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Abstract— In this paper, we consider the semi-global regula-
tion of output synchronization problem for heterogeneous net-
works of invertible linear agents subject to actuator saturation.
That is, we regulate the output of each agent according to an
a priori specified reference model. The network communication
infrastructure provides each agent with a linear combination
of its own output relative to that of neighboring agents, and
it allows the agents to exchange information about their own
internal observer estimates, while some agents have access to
their own outputs relative to the reference trajectory.

I. INTRODUCTION

The synchronization problem in a network has received
substantial attention in recent years (see [1], [12], [18], [30]
and references therein). Active research is being conducted
in this context and numerous results have been reported in
the literature; to name a few, see [7], [11], [12], [13], [15],
[16], [17], [23], [24], [25].

Much of the attention has been devoted to achieving state
synchronization in homogeneous networks (i.e., networks
where the agent models are identical), where each agent has
access to a linear combination of its own state relative to that
of neighboring agents (e.g., [10], [11], [12], [16], [17], [19],
[20], [21], [24], [32]). A more realistic case—that is, each
agent receives a linear combination of its own output relative
to that of neighboring agents—has been considered in [7],
[13], [14], [25], [26]. A key idea in the work of [7], which
was expanded upon by Yang, Stoorvogel, and Saberi [34],
is the development of a distributed observer. This observer
makes additional use of the network by allowing the agents
to exchange information with their neighbors about their
own internal estimates. Many results on the synchronization
problem are rooted in the seminal work [28], [29].

A. Heterogeneous networks and output synchronization

Recent activities in the synchronization literature have
been focused on achieving synchronization for heterogeneous
networks (i.e., networks where the agent models are non-
identical). This problem is challenging and only some results
are available; see, for instance, [2], [5], [6], [9], [27], [31].
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In heterogeneous networks, the agents’ states may have
different dimensions. In this case, the state synchronization
is not even properly defined, and it is more natural to aim
for output synchronization—that is, asymptotic agreement on
some output from each agent. Chopra and Spong [2] studied
output synchronization for weakly minimum-phase nonlinear
systems of relative degree one, using a pre-feedback to create
a single-integrator system with decoupled zero dynamics.
Kim, Shim, and Seo [6] considered the output synchro-
nization problem for uncertain single-input single-output,
minimum-phase linear systems, by embedding an identical
model within each agent, the output of which is tracked by
the actual agent output. The authors have considered in [33]
the output synchronization problem for right-invertible linear
agents, using pre-compensators and an observer-based pre-
feedback within each agent to yield a network of agents
which are to a large extent identical.

B. Introspective versus non-introspective agents

The designs mentioned in Section I-A generally rely
on some sort of self-knowledge that is separate from the
information transmitted over the network. More specifically,
the agents may be required to know their own states or their
own outputs. In [3], [4], we refer to agents that possess this
type of self-knowledge as introspective agents to distinguish
them from non-introspective agents—that is, agents that have
no knowledge about their own states or outputs separate from
what is received via the network.

To our best knowledge, the only result besides [3], [4]
that clearly applies to heterogeneous networks of non-
introspective agents is by Zhao, Hill and Liu [35]. However,
the agents are assumed to be passive—a strict requirement
that, among other things, requires that the agents are weakly
minimum-phase and of relative degree one.

C. Contributions of this paper

The regulation of output synchronization problem, where
the objective is not only to achieve output synchronization,
but to make the synchronization trajectory follow an a priori
given reference trajectory generated by an arbitrary au-
tonomous exosystem, has been considered in [4]. In [4], we
assume that the agents in the network are non-introspective
except for some of the agents, which know their own outputs
relative to the reference trajectory. However, we do not have
any constraints on the magnitude of the agent’s input. In
the real world, every physically conceivable actuator has
bounds on its input, and thus actuator saturation is a common
phenomenon. In this paper, we extend the results in [4] to the



case where all the agents are subject to actuator saturation,
which introduces significant complexities in terms of the
analysis and design.

