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Abstract— This paperpresentsan overview of a newly de-
velopedCoupledLayer Architecturefor RoboticAutonomy
(CLARAty), which is designedfor improving themodularity
of systemsoftwarewhile moretightly couplingthe interac-
tion of autonomyandcontrols. First, we framethe problem
by briefly reviewing previouswork in thefield anddescribing
theimpedimentsandconstraintsthatbeenencountered.Then
we describewhy a freshapproachof the topic is warranted,
and introduceour new two-tiereddesignasan evolutionary
modificationof theconventionalthree-level roboticsarchitec-
ture. Thenew designfeaturesa tight couplingof theplanner
andexecutive in oneDecisionLayer, which interactswith a
separateFunctionalLayerat all levelsof systemgranularity.
TheFunctionalLayeris anobject-orientedsoftwarehierarchy
thatprovidesbasiccapabilitiesof systemoperation,resource
prediction,stateestimation,andstatusreporting. The Deci-
sionLayerutilizesthesecapabilitiesof theFunctionalLayer
to achieve goalsby expanding,ordering,initiating and ter-
minatingactivities. Bothdeclarativeandproceduralplanning
methodsareusedin this process.Currentefforts aretargeted
at implementingan initial versionof this architectureon our
researchMars rover platforms,Rocky 7 and8. In addition,
we areworking with theNASA roboticsandautonomycom-
munitiesto expandthe scopeandparticipationin this archi-
tecture,moving toward a flight implementationin the 2007
time-frame.
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1. BACKGROUND OF THIS EFFORT

History Outsideof JPL

The developmentof RoboticsandAutonomyarchitectureis
asold asthefield itself. Therefore,it is not possiblehereto
�
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completelyreview the body of work uponwhich this effort
builds. Instead,wewill simplydescribesomeof themorere-
centor dominanttrendsinfluencingthenew architecturepre-
sentedin this document.

Efforts in robotic architectureshave largely arisenfrom a
pragmaticneedto structurethesoftwaredevelopmentfor ease
of systembuilding. As such,they have grown in scopeand
complexity asthecorrespondingsystemshave grown. Early
efforts concentratedin detailedsoftware packages[19], or
generalframeworks [2]. Only in the last decade,with the
emergenceof fast computerswith real-timeoperatingsys-
tems,haveinfrastructuresbeendesignedasopen-architecture
controllersof modernrobotsystems[33][28][10].

In parallel with robot control efforts, artificial intelligence
systemsfor planning/schedulingand executionwere devel-
oped which relied on underlying closed-architecturerobot
controllers[15][30]. The tendency of thesesystemsto be
slow and computationallycostly led to the emergenceof a
minimalist schoolof thoughtusing Behavior Control [11].
But with fastercontrol layersavailable,anda generaldesire
to leverageplanningfunctionality, newer systemsimplement
amulti-tieredapproachthatincludesplanning,execution,and
controlin onemodernsoftwareframework [1][3].

While theseend-to-endarchitectureshave beenprototyped,
someproblemshave emerged. First, there is no generally
acceptedstandard,preventingleverageof theentirecommu-
nity’s effort. This problemhasleadto the second,which is
thatimplementedsystemshavetypically emergedasa patch-
work of legacy andothercodenotdesignedto work together.
Third, roboticsimplementationshave beenslow to leverage
thelargerindustrystandardsfor object-orientedsoftwarede-
velopment,within the Unified Modeling Language(UML)
framework. Therefore,we believe the time is ripe to revisit
roboticsandautonomyefforts with fresheffort aimedat ad-
dressingtheseshortcomings.

History Insideof JPL

The JetPropulsionLaboratory, California Instituteof Tech-
nology (JPL) hasa long history in building remotelycom-
mandedandcontrolledspacecraftfor planetaryexploration.



Mostof thiseffort hasconcentratedonverysimpleandrobust
executionof linear sequencestediouslycreatedby ground
controllers. Areaswhereexpertisehasconcentratedon so-
phisticatedon-boardclosedloop control have beenlargely
outsideof the traditionalareasof robotics,falling insteadin
therealmof aerospaceguidanceandnavigation. Further, the
implementationof thesesolutionshavebeenin handtailored
softwaresolutions,optimizedfor specificspacecraftandlim-
ited CPU and memory. Only more recentlyhave concepts
from roboticsandautonomystartedto beusedor considered
for flight missions[25][24].

Therefore,thehistoryof roboticefforts at JPLhasbeenpri-
marily within the researchprogram. The oldestof theseef-
forts werein theareasof manipulatorandteleoperationsys-
tems,andhadlimited softwareor softwarearchitecturecom-
ponents[8]. Oneof the first major softwarearchitectureef-
forts was within the TeleroboticTestbed,a large research
effort for developingautonomous,multi-robot, satelliteser-
vicing [7]. While a very complex systemconformingto the
NASREMarchitecture[2], it reliedonseveralsubsystemsus-
ing disparatesoftwareparadigms.Exceptthroughthediffuse
efforts of the individual researchparticipantsand their sub-
sequentassignments,little of thissoftwarestructuresurvived
thedemiseof theTestbed.Afterward,many smalleron-orbit
manipulatorresearchprojectsexisted, eachwith their own
softwareimplementation:RemoteSurfaceInspection(C and
VxWorks), Satellite Servicing (C and assembly),MOTES
(Ada and VxWorks), etc. [36][9][5]. Eachof theseefforts
provided parallel duplication of similar functionality with
minimal codesharingdueto architecturaldifferences.

