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Abstract— This paperpresentsan overview of a newly de-
velopedCoupledLayer Architecturefor Robotic Autonomy
(CLARALty), whichis designedor improving the modularity
of systemsoftware while moretightly couplingthe interac-
tion of autonomyand controls. First, we framethe problem
by briefly reviewing previouswork in thefield anddescribing
theimpedimentsaindconstraintshatbeenencounteredThen
we describewhy a freshapproactof the topic is warranted,
andintroduceour new two-tiereddesignas an evolutionary
modificationof thecorventionalthree-level roboticsarchitec-
ture. The new designfeaturesa tight couplingof the planner
andexecutive in one DecisionLayer, which interactswith a
separatd-unctionalLayer at all levels of systemgranularity
TheFunctionalLayeris anobject-orientedoftwarehierarchy
thatprovidesbasiccapabilitiesof systemoperationfesource
prediction,stateestimation,and statusreporting. The Deci-
sion Layer utilizes thesecapabilitiesof the FunctionalLayer
to achieve goalsby expanding,ordering,initiating and ter-
minatingactuities. Both declaratve andproceduraplanning
methodsareusedin this process Currentefforts aretargeted
atimplementinganinitial versionof this architectureon our
researchMars rover platforms,Rocky 7 and8. In addition,
we areworking with the NASA roboticsandautonomycom-
munitiesto expandthe scopeand patrticipationin this archi-
tecture,moving toward a flight implementationin the 2007
time-frame.
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1. BACKGROUND OF THIS EFFORT

History Outsideof JPL

The developmentof Roboticsand Autonomy architectures
asold asthefield itself. Therefore,it is not possiblehereto
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completelyreview the body of work uponwhich this effort
builds. Insteadwe will simply describesomeof themorere-
centor dominanttrendsinfluencingthe new architecturepre-
sentedn thisdocument.

Efforts in robotic architectureshave largely arisenfrom a
pragmatimeedo structurethesoftwaredevelopmenfor ease
of systembuilding. As such,they have grown in scopeand
compleity asthe correspondingystemshave grown. Early
efforts concentratedn detailedsoftware packageq19], or
generalframewnorks [2]. Only in the last decade with the
emegenceof fastcomputerswith real-time operatingsys-
tems,haveinfrastructuredeendesignedsopen-architecture
controllersof modernrobotsystemg33][ 28][ 10].

In parallel with robot control efforts, artificial intelligence
systemsfor planning/schedulingnd executionwere devel-

opedwhich relied on underlying closed-architectureobot
controllers[19[30]. The tendeng of thesesystemsto be
slow and computationallycostly led to the emegenceof a
minimalist school of thoughtusing Behavior Control [11].

But with fastercontrollayersavailable,anda generaldesire
to leverageplanningfunctionality, newer systemsmplement
amulti-tieredapproachhatincludesplanningexecution,and
controlin onemodernsoftwareframewnork [1][ 3].

While theseend-to-endarchitectureshave beenprototyped,
someproblemshave emeged. First, thereis no generally
acceptedstandardpreventingleverageof the entirecommu-
nity’s effort. This problemhasleadto the secondwhich is
thatimplementedsystemshave typically emegedasa patch-
work of legag/ andothercodenot designedo work together
Third, roboticsimplementationdave beenslow to leverage
thelargerindustrystandardg$or object-orientedsoftwarede-
velopment,within the Unified Modeling Language(UML)
framawvork. Therefore,we believe the time is ripe to revisit
roboticsandautonomyefforts with fresheffort aimedat ad-
dressingheseshortcomings.

History Insideof JPL

The JetPropulsionLaboratory California Institute of Tech-
nology (JPL) hasa long history in building remotely com-
mandedand controlledspacecraffor planetaryexploration.



Mostof this effort hasconcentratednvery simpleandrobust
execution of linear sequencesediously createdby ground
controllers. Areaswhere expertisehasconcentratedn so-
phisticatedon-boardclosedloop control have beenlargely
outsideof the traditionalareasof robatics,falling insteadin
therealmof aerospacguidanceandnavigation. Further the
implementatiorof thesesolutionshave beenin handtailored
softwaresolutionsoptimizedfor specificspacecrafandlim-
ited CPU and memory Only more recently have concepts
from roboticsandautonomystartedto be usedor considered
for flight missiong25][ 24].

Therefore the history of robotic efforts at JPL hasbeenpri-
marily within the researctprogram. The oldestof theseef-
forts werein the areasof manipulatorandteleoperatiorsys-
tems,andhadlimited softwareor softwarearchitecturecom-
ponentg8]. Oneof the first major software architectureef-
forts was within the Telerobotic Testbed,a large research
effort for developingautonomousmulti-robot, satelliteser
vicing [7]. While a very complex systemconformingto the
NASREM architecturd?2], it reliedonseveralsubsystemss-
ing disparatesoftwareparadigms Exceptthroughthe diffuse
efforts of the individual researchparticipantsandtheir sub-
sequenassignmentdittle of this softwarestructuresurvived
the demiseof the Testbed Afterward, mary smalleron-orbit
manipulatorresearchprojectsexisted, eachwith their own
softwareimplementationRemoteSurfacelnspection(C and
VxWorks), Satellite Servicing (C and assembly),MOTES
(Ada and VxWorks), etc. [36][9][5]. Eachof theseefforts
provided parallel duplication of similar functionality with
minimal codesharingdueto architecturabifferences.