II. PROBLEM FORMULATION AND MAIN RESULT

A. Problem Formulation
Consider a network of N multiple-input multiple-output

invertible agents of the form

ẋi = Aixi +Biσ(ui), (1a)
yi =Cixi +Diσ(ui), (1b)

for i ∈ {1, . . . ,N}, where xi ∈ Rni , ui ∈ Rp, yi ∈ Rp, and

σ(ui) = [σ1(ui,1), . . . ,σ1(ui,p)]
′,

where σ1(u) is the standard saturation function

σ1(u) = sgn(u)min{1, |u|} ,

and where the quadruple (Ai,Bi,Ci,Di) is invertible.
The network provides each agent with a linear combina-

tion of its own output relative to that of other agents. In
particular, each agent i has access to the quantity

ζi =
N

∑
j=1

ai j(yi − y j), (2)

where ai j ≥ 0 and aii = 0 with i, j ∈ {1, . . . ,N}. This network
can be described by a weighted directed graph (digraph) G
with nodes corresponding to the agents in the network and
edges with weight given by the coefficients ai j. In particular,
ai j > 0 means that there exists an edge with weight ai j from
agent j to agent i.

We also define a matrix G= [gi j], where gii =∑N
j=1 ai j and

gi j = −ai j for j %= i. The matrix G, known as the weighted
Laplacian matrix of the digraph G , has the property that the
sum of the coefficients on each row is equal to zero. In terms
of the coefficients gi j of G, ζi given by (2) can be rewritten
as

ζi =
N

∑
j=1

gi jy j. (3)

In addition to ζi given by (3), we assume that the agents
exchange information about their own internal estimates via
the same network. That is, agent i has access to the quantity

ζ̂i =
N

∑
j=1

ai j(ηi −η j) =
N

∑
j=1

gi jη j, (4)

where η j ∈ Rp is a variable produced internally by agent j.
This value will be specified as we proceed with the design.

Our goal is to regulate the outputs of all agents towards
an a priori specified reference trajectory yr(t), generated by
an arbitrary autonomous exosystem

ω̇ = Sω, ω(0) = ω0 ∈ Ω0, (5a)
yr =Crω, (5b)

where ω ∈Rr, yr ∈Rp, and Ω0 is a compact set of possible
initial conditions for the exosystem. That is, for each agent
i ∈ {1, . . . ,N}, we wish to achieve limt→∞(yi − yr) = 0.

Equivalently, we wish to regulate the synchronization error
variable ei := yi − yr to zero asymptotically, where the
dynamics of ei is governed by

[
ẋi
ω̇

]
=

[
Ai 0
0 S

][
xi
ω

]
+

[
Bi
0

]
σ(ui), (6a)

ei =
[
Ci −Cr

][xi
ω

]
+Diσ(ui). (6b)

In order to achieve our goal, in addition to ζi given by (3)
and ζ̂i given by (4) provided by the network, it is clear
that a non-empty subset of agents should observe its output
relative to the reference trajectory yr generated by (5) in
order for the network of agents to follow the reference
trajectory. Specifically, let I ⊂ {1, . . . ,N} denote such a
subset. Then, each agent i ∈ {1, . . . ,N} has access to the
quantity ψi = ιi(yi −yr), where ιi = 1 if i ∈ I , and ιi = 0 if
i /∈ I .