In parallel with theserobot manipulationefforts were sev-
eral mobile robot efforts, eachdeveloping software infras-
tructurein relative isolation. At aboutthe sametime asthe
Testbed,therewas the developmentof a large Mars Rover
platformnameRobby, usingC andVxWorks[38]. Research
with Robbyendedastherewasa paradigmshift from large
roverswith softwarefor deliberativesensingandplanning,to
smallroverswith reactivebehaviors[18]. Thefourthof these
“Rocky” vehicles,programmedin C andForthwithoutanun-
derlyingoperatingsystem,soldtheconceptof placingtheSo-
journerroveron thePathfinderMission.However, Sojourner
itself was programmedwith software written from scratch,
not inheritedfrom its predecessors.

Only asSojournerwasbeingbuilt did new roverresearchbe-
gin to addressthe problemof providing a software infras-
tructurewith modularity, reconfigurability, andcodere-use
implicit in the design. To this end, a new rover, Rocky 7,
wasbuilt, andits developmentteamselectedtheControlShell
C++ software developmentenvironmenthoping to set it as
a new standard[28][35]. But assubsequentresearchrover
efforts were started,a new spectrumof control infrastruc-
turesre-emergedin rover tasks(e.g. FIDO, DARPA TMR,
Nanorover, etc),similar to thesituationseenin manipulation
taskshalf adecadebefore[27][41][34].

In thesametime-frameastheconstructionof Sojournerand
Rocky 7 therewasa largescaleeffort in AutonomyandCon-
trol for flight, but targetedfor cruiseandorbit, not surface
operations.Underthe aegis of the DeepSpaceOneproject

andlaterrenamedtheRemoteAgentExperiment(RAX) [25],
this wasa collaborativeeffort betweenJPLandNASA Ames
ResearchCenter(ARC). Emerging from it, was a determi-
nationat JPL to build a fundamentallynew softwarearchi-
tecturefor all futuremissions,namedtheMissionDataSys-
tem [13]. MDS is a state-based,object-orientedarchitec-
turethatmovesawayfrom previousmissioncontrolconcepts
which aresequence-based.While it wasoriginally targeted
for orbital insertionandouter-planetmissions,it is now ad-
dressinga Marssurfacemissionschemefor its first applica-
tion.

Therefore,giventhelargeefforts in softwarearchitecturede-
velopmentat JPLundertheMDS flag, andgiventhehistory
of dividedefforts in theroboticsresearchcommunity, it is the
objective of authorsof this report to put forth a new frame-
work for robotsoftwareat JPLandbeyond. This reportout-
linestheresultsfor thefirst year, describingthebroaddesign
of the resultantCLARAty architecture,providing someini-
tial implementationefforts, and outlining the directionsfor
upcomingconstructionof end-to-endrover control software
underthis new framework.

2. THE CHALLENGE

Having briefly reviewed the history of robot control archi-
tectures,it is apparentthat more work is required. In this
sectionwe will summarizethe impedimentsto successthat
have existed in the past,outline the reasonsfor attempting
to overcomethemwith a new architecture,anddescribethe
constraintson thesolutionto beprovided.

Impedimentsto Success

Thereare numerousimpedimentsto the successof control
frameworksfor roboticssystems.Thesemaybecategorized
asfollows:

ProgrammaticVision— Implicit in the successof any re-
searchendeavor is the needto sustainthe effort with fund-
ing, especiallyearlyin its development.Typically it hasbeen
difficult to maintainsignificantresearchfunding for control
architecturedevelopment.This is primarily becausethe end
productis infrastructure,notanew robotsystemoralgorithm.
While this new infrastructuremight enablebetteror faster
systemandalgorithmdevelopment,suchindirectresultshave
beendifficult to sell programmatically.

Not InventedHere (NIH) — For themostpart,autonomyand
robotic systemsarestill in the domainof researchproducts,
andnotcommercialproducts.Therefore,it is typical for each
researchteamto want to develop and grow its own prod-
ucts. This expressestheir inventiveness,as well as giving
their work a uniquesignatureusedin promotionof their re-
sults.

Fearof unknownproducts— Closelytied to NIH, is thefact
thatresearchproductsfrom outsideof one’s teamhave vary-
ing and unknown levels performance,quality, and support.
Therefore,useof other’sproductsmightnotonly diluteone’s
researchidentity, but consumevaluableeffort while trying to



adoptthem.

Flexibility — Also, becauseof the research nature of
robotics,thereis still no absoluteconsensuson how to best
solve theproblemsthatexist, or evenwhich arethemostim-
portantproblemsto solve. Therefore,researchersoften de-
sire maximumflexibility from their hardwareandsoftware,
to meetthe specificneedsof new projects. This desirefor
flexibility is oftenat oddswith any softwareframework that
is not specificallytailoredto thetask.Simply put,no onear-
chitecturecanbe optimal for all problems,andif oneis too
flexible it quickly losesany structurethatgivesit value.