In parallelwith theserobot manipulationefforts were sev-
eral mobile robot efforts, eachdeveloping software infras-
tructurein relative isolation. At aboutthe sametime asthe
Testbed therewas the developmentof a large Mars Rover
platform nameRobby usingC andVxWorks[38]. Research
with Robbyendedastherewasa paradigmshift from large
roverswith softwarefor deliberatve sensingandplanning,to
smallroverswith reactve behaiors[18]. Thefourth of these
“Rocky” vehiclesprogrammedn C andForthwithoutanun-
derlyingoperatingsystemsoldtheconcepbf placingthe So-
journerrover on the PathfinderMission. However, Sojourner
itself was programmedwith software written from scratch,
notinheritedfrom its predecessors.

Only asSojournemwasbeingbuilt did new roverresearctbe-
gin to addresghe problemof providing a software infras-
tructurewith modularity reconfigurability and codere-use
implicit in the design. To this end, a new rover, Roky 7,

wasbuilt, andits developmenteamselectedhe ControlShell
C++ software developmenternvironmenthoping to setit as
a new standard 28][35]. But assubsequentesearchrover
efforts were started,a new spectrumof control infrastruc-
turesre-emegedin rover tasks(e.g. FIDO, DARPA TMR,

Nanororer, etc), similar to the situationseenin manipulation
taskshalf adecadebefore[27][41][ 34].

In the sametime-frameasthe constructiorof Sojournerand
Rody 7 therewasa large scaleeffort in AutonomyandCon-
trol for flight, but tagetedfor cruiseand orbit, not surface
operations.Underthe aggis of the DeepSpaceOne project

andlaterrenamedheRemoteAgentExperimen{RAX) [25],
thiswasa collaboratve effort between]PLandNASA Ames
ResearctCenter(ARC). Emeging from it, was a determi-
nationat JPL to build a fundamentallynew software archi-
tecturefor all future missions,namedthe Mission DataSys-
tem [13]. MDS is a state-basedpbject-orientedarchitec-
turethatmovesaway from previousmissioncontrolconcepts
which are sequence-basedVhile it was originally tarmgeted
for orbital insertionand outerplanetmissions,it is now ad-
dressinga Mars surfacemissionschemedor its first applica-
tion.

Thereforegiventhelargeeffortsin softwarearchitecturede-
velopmentat JPL underthe MDS flag, andgiventhe history
of dividedeffortsin theroboticsresearcltommunity it is the
objective of authorsof this reportto put forth a new frame-
work for robotsoftwareat JPL andbeyond. This reportout-
linestheresultsfor thefirst year describingthe broaddesign
of the resultantCLARALty architecture providing someini-

tial implementationefforts, and outlining the directionsfor

upcomingconstructionof end-to-endover control software
underthis new framework.

2. THE CHALLENGE

Having briefly reviewed the history of robot control archi-
tectures,it is apparenthat more work is required. In this
sectionwe will summarizethe impedimentgo succesghat
have existedin the past, outline the reasondor attempting
to overcomethemwith a new architectureand describethe
constrainton the solutionto beprovided.

Impediments$o Success

Thereare numerousimpedimentsto the succesf control
frameworks for roboticssystems.Thesemay be cateyorized
asfollows:

ProgrammaticVision— Implicit in the successof ary re-
searchende&or is the needto sustainthe effort with fund-
ing, especiallyearlyin its development Typically it hasbeen
difficult to maintainsignificantresearcHunding for control
architecturedevelopment. This is primarily becausehe end
productisinfrastructurenotanew robotsystenor algorithm.
While this new infrastructuremight enablebetter or faster
systemandalgorithmdevelopmentsuchindirectresultshave
beendifficult to sell programmatically

Not InventedHere (NIH) — Forthemostpart,autonomyand
robotic systemsarestill in the domainof researchproducts,
andnotcommerciaproducts.Thereforeijt is typicalfor each
researchteamto want to develop and grow its own prod-
ucts. This expressegheir inventivenessas well as giving
their work a uniquesignatureusedin promotionof their re-
sults.

Fear of unknownproducts— Closelytiedto NIH, is thefact
thatresearctproductsfrom outsideof one's teamhave vary-
ing and unknown levels performance guality, and support.
Thereforeuseof other's productamight notonly dilute one's
researchdentity, but consumevaluableeffort while trying to



adoptthem.