Clearly, we need to restrict the initial conditions of the
exosystem since, due to the input saturation, the agents will
only be able to track a limited set of reference trajectories.
This is formulated in the above by assuming that ω(0) ∈
Ω0 with the set Ω0 known a priori. Regarding the initial
conditions of the agents, we would ideally like to design
a controller that achieves limt→∞ ei(t) = 0 for all initial
conditions subject to ω(0) ∈ Ω0, a problem that can be
referred to as global regulation of output synchronization.
However, from the literature on linear systems subject to
actuator saturation, we know that global regulation of output
synchronization in general requires nonlinear controllers. In
this paper, we would like to use linear controllers of the
form:

ẋc
i = Ai,cxc

i +Bi,c




ζi

ζ̂i
ψi



 , (7a)

ui =Ci,cxc
i , ∀i ∈ {1, . . . ,N} , (7b)

where xc
i ∈Rci is the state of the controller for agent i. Thus,

we restrict attention to the semi-global regulation of output
synchronization problem, which is defined as follows.

Problem 1: Consider a network of N agents as given
by (1) and the reference model given by (5) with initial
conditions in an a priori given compact set Ω0 ⊂ Rr. The
semi-global regulation of output synchronization problem is
to find, if possible, for certain integers ci, i ∈ {1, . . . ,N}
a family of controllers of the form (7) parameterized in a
parameter ε such that for any arbitrarily large bounded sets
Xi ⊂ Rni and Pi ⊂ Rci , i ∈ {1, . . . ,N}, there exists ε small
enough for which

lim
t→∞

ei(t) = 0, ∀i ∈ {1, . . . ,N} , (8)

for all initial conditions xi(0) ∈ Xi, xc
i (0) ∈ Pi, and ω(0) ∈

Ω0.

B. Assumptions
In this section, we present the assumptions about the

network topology, the individual agents, and the reference



model for solving the semi-global regulation of output syn-
chronization problem as defined in Problem 1.

Assumption 1: Every node of the digraph G is a member
of a directed tree whose root is contained in I .

Remark 1: It is possible for I to consist of a single node,
in which case Assumption 1 requires this node to be the root
of a directed spanning tree of G .

Assumption 2: For each agent i ∈ {1, . . . ,N} as given in
(1)

1) all the eigenvalues of Ai are in the closed left-half
complex plane;

2) the pair (Ai,Bi) is stabilizable; and
3) the pair (Ci,Ai) is observable;
Remark 2: Conditions 2 and 3 are natural assumptions.

Condition 1 is a necessary condition, since if Ai has one
observable eigenvalue in the open right-half complex plane
for some i ∈ {1, . . . ,N}, then for sufficiently large initial
conditions xi(0), the output of that system yi will be expo-
nentially growing, and the bounded input σ(ui) can influence
this exponentially growing signal only in a limited sense.
Therefore, we cannot guarantee that this output will track
yr.

Assumption 3: For the reference model (5),
1) the pair (Cr,S) is observable;
2) all the eigenvalues of S are in the closed right-half

complex plane; and
3) the matrix S is neutrally stable.
Remark 3: Condition 1 is a natural assumption. Condition

2 is made without loss of generality because asymptotically
stable modes vanish asymptotically, and therefore they play
no role asymptotically. Condition 3 is reasonable since the
output of an agent cannot be expected to track exponentially
growing signals with a bounded input. Polynomially growing
reference signals can be easily included but it requires very
restrictive solvability conditions in case of input saturation
and hence, for ease of presentation, we have excluded this
case.

Assumption 4: The equations

ΠiS = AiΠi +BiΓi, (9a)
Cr =CiΠi +DiΓi, (9b)

commonly known as the regulator equations are solvable
with respect to Πi ∈Rni×r and Γi ∈Rp×r, and there exists a
δ > 0 such that for each agent i ∈ {1, . . . ,N},

‖Γiω(t)‖∞ ≤ 1−δ , (10)

for all t > 0 and all ω(t) with ω(0) ∈ Ω0.
Remark 4: Note that if the regulator equations (9) have a

solution, then the solution is unique, as a consequence of the
invertibility of the quadruple (Ai,Bi,Ci,Di). Therefore, one
can easily verify (10).