Overhead— Oftencoupledtoadesirefor flexibility is aneed
to optimizeperformance.Thiscomesin theform of computa-
tionaloverheadfor therobotsystem,aswell assystembuild-
ing overhead,encounteredin theuseof softwaredevelopment
productswhichareunfamiliaror unwieldy.

Critical Mass— Evenif anew softwareinfrastructureis rec-
ognizedasbeingvaluable,that valuemight not be realized
unlessa large enoughgroupof researcherschoosesto stan-
dardizearoundit. Oncesuchagroupexistsandprovidescrit-
ical mass,thestandardenablesmucheasierexchangeof ideas
andsoftware,which in theorycan“snowball”. However, it is
a difficult decisionfor any oneresearchteamto join a new
standarduntil critical masshasbeenreached.This is because
any externalstandardwill requireoverhead,while the bene-
fits mayonly comeaftercritical massis achieved.

LearningCurve— Humannatureandconservative logistics
of any researchprogramprovide a resistanceto abandoning
well known and understoodmethodsfor new onesthat re-
quire an investmentof time to learn. This is especiallytrue
when projectsare on short developmentcycles, which has
beenmoretruein recentyears.

TechnicalVision— Becausemost researchershave had to
developinfrastructureto build theirsystems,they havedevel-
opedopinionsabouttheir preferredsolutions. While many
maybewilling to abandonthesesolutionsin favor of anex-
ternalproduct,somewill surelyhaveatechnicalvisionwhich
is atoddswith externalproducts.Dependingon thestrengths
of their convictions,theseresearchersmaynot join thelarger
communityin theuseof anexternalarchitecturestandard.In-
dependentof theimplicationsfor their own research,theloss
of their participationis likely to be detrimentalto the com-
munity.

Needsfor a New Start

Giventheseimpedimentsto theacceptanceof a unifying ar-
chitecture,onemaywonderwhy thereshouldbean impetus
for its creation.The primary reasonis thatwhich drivesthe
desirefor roboticsin thefirst place:eliminationof the need
for peopleto wastetheir time on lesserendeavors. Thereare
threepathsto this goal.

1. Elimination of duplicative efforts which prevent attain-
mentof critical mass:

Parallel Duplication— As previously discussed,there are
oftenduplicativeeffortswithin bothroboticmanipulationand
mobility research.Thisdiminishesthefinal productsby wast-
ing resourceson solving the sameproblems,with different
infrastructure,at thesametime.

SerialDuplication— It is alsoevident that asnew research
tasksstart, they often wipe the slatecleanto eliminateold
systemproblemsandlack of familiarity or trust with previ-
ousproducts.Typically, theonly softwarewith legacy is due
solely to a singleindividual, not thelocal community. Obvi-
ously, without theability to bridgeto groupownership,trans-
fer outsideof institutionsis evenmorerestricted.

2. Follow softwarecommunitylead:

Opensourcemovement— The valueof sharedsoftwarehas
been dramatically illustrated by Linux, GNU, and other
share/freewareproducts.Typically thishasexistedwithin the
desktopPC market, but thereis no obvious reasonwhy this
model cannotbe leveragedby software within the robotics
community. As evidenceof this fact,therehasrecentlybeen
an announcementfor Intel sponsorshipof an open source
ComputerVisionLibrary [20].

Object-orienteddesign— Complementaryto theopensource
movement,hasbeenthegrowth of object-orienteddesignfor
PCsoftware.In muchof thecommercialsoftwareindustryit
dominates.However, this paradigmis largely under-utilized
in robotics,isolatingthe community. Further, it promisesto
betterfacilitatesoftwaresharing,discussednext.

3. Leveragecomplimentaryefforts:

Softwaresharing— To build critical massamongsta world-
widebut relatively smallroboticscommunity, it wouldbeex-
tremelybeneficialto haveanarchitectureframework thatwas
widely accepted.Not only would this enableeasiersharing
of designconcepts,but, more importantly, it would enable
the direct transferof software to all parties. Even sharing
amongstthe limited communitiesof JPL andNASA is cur-
rently arduousand thereforerare. A first stepwould be to
eliminatethesehurdlescompletely.

MissionDataSystemandX2000— Recently, NASA hasin-
vestedheavily in large scaleefforts in spacecrafthardware
(X2000) andsoftware (MDS) which promisean infrastruc-
tureto beleveragedandexpanded[39][13]. It is to thebene-
fit of NASA roboticsefforts to leveragetheseproductswhere
applicable.Sincethespacecraftcontrolproblemis verysimi-
lar to thegeneralroboticsproblem,it is anticipatedthatthere
is much to be gainedby this leveraging. Obviously other
sourcesof relevant technologywill exist outsideof this lim-
itedset,andwill alsobeincorporatedwhenapplicable.