Flexibility — Also, becauseof the research nature of
robotics, thereis still no absoluteconsensusn how to best
solve the problemsthatexist, or evenwhich arethe mostim-
portantproblemsto solve. Therefore,researchersften de-
sire maximumflexibility from their hardware and software,
to meetthe specificneedsof new projects. This desirefor
flexibility is oftenat oddswith ary softwareframework that
is not specificallytailoredto the task. Simply put, no onear-
chitecturecan be optimal for all problems,andif oneis too
flexible it quickly losesary structurethatgivesit value.

Overhead— Oftencoupledio adesirefor flexibility isaneed
to optimizeperformanceThiscomesn theform of computa-
tional overheador therobotsystemaswell assystenbuild-
ing overheadencountereth theuseof softwaredevelopment
productswhich areunfamiliar or unwieldy:

Critical Mass— Evenif anew softwareinfrastructurds rec-
ognizedas being valuable,that value might not be realized
unlessa large enoughgroup of researchershoosedo stan-
dardizearoundit. Oncesuchagroupexistsandprovidescrit-
ical massthestandaranablesnucheasieexchangeof ideas
andsoftware,whichin theorycan“snowball”. However, it is
a difficult decisionfor ary oneresearchteamto join a new
standardintil critical masshasbeenreachedThisis because
ary externalstandardwill requireoverheadwhile the bene-
fits mayonly comeaftercritical masss achieved.

LearningCurve— Humannatureandconsenrative logistics

of ary researctprogramprovide a resistanceo abandoning
well known and understoodnethodsfor new onesthat re-

quire an investmentof time to learn. This is especiallytrue

when projectsare on short developmentcycles, which has
beenmoretruein recentyears.

Tedhnical Vision— Becausemost researcherdiave had to
developinfrastructureo build their systemsthey have devel-
opedopinionsabouttheir preferredsolutions. While mary
may bewilling to abandorthesesolutionsin favor of anex-
ternalproduct,somewill surelyhave atechnicalvisionwhich
is atoddswith externalproducts.Dependingonthestrengths
of their corvictions,theseresearchermay notjoin thelarger
communityin theuseof anexternalarchitecturestandardin-
dependenof theimplicationsfor their own researchtheloss
of their participationis likely to be detrimentalto the com-
munity.

Needdor a New Start

Giventheseimpedimentgo the acceptancef a unifying ar-

chitecture,onemay wonderwhy thereshouldbe animpetus
for its creation. The primary reasonis thatwhich drivesthe
desirefor roboticsin thefirst place: elimination of the need
for peopleto wastetheir time on lesserendeaors. Thereare
threepathsto this goal.

1. Elimination of duplicative efforts which prevent attain-
mentof critical mass:

Parallel Duplication— As previously discussedthere are
oftenduplicative effortswithin bothroboticmanipulatiorand
mobility researchThisdiminisheghefinal productsdby wast-
ing resourceon solving the sameproblems,with different
infrastructureatthe sametime.

SerialDuplication— It is alsoevidentthatasnew research
tasksstart, they often wipe the slate cleanto eliminateold
systemproblemsandlack of familiarity or trust with previ-
ousproducts.Typically, the only softwarewith legagy is due
solelyto a singleindividual, not the local community Obvi-
ously, withouttheability to bridgeto groupownership trans-
fer outsideof institutionsis evenmorerestricted.

2. Follow softwarecommunitylead:

Opensouicemovement— The valueof sharedsoftware has
been dramatically illustrated by Linux, GNU, and other
share/freavareproducts.Typically this hasexistedwithin the
desktopPC market, but thereis no obvious reasornwhy this
model cannotbe leveragedby software within the robotics
community As evidenceof this fact,therehasrecentlybeen
an announcementor Intel sponsorshipof an opensource
ComputetVision Library [20].

Object-orientedlesign— Complementaryo theopensource
movementhasbeenthe growth of object-orientedlesignfor
PCsoftware.In muchof thecommerciakoftwareindustryit
dominates.However, this paradigmis largely underutilized
in robotics,isolatingthe community Further it promisesto
betterfacilitatesoftwaresharing discussedext.

3. Leveragecomplimentaryefforts:

Softwae sharing— To build critical massamongstaworld-
wide but relatively smallroboticscommunity it would beex-
tremelybeneficiato have anarchitecturdramework thatwas
widely accepted.Not only would this enableeasiersharing
of designconceptsbut, more importantly it would enable
the direct transferof softwareto all parties. Even sharing
amongstthe limited communitiesof JPL andNASA is cur-
rently arduousandthereforerare. A first stepwould be to
eliminatethesehurdlescompletely

MissionData Systenmand X2000— Recently NASA hasin-

vestedheaily in large scaleefforts in spacecrafhardware
(X2000) and software (MDS) which promisean infrastruc-
tureto beleveragedandexpanded39][13). It is to thebene-
fit of NASA roboticseffortsto leveragetheseproductswhere
applicable Sincethespacecraftontrolproblemis very simi-

lar to thegenerakoboticsproblem,it is anticipatedhatthere
is muchto be gainedby this leveraging. Obviously other
sourcesof relevanttechnologywill exist outsideof this lim-

ited set,andwill alsobeincorporatedvhenapplicable.