C. Necessity of Assumption 4
Assumptions 1, 2, and 3 are natural as discussed in

Remarks 2 and 3. On the other hand, Assumption 4 is
critical. Essentially, this assumption is necessary for solving

the semi-global regulation of output synchronization problem
as defined in Problem 1. The following lemma shows this
fact and gives the necessary condition for solving Problem
1.

Lemma 1: Assume that Ω0 contains the origin in its
interior. Then for any initial condition ω(0) ∈ Ω0, there
exist initial conditions xi(0) and an input ui(t) that leads
to ei(t)→ 0 as t → ∞ only if the regulator equations (9) are
solvable, and moreover the solution of the regulator equation
must satisfy

‖Γiω(t)‖∞ ≤ 1 (11)

for all t > 0.
Proof: We have omitted the proof due to the space

limitation.

D. Main Result
Theorem 1: Consider a network of N agents as given by

(1) and the reference model given by (5). Let Assumptions
1, 2, 3, and 4 hold. Then the semi-global regulation of output
synchronization problem as defined in Problem 1 is solvable.

Proof: The proof of Theorem 1 is given in Section III
by explicit construction of a controller for each agent.

III. DESIGN OF CONTROL LAW FOR EACH AGENT

In this section, we describe the construction of a controller
for each agent to solve the semi-global regulation of output
synchronization problem as defined in Problem 1. The con-
struction is carried out in three steps.

In Step 1, we construct a new state x̄i, via a transformation
of xi and ω , such that the dynamics of the synchronization
error variable ei can be described by equations

˙̄xi = Āix̄i + B̄iσ(ui) :=
[

Ai 0
0 Āi22

]
x̄i +

[
Bi
0

]
σ(ui), (12a)

ei = C̄ix̄i + D̄iσ(ui) :=
[
Ci −C̄i2

]
x̄i +Diσ(ui). (12b)

The purpose of this state transformation is to reduce the
dimension of the model underlying ei—the dimension of
x̄i is generally lower than that of [x′i,ω ′]′—by removing
redundant modes that have no effect on ei. In particular, the
model (6) may be unobservable, but the model (12) is always
observable.

In Step 2, we construct a low-gain state feedback for ui
assuming x̄i is known. This feedback is parameterized in ε
and regulates ei to zero for any arbitrarily large bounded
set of initial conditions of the agent’s models by choosing
the low-gain parameter ε sufficiently small. Moreover, by
making the low-gain parameter ε small enough, we can
guarantee that the amplitude of the control law is less than
any given α > 0. Since the agent i has neither the internal
state xi nor the state ω of the exosystem available, this
controller is not directly implementable. This brings us to
Step 3 of the design.

In Step 3, we follow the procedure as given in our previous
paper [4], that is, we construct a decentralized high-gain
observer that makes an estimate of x̄i available to agent i.
However, as we shall see later, our state feedback design



and high-gain observer are coupled. This will be illustrated
in Section III-A.

A. Design procedure for agent i
Step 1: State transformation

Let Oi be the observability matrix corresponding to the
system (6).

Oi =




Ci −Cr
...

...
CiA

ni+r−1
i −CrSni+r−1



 .

Let qi denote the dimension of the null space of matrix Oi,
and define ri = r− qi. Next, define Λiu ∈ Rni×qi and Φiu ∈
Rr×qi such that

Oi

[
Λiu
Φiu

]
= 0, rank

[
Λiu
Φiu

]
= qi.

Since the pair (Ci,Ai) and the pair (Cr,S) are observable, it
is easy to see that Λiu and Φiu have full column rank (see
[4, Appendix A]). Let therefore Λio and Φio be defined such
that Λi := [Λiu,Λio] ∈ Rni×ni and Φi := [Φiu,Φio] ∈ Rr×r are
nonsingular.

From the proof of [3, Lemma 2], we know that

SΦi = ΦiRi, (13)

where
Ri =

[
Ui Ri12
0 Ri22

]
.