Constraintson theSolution

Given theseneeds,there are several issuesthat will con-
strainthesuccessof anarchitecturalsolution.First, thereis a
needfor communityacceptance.Without acceptanceby the
roboticsandautonomycommunity, both from usersandde-



velopers,therecannotbeasuccess.Full acceptanceis proba-
bly not� possible,or evendesirablein agrowing researcharea.
However, asdescribedpreviously, it is importantto reacha
level of critical mass,sothatusersanddevelopersgainmore
thanthey losefrom adherenceto standardsandparticipation
in softwareexchange.

Second,it is vital to spanthe many divideswithin the nec-
essaryuseranddevelopercommunities.Thesedividesexist
in many forms,betweenandwithin roboticsandAI research
areas.They canresultfrom a desireto solve differenttypes
of roboticsproblems,all theway from partsassemblyto hu-
manoidinterfaces. Or they canresult from an emphasison
different phasesof product life cycles, from basicresearch
to fieldedsystems.Within andacrossinstitutions,thediffer-
encescanbeculturalaswell, spanningdepartmentsfrom me-
chanicalengineeringto computerscience,andorganizations
from academiato commercialcompanies.

Third, thereis a desireto leverageexisting software in re-
searchandNASA flight efforts. In particular, atJPLtherehas
beena substantialeffort in thenew MDS, which is very sim-
ilar to the architecturework describedherein,but hasbeen
largely focusedon the problemsof zero-gravity spacecraft,
not robotsoperatingon planetarysurfaces.

Finally, it is a requirementto leveragestandardpracticesin
industry. This is neededto avoid reinventionof the wheel,
and enableNASA roboticsefforts to adopt techniquesand
solutionscommonlyemployed in commercialproducts,and
within theglobalsoftwarecommunity.

3. THE CLARATY ARCHITECTURE

In responseto theseneedsandrequirementswe have devel-
opedtheinitial framework for anew AutonomousRobotsoft-
ware architecture. Due to its structure,it is call the Cou-
pledLayerArchitecturefor RoboticAutonomy, orCLARAty.
Thissectionwill review this new structure,andits evolution-
ary differencesfrom its predecessors.It will introducethe
two layersof thearchitectureandprovideanoverview of the
interactionbetweenthem.

Review of Three-LevelArchitecture

Typical robot andautonomyarchitecturesarecomprisedof
three-levels— Functional,Executive, andPlannerasshown
in Figure1 [17][31][1].

The dimensionalong eachlevel can be thought of as the
breadthof the systemin termsof hardwareandcapabilities.
Thedimensionup from onelayer to thenext canbethought
of asincreasingintelligence,from reflexive,to procedural,to
deliberative. However, theresponsibilitiesandheightof each
level arenot strictly defined,andit is moreoftenthannot the
casethat researchersin eachdomainexpandthe capabilities
anddominanceof the layer within which they areworking.
The resultaresystemswherethe FunctionalLayer is dom-
inant [29][37][23], or the executive is dominant[31][10] or
the the planneris dominant[15][14]. Further, thereis still
considerableresearchactivity which blurs the line between
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Figure1. Typical three-level architecture.

PlannerandExecutive,andquestionsthehierarchicalsuperi-
ority of oneover theother[21][16].

Anotherproblemwith this descriptionis lack of accessfrom
the Plannerto the Functional Level. While this is typi-
cally thedesirableconfigurationduringexecution,it separates
the plannerfrom information on systemfunctionality dur-
ing planning. Oneconsequenceis that Plannersoften carry
their own separatemodelsof the system,which may not be
directly derived from the FunctionalLevel. This repetition
of informationstorageoftenleadsto inconsistenciesbetween
thetwo.

A third problemwith this descriptionis theapparentequiva-
lenceof theconceptsof increasingintelligencewith increas-
ing granularity. In actuality, eachpart canhave its own hi-
erarchywith varying granularity. The FunctionalLayer is
comprisedof numerousnestedsubsystems,theexecutivehas
severaltreesof logic to coordinatethem,andtheplannerhas
several time-linesandplanninghorizonswith differentreso-
lution of planning.Therefore,granularityin thesystemmay
be misrepresentedby this diagram. Worse, it obscuresthe
hierarchythatcanexist within eachof thesesystemlevels.

ProposedTwo-LayerArchitecture

To correct the shortfalls in the three-level architecture,we
proposean evolution to a two-tiered Coupled Layer Au-
tonomousRobotArchitecture(CLARAty), illustratedin Fig-
ure2. This structurehastwo majoradvantages:explicit rep-
resentationof thesystemlayers’granularityasathird dimen-
sion1, and blendingof the declarative and proceduraltech-
niquesfor decisionmaking.

The addition of a granularitydimensionallows for explicit
representationof the systemhierarchiesin the Functional
Layer, while accountingfor the de factonatureof planning
horizonsin theDecisionLayer. For theFunctionalLayer, an
object orientedhierarchydescribesthe system’s nesteden-

�
The conventionemployed hereis to considerlower granularityto mean

smallergranulesizes.
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capsulationof subsystems,andprovidesbasiccapabilitiesat
eachlevel of thenesting.For instance,acommandto “move”
could be directedat a motor, appendage,mobile robot, or
team. For the DecisionLayer, granularitymapsto the ac-
tivities time-linebeingcreatedandexecuted.Due to thena-
tureof thedynamicsof thephysicalsystemcontrolledby the
FunctionalLayer, thereisastrongcorrelationbetweenitssys-
temgranularityandthetime-linegranularityof theDecision
Layer.