Constaintsonthe Solution

Given theseneeds,there are several issuesthat will con-
strainthesucces®f anarchitecturabkolution. First, thereis a
needfor communityacceptanceWithout acceptancéy the
roboticsand autonomycommunity both from usersandde-



veloperstherecannotbeasuccesskull acceptance proba-
bly notpossibleor evendesirablan agrowing researctarea.
However, asdescribedoreviously, it is importantto reacha
level of critical masssothatusersanddevelopersgainmore
thanthey losefrom adherencéo standardsndparticipation
in softwareexchange.

Second,it is vital to spanthe mary divideswithin the nec-
essaryuseranddevelopercommunities. Thesedividesexist
in mary forms, betweerandwithin roboticsandAl research
areas.They canresultfrom a desireto solve differenttypes
of roboticsproblems all theway from partsassemblyto hu-
manoidinterfaces. Or they canresultfrom an emphasion
different phasesof productlife cycles, from basicresearch
to fieldedsystems Within andacrossnstitutions,the differ-
encesanbeculturalaswell, spanninglepartmentfrom me-
chanicalengineeringo computerscienceandorganizations
from academidao commerciakompanies.

Third, thereis a desireto leverageexisting softwarein re-

searcrandNASA flight efforts. In particular atJPLtherehas
beena substantiakffort in thenew MDS, whichis very sim-

ilar to the architecturework describedherein,but hasbeen
largely focusedon the problemsof zero-graity spacecraft,
notrobotsoperatingon planetarysurfaces.

Finally, it is a requiremento leveragestandardpracticesin
industry This is neededo avoid reinvention of the wheel,
and enableNASA robotics efforts to adopttechniquesand
solutionscommonlyemployed in commercialproducts,and
within the global softwarecommunity

3. THE CLARATY ARCHITECTURE

In responséo theseneedsandrequirementsve have devel-
opedtheinitial framework for anew AutonomousRobotsoft-
ware architecture. Due to its structure,it is call the Cou-
pledLayerArchitecturefor RoboticAutonomy, or CLARAty.
This sectionwill review this new structure andits evolution-
ary differencesfrom its predecessorslt will introducethe
two layersof thearchitectureandprovide anoverview of the
interactionbetweerthem.

Review of Three-Level Architectuie

Typical robot and autonomyarchitecturesare comprisedof
three-levels— Functional Executive, and Plannerasshovn
in Figure1 [17][37][ 1].

The dimensionalong eachlevel can be thoughtof as the
breadthof the systemin termsof hardwareand capabilities.
The dimensionup from onelayerto the next canbethought
of asincreasingntelligence from reflexive, to proceduralto
deliberatve. However, theresponsibilitiesandheightof each
level arenotstrictly defined,andit is moreoftenthannotthe
casethatresearchers eachdomainexpandthe capabilities
and dominanceof the layer within which they areworking.
The resultare systemswvherethe FunctionalLayer is dom-
inant [29][37][ 23], or the executve is dominant[31][10] or
the the planneris dominant[15][14]. Further thereis still
considerableesearchactivity which blurs the line between

Executive

INTELLIGENCE

SYSTEM
Figurel. Typicalthree-level architecture.

PlannerandExecutive,andquestionghe hierarchicakuperi-
ority of oneovertheother[21][ 16].

Anotherproblemwith this descriptionis lack of accesgrom
the Plannerto the Functional Level. While this is typi-
callythedesirableconfiguratiorduringexecution it separates
the plannerfrom information on systemfunctionality dur-
ing planning. One consequences that Plannersoften carry
their own separatanodelsof the system,which may not be
directly derived from the FunctionalLevel. This repetition
of informationstorageoftenleadsto inconsistenciebetween
thetwo.

A third problemwith this descriptionis the apparentquia-
lenceof the conceptof increasingntelligencewith increas-
ing granularity In actuality eachpart canhave its own hi-

erarchywith varying granularity The FunctionalLayer is

comprisedf numerousestedsubsystemshe executive has
severaltreesof logic to coordinatehem,andthe plannerhas
severaltime-linesandplanninghorizonswith differentreso-
lution of planning. Therefore granularityin the systemmay
be misrepresentetdy this diagram. Worse, it obscureshe
hierarchythatcanexist within eachof thesesystemlevels.

Proposediwo-LayerArchitectuie

To correctthe shortfalls in the three-level architecture we
proposean evolution to a two-tiered Coupled Layer Au-
tonomousRobotArchitecture(CLARALy), illustratedin Fig-
ure 2. This structurehastwo majoradvantagesexplicit rep-
resentatiorof thesystemayers’granularityasathird dimen-
siont, and blendingof the declaratve and proceduraltech-
niquesfor decisionmaking.