Since S is anti-Hurwitz stable and neutrally stable, we know
that S is diagonalizable, and hence Ri is diagonalizable. This
implies that Ri has r independent right eigenvectors. Let
vi,1, · · · ,vi,r be r independent right eigenvectors of Ri, such
that

vi, j =

[
ṽi, j
0

]

for j = 1, . . . ,qi, where ṽi, j are right eigenvectors of Ui. In
that case we choose Vi11 ∈ Rqi×qi such that

ImVi11 = span{re ṽi, j, im ṽi, j | j = 1, · · · ,qi}1

and we choose Vi12 ∈ Rqi×ri and Vi22 ∈ Rri×ri such that

Im
[
Vi12
Vi22

]
= span{re vi, j, im vi, j | j = qi +1, · · · ,r}.

We then construct:

Vi =

[
Vi11 Vi12

0 Vi22

]
.

It can be easily verified that span{re vi, j, im vi, j} is an
invariant subspace of Ri for any j = 1, . . .r. This implies:

RiVi =Vi

[
Λi1 0
0 Λi2

]
. (14)

One way of choosing the matrix Vi is choosing
[

Λi1 0
0 Λi2

]

1For a given vector v ∈ Cn, re v ∈ Rn and im v ∈ Rn denote respectively
vectors whose entries are the real part and imaginary part of the vector v.

to be the real Jordan form of Ri ordered in such a way that
Λi1 is the real Jordan form of Ui.

From (14), we obtain that

V−1
i11 UiVi11 = Λi1, V−1

i22 Ri22Vi22 = Λi2, (15)

and
UiVi12 −Vi12Λi2 =−Ri12Vi22. (16)

We then define

Φ̄i := [Φ̄iu,Φ̄io] = Φi

[
Iqi Vi12V−1

i22
0 Iri

]
. (17)

We then define a new state variable x̄i ∈ Rni+ri as

x̄i =

[
x̄i1
x̄i2

]
:=

[
xi −ΛiMiΦ̄−1

i ω
NiΦ̄−1

i ω

]
,

where Mi ∈ Rni×r and Ni ∈ Rri×r are defined as

Mi =

[
Iqi 0
0 0

]
, Ni =

[
0 Iri

]
.

Note that the system (6) can be transformed into the system
(12), with a block upper-triangular structure if we use the
transformation Φi as shown in [4]. However, with the matrix
Φ̄i given by (17), which is a special case of the transfor-
mation previously used in [4], everything from our previous
results still holds. Moreover, the system (12) has a block-
diagonal structure. The following lemmashows this.

Lemma 2: The synchronization error variable ei is gov-
erned by dynamical equations of (12), where the pair (C̄i, Āi)
is observable and the eigenvalues of Āi22 are a subset of the
eigenvalues of S.

Proof: We have omitted the proof due to the space
limitation.

Remark 5: If the unforced system for an agent i is the
same as the exosystem, i.e., if Ci =Cr and Ai = S, then it is
easy to see that the dynamics of system (12) reduces to the
dynamics of system (1).

Step 2: State feedback control design
For any arbitrarily large bounded set Xi, we design a
controller as a function of x̄i such that limt→∞ ei(t) = 0 for all
xi(0) ∈ Xi and ω(0) ∈ Ω0. Consider the following regulator
equations with unknowns Πr

i ∈ Rni×ri and Γr
i ∈ Rp×ri for

system (12)

Πr
i Āi22 = AiΠr

i +BiΓr
i , (18a)

C̄i2 =CiΠr
i +DiΓr

i . (18b)

The following lemma shows that the regulator equations (18)
are solvable if and only if the regulator equations (9) are
solvable, and gives the mapping between the solutions of the
two regulator equations. Note that if the regulator equations
(18) (or the regulator equations (9)) have a solution, then it is
unique due to the invertibility of the quadruple (Ai,Bi,Ci,Di).

