential to have active camera control, for example, with 2-D/3-D tracking. 

mage 

ramid 

undary 

a corner 

5. It is also essential to have camera view handoff. 
6. It is critical to have reliable detection of target loss. 
7. Instead of periodic template update by a fixed travel distance, update the template 

triggered by the thresholds of distance percent change, orientation change, and affine 
matching ssd (sum of squared differences). 

8. Enable the affine matcher to handle the partial tracking window cropped by the i
boundary. This allows higher pyramid levels with larger effective window sizes. 

9. It is desirable to have an automated selection of the window size, number of py
levels, frame confidence and template confidence thresholds, and search window size. 

10. It may be useful to have a selective region matching. This can be useful to track a low-
texture target on a surface of a large-image-size rock by using a large window but 
avoiding nearby occluding boundaries. The target position may be off-centered in the 
target window. Examples of selective region matching include: 
− Quadrilateral window of general shape rather than an upright square window 
− Partially masked window to select only roughly planar portion of the target rock 
− Automatic generation of an off-centered, selective-region target window when a 

target is selected. The target may be low-textured and near the occluding bo
11. Sophisticated target assessment and automatic adjustment of tracking window size, 

number of pyramid levels, and confidence thresholds. Minimum eigen values of 
detector was not useful. 
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9.  Conclusion 
 
We evaluated the 2-D target tracking performance of two software packages: pyramidal Luca
Kanade affine tracker and SDOG (sign of difference of Gaussian) tracker. Both were tested 
within the CLARAty (Coupled Layer Architecture for Robotic Autonomy) software environm
Since the 2-D tracking software did not support active camera control, we built and used a linea
motion stage to collect camera images in incremental forward, roll, and yaw camera motions. 
Forward motion tests were limited to 4 m. We collected images with different camera focal 
lengths, different sunlight directions, and dramatic lighting changes. 

s-

ent. 
r 

g 
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es of the affine tracker were above 80% up to 100% when 15×15 window with 3 or 4 
yramid levels for 4-m straightforward, 90º roll, and 45º yaw camera motions. Most tracking 

failu s were re ure targe s. Increasing the 
wind th 4  in , where identified 
t ions or more rocks within the target window, and 
s . Inc r of pyr elped to track larger 

ght changes. The best template 
pdate was every 5% to 10% change in distance to target or every 5º to 10º change in roll and 
aw motion. The maximum image displacement of the tracking range was about 30 pixels for the 
5×15 window with 3 pyramid levels. 

he SDOG tracker experimental results indicated that 60% to 70% for the frame confidence 
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The affine tracker experimental results indicated that pure translation matching tracked more 
reliably, while affine matching tracked more accurately. Not surprisingly, the combined trackin
configuration of pure translation matching followed by affine matching performed best, and thi
combined configuration was thus used as the affine tracker in our tests. Average tracking 
percentag
p

res in the above test lated to low-text ts on large rock
ow size to 29×29 wi pyramid levels resulted near 100% tracking

racking failures were occlus , portions of two 
hadow and lighting changes reasing the numbe amid levels h

image displacements between images. The affine tracker tracking performance was fair with 
unfavorable sunlight directions, but poor with dramatic sunli
u
y
1
 
T
threshold and 80% for the template confidence threshold resulted in peak tracking percentage.
SDOG tracker performed slightly better than the affine tracker for the forward motion, while th
affine tracker performed slightly better than SDOG tracker for the roll and yaw motions. Unl
the affine tracker, SDOG tracker was robust for dramatic sunlight changes. 
 
Potential improvements for tracking reliability include: 1) active camera control with 2-D/3-D 
tracking, 2) brute-force translation matching based on normalized-cross-correlation or DOG 
(difference of Gaussian) filter, 3) reliable target loss detection, 4) template update trigg
some thresholds, and 5) selective-region target window where the target may be off-centered
More conclusive experiments including full 10-m forward motion tests will be performed when
the 2-D/3-D tracking software with active camera control is available. 
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