The addition of a granularity dimensionallows for explicit
representatiorof the systemhierarchiesin the Functional
Layer, while accountingfor the de factonatureof planning
horizonsin the DecisionLayer. For the FunctionalLayer, an
object orientedhierarchydescribegshe system$ nesteden-

1The corventionemplo/ed hereis to considerlower granularityto mean
smallergranulesizes.
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Figure 2. Proposedwo-layerarchitecture.

capsulatiorof subsystemsandprovidesbasiccapabilitiesat
eachlevel of thenesting.For instanceacommando “move”
could be directedat a motor, appendagernobile robot, or
team. For the DecisionLayer, granularity mapsto the ac-
tivities time-line being createdand executed.Dueto the na-
ture of the dynamicsof the physicalsystemcontrolledby the
FunctionalLayer, thereis astrongcorrelatiorbetweerits sys-
tem granularityandthe time-line granularityof the Decision
Layer.

The blending of declaratve and proceduraltechniquesin

the DecisionLayer emegesfrom the trend of Planningand
Schedulingsystemsthat have Executive qualities and vice

versa[31][14]. This hasbeenafforded by algorithmic and
systemadwances,as well as fasterprocessing. CLARAty

enhanceshis trend by explicitly providing for accessf the
FunctionalLayerat higherlevelsof granularity thuslessfre-

guently allowing moretime for iterative replanning. How-

ever, it is still recognizedthat thereis a needfor proce-
dural systemcapabilitiesin both the Executive interfaceto

the FunctionalLayer, aswell asthe infusion of procedural
semanticdor plan specificationand schedulingoperations.
Therefore CLARAty hasa singledatabas¢o interfacePlan-
ning andExecutive Functionality leveragingrecentefforts to

mergethesecapabilitieq 16].

Thefollowing sectionswill developtheseconceptdy provid-
ing anoverview of featuresf boththe FunctionalandDeci-
sionLayers,aswell astheconnectvity betweerthem.

TheFunctionalLayer

The FunctionalLayeris an interfaceto all systemhardware
andits capabilities,including nestedlogical groupingsand
their resultantcapabilities. Thesecapabilitiesare the inter-
facethroughwhich the DecisionLayer usesthe robotic sys-
tem. Figure3 shows a very simplified andstylistic represen-
tation of the FunctionalLayer. The FunctionalLayerhasthe
following characteristics:

Object-Oriented— Object-orientedsoftwaredesignis desir
ablefor severalreasonskFirst, it canbe structuredo directly
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Figure 3. Proposed-unctionalLayer.
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Figure 4. Simpleexampleillustrating objecthierarchyand
Classinheritanceconcepts.

matchthe nestednodularityof the hardwarein aroboticsys-
tem. Second,at all levels of this nesting,basicfunctional-
ity and stateinformation of the systemcomponentsan be
encodedand compartmentalizedh its logical place. Third,

properstructuringof the softwarecanuseinheritanceproper

tiesto managethe compleity of the software development.
Finally, this structurecanbe graphicallydesignedanddocu-
mentedusingthe UML standard.

Figure 4 gives a simplified description of the Object-
Hierarchyfoundin the FunctionalLayer. In this diagram,a
fourth Abstractiondimensionhasbeenaddedto illustratethe
inheritancestructureof the classedn the FunctionalLayer.
At the bottom, a rover objectaggrgyatesarm andlocomotor
objects. While theseobjectscomprisea specificMy Rover



system,eachis derived from parentclassesvhich aremuch
moregeneral.

An advantageof this structureis thatit makessystemexten-
sionmucheasier First, multiple copiesof the objectscanbe
instantiatede.g. two copiesof My Rover's Arm — left and
right). Secondtwo child classegnay inherit all of the Ap-
pendageropertiese.g. My Rover's Arm andanotherclass,
Your Rover'sArm, wherethelatteris somavhatdifferentfrom
theformer).

Moving up the classabstractiorhierarchy inheritancerela-
tionshipsmay get more complicated. Both Appendageand
Locomotorcanhave a commonparentof CoordinatedSys-
tem,whichin turnhasthesameparentasRover, calledRobot.
Also, while the Motor classhasno children,it is aggreyated
into the CoordinatedSystemclass. In this way, motor func-
tionality is specifieccentrallyin oneobjectandavailableatall

levelsbelow it in the hierarchy greatly simplifying software
maintenance.

Encoded~unctionality— All objectscontainbasicfunction-
ality for themseles, accessibldrom within the Functional
Layer, aswell asdirectly by the DecisionLayer. This func-
tionality expresseshe intendedandaccessiblesystemcapa-
bilities. The purposeof this structures to hidetheimplemen-
tation detailsof objectsfrom the higherlevels of granularity
aswell asproviding a genericinterface.

To the extent possible,baselinefunctionality is provided in

parentclassesandinheritedby the children. Thesechildren
mayreplacehis functionalityor addtoit. Forinstancein the
previousexample the Appendageclasswill containageneric
inversekinematicanethod which canbeusedby its children.
However, My Rover's Arm may overwrite this functionality
with anclosed-formalgorithm,optimizedfor it's specificde-
sign. In addition,it mayaddfunctionalityspecificto theclass,
suchasstow() or unstav() methods.