The blending of declarative and proceduraltechniquesin
the DecisionLayer emergesfrom the trendof Planningand
Schedulingsystemsthat have Executive qualitiesand vice
versa[31][14]. This hasbeenafforded by algorithmic and
systemadvances,as well as fasterprocessing. CLARAty
enhancesthis trendby explicitly providing for accessof the
FunctionalLayerathigherlevelsof granularity, thuslessfre-
quently, allowing moretime for iterative replanning. How-
ever, it is still recognizedthat there is a need for proce-
dural systemcapabilitiesin both the Executive interfaceto
the FunctionalLayer, as well as the infusion of procedural
semanticsfor plan specificationand schedulingoperations.
Therefore,CLARAty hasa singledatabaseto interfacePlan-
ningandExecutiveFunctionality, leveragingrecentefforts to
mergethesecapabilities[16].

Thefollowingsectionswill developtheseconceptsby provid-
ing anoverview of featuresof boththeFunctionalandDeci-
sionLayers,aswell astheconnectivity betweenthem.

TheFunctionalLayer

The FunctionalLayer is an interfaceto all systemhardware
and its capabilities,including nestedlogical groupingsand
their resultantcapabilities. Thesecapabilitiesare the inter-
facethroughwhich theDecisionLayerusesthe roboticsys-
tem. Figure3 shows a very simplifiedandstylistic represen-
tationof theFunctionalLayer. TheFunctionalLayerhasthe
following characteristics:

Object-Oriented— Object-orientedsoftwaredesignis desir-
ablefor severalreasons.First, it canbestructuredto directly
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matchthenestedmodularityof thehardwarein a roboticsys-
tem. Second,at all levels of this nesting,basicfunctional-
ity and stateinformation of the systemcomponentscan be
encodedandcompartmentalizedin its logical place. Third,
properstructuringof thesoftwarecanuseinheritanceproper-
ties to managethe complexity of the softwaredevelopment.
Finally, this structurecanbegraphicallydesignedanddocu-
mentedusingtheUML standard.

Figure 4 gives a simplified description of the Object-
Hierarchyfound in the FunctionalLayer. In this diagram,a
fourth Abstractiondimensionhasbeenaddedto illustratethe
inheritancestructureof the classesin the FunctionalLayer.
At the bottom,a rover objectaggregatesarm andlocomotor
objects. While theseobjectscomprisea specificMy Rover



system,eachis derivedfrom parentclasseswhich aremuch
more� general.

An advantageof this structureis that it makessystemexten-
sionmucheasier. First, multiple copiesof theobjectscanbe
instantiated(e.g. two copiesof My Rover’s Arm — left and
right). Second,two child classesmay inherit all of the Ap-
pendageproperties(e.g. My Rover’s Arm andanotherclass,
Your Rover’sArm, wherethelatteris somewhatdifferentfrom
theformer).

Moving up the classabstractionhierarchy, inheritancerela-
tionshipsmay get morecomplicated.Both Appendageand
Locomotorcanhave a commonparentof CoordinatedSys-
tem,whichin turnhasthesameparentasRover, calledRobot.
Also, while theMotor classhasno children,it is aggregated
into the CoordinatedSystemclass. In this way, motor func-
tionality isspecifiedcentrallyin oneobjectandavailableatall
levelsbelow it in thehierarchy, greatlysimplifying software
maintenance.

EncodedFunctionality— All objectscontainbasicfunction-
ality for themselves, accessiblefrom within the Functional
Layer, aswell asdirectly by the DecisionLayer. This func-
tionality expressesthe intendedandaccessiblesystemcapa-
bilities. Thepurposeof thisstructureis to hidetheimplemen-
tationdetailsof objectsfrom thehigherlevelsof granularity,
aswell asproviding a genericinterface.

To the extent possible,baselinefunctionality is provided in
parentclasses,andinheritedby thechildren. Thesechildren
mayreplacethis functionalityor addto it. For instance,in the
previousexample,theAppendageclasswill containageneric
inversekinematicsmethod,whichcanbeusedby its children.
However, My Rover’s Arm may overwrite this functionality
with anclosed-formalgorithm,optimizedfor it’s specificde-
sign.In addition,it mayaddfunctionalityspecificto theclass,
suchasstow() or unstow() methods.

In additionto inheritanceof functionality, thereis alsopoly-
morphicexpressionof functionality. Typically, onemember
functionnameis usedin all levelsof thehierarchy, represent-
ing a capabilitythat is appropriatefor that level (e.g. move,
read,set,status,etc.). Sincethe DecisionLayer canaccess
all levelsof theFunctionalLayerhierarchy, it usesthis struc-
ture to simplify its interactionsat differentgranularity. For
instance,a movecommandissuedto theRover objectwould
navigatefrom on placeto anotherusingthe Locomotor, but
withouta requirementto follow astraightline or find science
targetsalong the way. If the DecisionLayer wantedto do
thelatter, insteadof usingtheRover interfaceit wouldaccess
the move of the Locomotordirectly, while alsoaccessinga
sciencetargetfinderobject.