In additionto inheritanceof functionality, thereis alsopoly-

morphicexpressionof functionality. Typically, onemember
functionnameis usedin all levelsof thehierarchyrepresent-
ing a capabilitythatis appropriatefor thatlevel (e.g. move,

read, set, status,etc.). Sincethe DecisionLayer canaccess
all levelsof the FunctionalLayerhierarchyit useshis struc-

ture to simplify its interactionsat differentgranularity For

instancea move commandssuedto the Roverobjectwould

navigatefrom on placeto anotherusingthe Locomotor but

withoutarequiremento follow a straightline or find science
targetsalongthe way. If the DecisionLayer wantedto do

thelatter, insteadof usingthe Roverinterfaceit would access
the move of the Locomotordirectly, while alsoaccessing

sciencdargetfinderobject.

ResidenBtate— Thestateof thesystemcomponentss con-
tainedin theappropriatebjectandobtainedrom it by query
This includesstatevariablevalues,statemachinestatus,re-
sourceusage healthmonitoring, etc. In this way, the Deci-
sionLayercanobtainestimate®f currentstateor predictions
of future state for usein executionmonitoringandplanning.

Local Planness — Whereaghe DecisionLayer hasa global

plannerfor optimaldecisionmaking,it mayutilize local plan-
nersthat are part of FunctionalLayer subsystems.For in-

stancepathplannersandtrajectoryplannersgcanbeattached
to manipulatorandvehicleobjectsto provide standarccapa-
bilities without regard to global optimality. Like all other
FunctionalLayer Infrastructure the useof suchlocal plan-
nersis anoptionfor the DecisionLayer.

Resouce Usage Predictois— Similar to local planners re-

sourceusagepredictionis localizedto the objectsusingthe
resourcesQueriesfor thesepredictionsaredoneby the De-

cision Layer during planningandschedulingandcanbe re-

questedat varying levels of fidelity. For instancethe power
consumptionby the vehiclefor a particulartraversecan be
basedon a hard-codedsalue, an estimatebasedon previous
power usageor a detailedanalysisof the upcomingterrain.
The level of fidelity requestedvill be basedon time andre-

sourceconstraintson the planningstageitself, mamgins avail-

ablefor thetime window underconsiderationaswell asthe
availability of moredetailedestimatenfrastructureln some
casessubordinatebjectsmay be accessety superiorones
in the proces®f servicinga detailedpredictionrequest.

Simulation— In the simplestform, simulationof the system
canbeaccomplishedby providing emulationcapabilityto all
the lowestlevel objectsthat interactwith hardware. In this
casethesuperiorobjectshave no knowledgeof whetherthey
areactuallycausingreal actionsfrom the robot. Suchsimu-
lation is a baselinecapability of the architecture.However,
it typically cannot be donefasterthanreal-timewhile using
the samelevel of computerresources. Therefore,it is ad-
vantageouso percolatesimulationcapability up to superior
objectsin the hierarchy The costof this is increasingcom-
plexity in the simulationcomputations.For somepurposes
suchcompleity maybevaluable.But, aswith Resourcees-
timation, levels of fidelity maybe specifiedcto provide useful
simulationwith reduceccomputationwvhendesired.

TestandDebug— For initial developmentand regression
testingassystemcomplexity grows, all objectsmustcontain
testanddehug interfacesandhave externalexercisers.

TheDecisionLayer

TheDecisionLayerbreaksdown highlevel goalsinto smaller
objectives, arrangeghemin time dueto known constraints
andsystemstate, andaccessethe appropriatecapabilitiesof
the FunctionalLayerto achieve them. Figure5 shovs avery
simplified andstylistic representationf the DecisionLayer.
The DecisionLayerhasthefollowing characteristics:

Goal Net— TheGoalnetis theconceptuatlecompositiornf
higherlevel objectivesinto their constitueniparts,within the
DecisionLayer. It containsthe declaratve representatioif
the objectives during planning, the temporalconstraintnet-
work resultingfrom schedulingandpossiblya tasktreepro-
ceduraldecompositiorusedduring execution.

Goals— Goals are specifiedas constraintson state over
time. As suchthey canbe thoughtof asboundingthe sys-
tem andspecifyingwhat shouldnt be done An exampleis:
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Figure5. ProposedecisionLayer.

‘the joint angleshouldnot exceed30 degreesor be lessthan
20 degrees’. Goalsmay be decomposednto subgoalsdur-
ing elaborationand arrangedn chronologicalorderduring
scheduling Resultinggoal netsandschedulesnaybe saved,
orrecalled[13)].

Tasks— Tasksareexplicitly parallelor sequentiahctiities

thataretightly linked. They resultfrom the fixed procedural
decompositiorof anobjective into a sequenceyhichis pos-
sibly conditionalin nature.In contrasto Goals,Tasksspecify
exactly whatshouldbe done[31]. An exampleis: ‘the joint

angleshouldbe 25 degrees’.