ResidentState— Thestateof thesystemcomponentsis con-
tainedin theappropriateobjectandobtainedfrom it by query.
This includesstatevariablevalues,statemachinestatus,re-
sourceusage,healthmonitoring,etc. In this way, the Deci-
sionLayercanobtainestimatesof currentstateor predictions
of futurestate,for usein executionmonitoringandplanning.

LocalPlanners— WhereastheDecisionLayerhasa global

plannerfor optimaldecisionmaking,it mayutilize localplan-
nersthat are part of FunctionalLayer subsystems.For in-
stance,pathplannersandtrajectoryplanners,canbeattached
to manipulatorandvehicleobjectsto provide standardcapa-
bilities without regard to global optimality. Like all other
FunctionalLayer Infrastructure,the useof suchlocal plan-
nersis anoptionfor theDecisionLayer.

ResourceUsagePredictors— Similar to local planners,re-
sourceusagepredictionis localizedto the objectsusingthe
resources.Queriesfor thesepredictionsaredoneby theDe-
cisionLayerduringplanningandscheduling,andcanbere-
questedat varying levelsof fidelity. For instance,the power
consumptionby the vehicle for a particulartraversecanbe
basedon a hard-codedvalue,an estimatebasedon previous
power usage,or a detailedanalysisof the upcomingterrain.
The level of fidelity requestedwill be basedon time andre-
sourceconstraintson theplanningstageitself, marginsavail-
ablefor thetime window underconsideration,aswell asthe
availability of moredetailedestimateinfrastructure.In some
cases,subordinateobjectsmaybeaccessedby superiorones
in theprocessof servicinga detailedpredictionrequest.

Simulation— In thesimplestform, simulationof thesystem
canbeaccomplishedby providing emulationcapabilityto all
the lowest level objectsthat interactwith hardware. In this
case,thesuperiorobjectshavenoknowledgeof whetherthey
areactuallycausingrealactionsfrom therobot. Suchsimu-
lation is a baselinecapabilityof the architecture.However,
it typically cannot bedonefasterthanreal-timewhile using
the samelevel of computerresources.Therefore,it is ad-
vantageousto percolatesimulationcapabilityup to superior
objectsin the hierarchy. The costof this is increasingcom-
plexity in the simulationcomputations.For somepurposes
suchcomplexity maybevaluable.But, aswith ResourceEs-
timation,levelsof fidelity maybespecifiedto provideuseful
simulationwith reducedcomputationwhendesired.

TestandDebug— For initial developmentand regression
testingassystemcomplexity grows,all objectsmustcontain
testanddebug interfacesandhaveexternalexercisers.

TheDecisionLayer

TheDecisionLayerbreaksdownhighlevelgoalsinto smaller
objectives,arrangesthem in time due to known constraints
andsystemstate,andaccessestheappropriatecapabilitiesof
theFunctionalLayerto achieve them.Figure5 showsa very
simplifiedandstylistic representationof theDecisionLayer.
TheDecisionLayerhasthefollowing characteristics:

Goal Net— TheGoalnetis theconceptualdecompositionof
higherlevel objectivesinto their constituentparts,within the
DecisionLayer. It containsthe declarative representationof
the objectivesduring planning,the temporalconstraintnet-
work resultingfrom scheduling,andpossiblya tasktreepro-
ceduraldecompositionusedduringexecution.

Goals— Goals are specifiedas constraintson state over
time. As suchthey canbe thoughtof asboundingthe sys-
tem andspecifyingwhat shouldn’t be done. An exampleis:
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‘the joint angleshouldnot exceed30 degreesor be lessthan
20 degrees’. Goalsmay be decomposedinto subgoalsdur-
ing elaboration,andarrangedin chronologicalorderduring
scheduling.Resultinggoalnetsandschedulesmaybesaved,
or recalled[13].

Tasks— Tasksareexplicitly parallelor sequentialactivities
thataretightly linked. They resultfrom thefixedprocedural
decompositionof anobjective into a sequence,which is pos-
sibly conditionalin nature.In contrastto Goals,Tasksspecify
exactlywhatshouldbedone[31]. An exampleis: ‘the joint
angleshouldbe25 degrees’.

Commands— Commandsare unidirectional specifications
of systemactivity. Typically they provide the interfacebe-
tweentheterminatingfringesof thegoalnet,andthecapabil-
ities of theFunctionalLayer. Closedloop controlwithin the
DecisionLayer is maintainedby monitoringstatusandstate
of thesystemascommandsareexecuted[4].

TheLine — The Line is a conceptual border between
Decision-makingandFunctionalexecution[13]. It exists at
theinstantaneouslowerborderof theelaboratedgoalnet,and
movesto differentlevelsof granularityaccordingto thecur-
rentelaboration.Whenprojectedon theFunctionalLayer, it
denotestheborderbelow which thesystemis a black box to
theDecisionLayer.