Commands— Commandsare unidirectional specifications
of systemactiity. Typically they provide the interfacebe-

tweentheterminatingfringesof thegoalnet,andthe capabil-

ities of the FunctionalLayer. Closedloop controlwithin the

DecisionLayeris maintainedoy monitoring statusandstate
of thesystemascommandsreexecuted 4].

TheLine— The Line is a conceptual border between
Decision-makingand Functionalexecution[13]. It exists at

theinstantaneou®wer borderof the elaboratedjoalnet,and
movesto differentlevels of granularityaccordingto the cur-

rentelaboration.Whenprojectedon the FunctionalLayer, it

denoteghe borderbelon which the systemis a bladk boxto

theDecisionLayer.

State— The state of the FunctionalLayer is obtainedby
qguery Thestateof theDecisionLayer, whichis essentiallyits
plan,theactive elaborationandhistoryof execution,is main-
tainedby thislayer. It maybesaved,or reloadedijn wholeor
part.

LayerConnectivity

Giventhe two architecturalayers,Functionaland Decision,
thereis flexibility in the waysin which thesemay be con-

nected. At oneendof the spectrumis a systemwith a very
capableéDecisionLayer, andwith aFunctionalLayerthatpro-
videsonly basicservices At the otherendof the spectrumis

a systemwith a very limited DecisionLayerthatrelieson a
very capableFunctionalLayerto executerobustly givenhigh
level commands.If both a capableDecisionand Functional
Layerarecreatedhentheremaybe redundang — however,

this is seenas a strengthof CLARAty, not a weakness.lt

allows the systemuser or the systemitself, to considerthe
trade-ofs in operatingwith the interfacebetweenthe layers
atalower or higherlevel of granularity

At lower granularitythebuilt in capabilitiesof the Functional
Layer are largely bypassed.This can enablethe systemto

take advantageof globally optimizedactiity sequencindy
the DecisionLayer. It alsoenableghe combinationof latent
functionalityin waysthatarenot provided by aggreyationof

objectsathigherlevelsof granularityin the FunctionalLayer.

However, it requiresthat the DecisionLayer be aware of all

the smalldetailsof the systemat lower granularity andhave
time to procesghis information. For missioncritical oper

ations, it may be worth expendinglong periodsof time to

planaheador very shortsequencesf actiity. However, this
model can not be employed always, sinceit will force the
systemto spenda disproportionat@mountof time planning,
ratherthan enactingthe plans. While the plan may provide
optimality duringits execution,inclusionof planningtime as
acostmayforcethesystembevery suboptimal.

To avoid this problemof overburdeningthe DecisionLayer,
robust basiccapabilitiesare built into the FunctionalLayer
for all objectsin its hierarchiesThis allows the interfacebe-
tweenthelayersto exist athighergranularity In thiscasethe
DecisionLayerneednotsecondyuesg-unctionalLayeralgo-
rithms, and canalsousemorelimited computingresources.
Particularly in situationswhereresourcesisageis not near
margins, or subsystemsare not operatingin parallel, it is
much more efficient to directly employ the basic encoded
functionality. It alsodirectly allows for problemsolving at
the appropriatdevel of abstractiorof the problem,both for
thesoftwareandthe developers.

Time-linelnteraction

The interactionof the two architecturallayers, can also be
understooddy consideringthe creationand executionof ac-
tivities on a time-line. Figure 6 shows the two layerswith

the sequencef activation highlightedin green. In the De-
cision Layer, high level goalsare decomposedhto subordi-
nategoalsuntil thereis somebottomlevel goalthatdirectly
accessethe FunctionalLayer. During planningandschedul-
ing, this processccursfor queriesof resourceusageandlo-

cal plans. If high fidelity informationis requestedrom the
FunctionLayer, suchaswhenresourcenamginsaretight, then
the FunctionalLayer objectmay alsoneedto accessts sub-
ordinatego improve the predictions.

The resultantactivity list and resourceusageis placedon a
time-line asshown in Figure7, actiities on the top andre-
sourceusageon the bottom. Schedulingwill optimally order
theseactiitiesto enablegoalachievementwhile notviolating
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resourceconstraints.This processhowever, mustbe frozen
atsomepointsufficiently farin thefuture,sothattheschedule
is self-consistenat thetime it is meantto be executed Also,
thetime horizonup to which the planningandschedulings
doneis limited to constrainthe problem. Both of thesetime
boundariesreshovnin thefigure.

Inside the Plan Freezeboundary it is the responsibility of
an executie to initiate actionsby accessinghe Functional
Layer. This processs illustratedin Figure6 by thearronsto
the FunctionalLayer, andthe greenshadingof oneportion of
theobjecthierarchyit contains.As theactionstake place,re-
sourcesareconsumedtypically in slightly differentamounts
thanpredicted.The usages reportedto the DecisionLayer,
wherediscrepanciepossiblytrigger conditionalpartsof the
currentplan, and are usedto modify the future projections
of resourceavailability on thetime-line which forcesreplan-
ning to occur This cycle is indicatedby the large arrows in
Figure?.

The processdescribeds typical of systemswherethe pro-

ceduralcomponent®f the executive are separatedrom the

declaratve component®f planningandscheduling.lt is not

necessaryhatthe boundarybetweerplanningandexecution
exist at a specificpoint in time — planningand scheduling
canoccurvery nearto the presentwhile executive-stylepro-

ceduraldecompositiormay beincorporatednto distantplan-

ning. Therefore the planfreezeboundaryin Figure7 is not

requiredfor CLARAty, and the potential cross-couplingof

PlannerandExecutiveis oneof theprimaryreasondor merg-

ing bothinto a singleDecisionLayer. As discussedater, the

format of thesememedactiities, andthe interfacebetween
them,is currentlyunderdevelopment.

Finally, it is importantto note that thereis also a migra-
tion of someexecutive-style proceduralexpansioninto the
FunctionalLayeraswell. Eachobjecthasbuilt in function-
ality which will have a proceduraldecompositiorof its ac-
tions,andmay have it own mini-executve, or even planner
CLARAty doesnot precludethis, and allows for this func-
tionality to be leveragedor bypasseddependingon the de-
sire of systemdesignersandthe capabilitiesof the Decision
Layer

4. IMPLEMENTATION

While the prototypingandimplementatiorof the CLARAty

architecturas still in its early stagessomespecificationgand
resultsareimportantto mention,illustrating the direction of

this work. Below are describedsomeof the tool and stan-
dardchoices heritagesoftwarethatwill beincludedinto the
framework, andprototypingstatusat thistime.

Toolsand Standads

At this pointin time, the following tools andstandard$ave
beenacceptedor CLARAty andits development:

TheUnifiedModelingLanguage— UML is to be usedfor
systemdesignanddocumentation.The intentis for full use
of UML, includingtemplates.

C++ Language— C++will beusedto createCLARALty, due
to its wide usein academisand industry the needfor an
object-orientedmplementationandtherequirementsf real-
time softwareimplementation.

OSsupport— To provide both real-time software support
while allowing for workstationdevelopment CLARALty will
beconstructedo runundervVxWorks,Linux, andSolaris.Ex-
tensionto otheroperatingsystemsn thefutureis possible.

Standad TemplateLibrary — In the spirit of leveragingoff
public domainstandardemployed by the software commu-
nity, software and specificationssuchasthe StandardTem-
plateLibrary, will beemployedwherepossible.

Softwae Developmenfiools— While it is possibleto build

all or partsof CLARAty by writing softwaredirectly with a
text editor, it is desirableto employ a standardool for orga-
nizing, structuring,andstyling the softwarein alike manner
acrossall developers.Consideratiorhasbeengivento tools



suchasRhapsody™ andVisio?™ , but nodecisionis final.
Sinceit is the desireto not preventwide participationin use
of CLARALy, toolswith largecostsarenot desirable.

Documentation— It is importantto provide documentation
of all component®f the systemin variousforms. The UML
waschosermartly for thisreason Othertoolsfor in-line code
documentatiorstandardizatiorare being investigated. The
intentis to leveragecurrenttoolsandstandardsnotto create
new ones.

Heritage

While CLARALty is anew architecturadesign,its designand
prototypeconstructionwill rely on someimportantexisting
infrastructure First,someof theinitial conceptdor theFunc-
tional Layer object hierarchywere developedby the Plane-
tary DextrousManipulatorgaskat JPL[26]. Secondwe will
usethe researctroversRodky 7 and Roky 8 to frame some
of the problems,and as testbedsfor prototypedsolutions.
Third, mary yearsof technologydevelopmentat JPL and
other NASA researcHacilities have provided valuablesoft-
warewhichwill beimplementedvithin the CLARAty frame-
work. Amongthe softwareslatedfor inclusionis: JPL stereo
vision [40Q], Carngjie Mellon University and JPL pathplan-
ning [32][22], estimation[6], planningand scheduling/12],
executiondecompositiorandmonitoring[31], andkinematic
anddynamicscomputing[42].

5. SUMMARY

This paperhaspresenteadur new CLARALty architectureor

roboticautonomysoftware. We have briefly reviewedthehis-

tory of this topic, potentialimpedimentsto successneeds
for continuedeffort, andconstraintoon acceptablesolutions.
Giventhesecircumstancesye have presentedin evolution-

ary modification of prior architecturalstructure,which ad-

dressesheneedof meging procedurahnddeclaratve plan-

ning, while providing an object-orientedencapsulatiorof

systemfunctionality The new CLARAty structureis, there-
fore, comprisedof Decisionand FunctionalLayers, and a

completeoverview of eachof theseandtheirinteraction has
beenprovided. Finally, a brief descriptionof currentimple-

mentatiorefforts wasincluded.
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