State— The stateof the FunctionalLayer is obtainedby
query. Thestateof theDecisionLayer, whichis essentiallyits
plan,theactiveelaboration,andhistoryof execution,is main-
tainedby this layer. It maybesaved,or reloaded,in wholeor
part.

LayerConnectivity

Giventhe two architecturallayers,FunctionalandDecision,
thereis flexibility in the ways in which thesemay be con-

nected.At oneendof the spectrumis a systemwith a very
capableDecisionLayer, andwith aFunctionalLayerthatpro-
videsonly basicservices.At theotherendof thespectrumis
a systemwith a very limited DecisionLayer that relieson a
verycapableFunctionalLayerto executerobustlygivenhigh
level commands.If both a capableDecisionandFunctional
Layerarecreatedthentheremayberedundancy — however,
this is seenas a strengthof CLARAty, not a weakness.It
allows the systemuser, or the systemitself, to considerthe
trade-offs in operatingwith the interfacebetweenthe layers
at a loweror higherlevel of granularity.

At lowergranularitythebuilt in capabilitiesof theFunctional
Layer are largely bypassed.This can enablethe systemto
take advantageof globally optimizedactivity sequencingby
theDecisionLayer. It alsoenablesthecombinationof latent
functionalityin waysthatarenot providedby aggregationof
objectsathigherlevelsof granularityin theFunctionalLayer.
However, it requiresthat theDecisionLayerbeawareof all
thesmalldetailsof thesystemat lower granularity, andhave
time to processthis information. For missioncritical oper-
ations, it may be worth expendinglong periodsof time to
planaheadfor veryshortsequencesof activity. However, this
model can not be employed always, sinceit will force the
systemto spenda disproportionateamountof time planning,
ratherthanenactingthe plans. While the plan may provide
optimalityduringits execution,inclusionof planningtime as
a costmayforcethesystembeverysuboptimal.

To avoid this problemof overburdeningthe DecisionLayer,
robust basiccapabilitiesare built into the FunctionalLayer
for all objectsin its hierarchies.This allows theinterfacebe-
tweenthelayersto exist athighergranularity. In thiscase,the
DecisionLayerneednotsecondguessFunctionalLayeralgo-
rithms, andcanalsousemorelimited computingresources.
Particularly in situationswhereresourcesusageis not near
margins, or subsystemsare not operatingin parallel, it is
much more efficient to directly employ the basic encoded
functionality. It alsodirectly allows for problemsolving at
the appropriatelevel of abstractionof the problem,both for
thesoftwareandthedevelopers.

Time-lineInteraction

The interactionof the two architecturallayers,can also be
understoodby consideringthe creationandexecutionof ac-
tivities on a time-line. Figure 6 shows the two layerswith
the sequenceof activation highlightedin green. In the De-
cision Layer, high level goalsaredecomposedinto subordi-
nategoalsuntil thereis somebottomlevel goal thatdirectly
accessestheFunctionalLayer. Duringplanningandschedul-
ing, this processoccursfor queriesof resourceusageandlo-
cal plans. If high fidelity informationis requestedfrom the
FunctionLayer, suchaswhenresourcemarginsaretight, then
theFunctionalLayerobjectmayalsoneedto accessits sub-
ordinatesto improvethepredictions.

The resultantactivity list andresourceusageis placedon a
time-line asshown in Figure7, activities on the top andre-
sourceusageon thebottom.Schedulingwill optimally order
theseactivitiesto enablegoalachievementwhilenotviolating



MISSION PLANNING SPACE

�ROBOT PLANNING SPACE


"The Line"

Executive�
Dominant

Planner
Dominant

...

...

...

Goal
Net

Goals

...
...

...
...
...

...

...
...

HARDWARE

ENVIRONMENT

robot

motor� sensor�
camera�

switch�
A2D
�

digital IO
� framegrabber

joint
�

locomotor
�

linkage
�

stereo�
arm� mast wheel

team
�

manip.

Functional Level access�
through method calls at
level of object hierarchy

appropriate for goal

Resource predictions and 
local plans during elaboration.

State values and resource
usage during execution.

"The Line"

Figure 6. Proposedrelationshipof FunctionandDecision
Layers.

R
E

SO
U

R
C

E
S

A
C

T
IV

IT
IE

S

TIME

Now Plan freeze Plan hor izon

EXEC
DOMAIN

PLANNER
DOMAIN

EXECUTION
HISTORY

Figure7. Exampleof systemexecutiontime-line.

resourceconstraints.This process,however, mustbe frozen
atsomepointsufficiently farin thefuture,sothattheschedule
is self-consistentat thetime it is meantto beexecuted.Also,
the time horizonup to which theplanningandschedulingis
doneis limited to constraintheproblem.Both of thesetime
boundariesareshown in thefigure.

Inside the Plan Freezeboundary, it is the responsibilityof
an executive to initiate actionsby accessingthe Functional
Layer. This processis illustratedin Figure6 by thearrowsto
theFunctionalLayer, andthegreenshadingof oneportionof
theobjecthierarchyit contains.As theactionstakeplace,re-
sourcesareconsumed,typically in slightly differentamounts
thanpredicted.Theusageis reportedto theDecisionLayer,
wherediscrepanciespossiblytriggerconditionalpartsof the
currentplan, and are usedto modify the future projections
of resourceavailability on thetime-linewhich forcesreplan-
ning to occur. This cycle is indicatedby the largearrows in
Figure7.

The processdescribedis typical of systemswherethe pro-

ceduralcomponentsof the executive areseparatedfrom the
declarative componentsof planningandscheduling.It is not
necessarythat theboundarybetweenplanningandexecution
exist at a specificpoint in time — planningandscheduling
canoccurverynearto thepresent,while executive-stylepro-
ceduraldecompositionmaybeincorporatedinto distantplan-
ning. Therefore,theplan freezeboundaryin Figure7 is not
requiredfor CLARAty, and the potentialcross-couplingof
PlannerandExecutiveis oneof theprimaryreasonsfor merg-
ing bothinto a singleDecisionLayer. As discussedlater, the
format of thesemergedactivities, andthe interfacebetween
them,is currentlyunderdevelopment.

Finally, it is important to note that there is also a migra-
tion of someexecutive-styleproceduralexpansioninto the
FunctionalLayeraswell. Eachobjecthasbuilt in function-
ality which will have a proceduraldecompositionof its ac-
tions, andmay have it own mini-executive, or even planner.
CLARAty doesnot precludethis, andallows for this func-
tionality to be leveragedor bypassed,dependingon the de-
sireof systemdesigners,andthecapabilitiesof theDecision
Layer.

4. IMPLEMENTATION

While the prototypingandimplementationof theCLARAty
architectureis still in its earlystages,somespecificationsand
resultsareimportantto mention,illustrating the directionof
this work. Below aredescribedsomeof the tool andstan-
dardchoices,heritagesoftwarethatwill be includedinto the
framework, andprototypingstatusat this time.

ToolsandStandards

At this point in time, the following toolsandstandardshave
beenacceptedfor CLARAty andits development:

TheUnifiedModelingLanguage— UML is to be usedfor
systemdesignanddocumentation.The intent is for full use
of UML, includingtemplates.

C++ Language— C++will beusedto createCLARAty, due
to its wide use in academiaand industry, the needfor an
object-orientedimplementation,andtherequirementsof real-
timesoftwareimplementation.

OSsupport— To provide both real-time software support
while allowing for workstationdevelopment,CLARAty will
beconstructedto rununderVxWorks,Linux, andSolaris.Ex-
tensionto otheroperatingsystemsin thefutureis possible.

Standard TemplateLibrary — In the spirit of leveragingoff
public domainstandardsemployedby the softwarecommu-
nity, softwareandspecificationssuchas the StandardTem-
plateLibrary, will beemployedwherepossible.

SoftwareDevelopmentTools— While it is possibleto build
all or partsof CLARAty by writing softwaredirectly with a
text editor, it is desirableto employ a standardtool for orga-
nizing, structuring,andstyling thesoftwarein a like manner
acrossall developers.Considerationhasbeengiven to tools



suchas �������! �"$#&%('*) and +-,. /,0"$'!) , but nodecisionis final.
Since� it is thedesireto not preventwide participationin use
of CLARAty, toolswith largecostsarenot desirable.

Documentation— It is importantto provide documentation
of all componentsof thesystemin variousforms. TheUML
waschosenpartly for this reason.Othertoolsfor in-line code
documentationstandardizationare being investigated. The
intent is to leveragecurrenttoolsandstandards,not to create
new ones.

Heritage

While CLARAty is a new architecturedesign,its designand
prototypeconstructionwill rely on someimportantexisting
infrastructure.First,someof theinitial conceptsfor theFunc-
tional Layer objecthierarchyweredevelopedby the Plane-
taryDextrousManipulatorstaskatJPL[26]. Second,wewill
usethe researchroversRocky 7 andRocky 8 to framesome
of the problems,and as testbedsfor prototypedsolutions.
Third, many yearsof technologydevelopmentat JPL and
otherNASA researchfacilities have providedvaluablesoft-
warewhichwill beimplementedwithin theCLARAty frame-
work. Amongthesoftwareslatedfor inclusionis: JPLstereo
vision [40], Carnegie Mellon UniversityandJPL pathplan-
ning [32][22], estimation[6], planningandscheduling[12],
executiondecompositionandmonitoring[31], andkinematic
anddynamicscomputing[42].

5. SUMMARY

This paperhaspresentedour new CLARAty architecturefor
roboticautonomysoftware.Wehavebriefly reviewedthehis-
tory of this topic, potential impedimentsto success,needs
for continuedeffort, andconstraintson acceptablesolutions.
Given thesecircumstances,we have presentedanevolution-
ary modificationof prior architecturalstructure,which ad-
dressestheneedsof mergingproceduralanddeclarativeplan-
ning, while providing an object-orientedencapsulationof
systemfunctionality. Thenew CLARAty structureis, there-
fore, comprisedof Decision and FunctionalLayers, and a
completeoverview of eachof these,andtheir interaction,has
beenprovided. Finally, a brief descriptionof currentimple-
mentationeffortswasincluded.
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