Lemma 3: If (Πr
i ,Γr

i ) is the solution of the regulator
equations (18), then (Πi,Γi) given as

Πi = Πr
i NiΦ̄−1

i +ΛiMiΦ̄−1
i , Γi = Γr

i NiΦ̄−1
i (19)



is the solution of the regulator equations (9). On the other
hand, if (Πi,Γi) is the solution of the regulator equations (9),
then (Πr

i ,Γr
i ) given as

Πr
i = ΠiΦ̄io, Γr

i = ΓiΦ̄io (20)

is the solution of the regulator equations (18).
Proof: We have omitted the proof due to the space

limitation.
Remark 6: In view of Lemma 3 and (10) of Assumption

4, we see that ‖Γr
i x̄i2‖∞ = ‖Γiω‖∞ ≤ 1−δ .

Since agent i is subject to actuator saturation, we design
the state feedback controller by using a low-gain technique,
which is widely used for the semi-global stabilization prob-
lem for linear systems subject to actuator saturation, see for
instance, [8], [22]. There exist in the literature several low-
gain design algorithms. For conceptual clarity, we use here
the one based on the solution of a continuous-time algebraic
Riccati equation, parameterized in a low-gain parameter ε ∈
(0,1]. More specifically, we form a family of parameterized
state feedback gain matrices Fi,ε for x̄i1 as

Fi,ε =−B′
iPi,ε ,

where Pi,ε =P′
i,ε > 0 is the unique solution of the continuous-

time algebraic Riccati equation defined as

Pi,ε Ai +A′
iPi,ε −Pi,ε BiB′

iPi,ε + εIni = 0. (21)

It follows from Lemma 3 and and Condition 1 of Assumption
4 that the regulator equations (18) have a unique solution
(Πr

i ,Γr
i ). We use the unique (Πr

i ,Γr
i ) and the feedback gain

matrix Fi,ε to define a family of parameterized state feedback
controllers in terms of x̄i as

ui =
[
Fi,ε Γr

i −Fi,ε Πr
i
]

x̄i. (22)

Then for any given arbitrarily large bounded set of initial
conditions, there exists an ε∗ ∈ (0,1], such that for all
ε ∈ (0,ε∗], the family of linear state feedback controllers
of the form (22) ensures that limt→∞ ei(t) = 0 for all initial
conditions belong to the given arbitrarily large bounded set
and ω(0)∈Ω0. This is a well known result, see [22, Theorem
3.3.2].

Remark 7: If the unforced system for an agent i is the
same as the exosystem, i.e., if Ci =Cr and Ai = S, then it is
easy to see that Πi = I and Γi = 0 is the solution of regulator
equations (9). Thus, Assumption 4 is always satisfied for that
agent.

Step 3: Observer-based implementation

Following the design procedure given in the proof of [22,
Theorem 3.3.4], one can obtain, for a given set of initial
conditions, suitable state feedback controllers for which input
saturation is not active. This is done by properly choosing the
low-gain parameter ε . Then such a state feedback law must
be implemented by a suitable designed distributed observer.
This will be done next.

We will design a high-gain decentralized observer to
produce an estimate of x̄i, denoted by ˆ̄xi. We follow the

procedure as given in our previous paper [4], to be self-
contained, we reproduce the design here.

Let n̄ denotes the maximum order among the all the sys-
tems (12) for i ∈ {1, . . . ,N}, that is, n̄ = maxi=1,...,n(ni + ri).
Define χi = Tix̄i, where

Ti =




C̄i
...

C̄iĀn̄−1
i



 .

Note that Ti is injective since the pair (C̄i, Āi) is observable,
which implies that T ′

i Ti is nonsingular.
In term of χi, we can write the system equations

χ̇i = (A +Li)χi +Biσ(ui), χi(0) = Tix̄i(0), (23a)
ei = C χi +Diσ(ui), (23b)

where

A =

[
0 Ip(n̄−1)
0 0

]
, C =

[
Ip 0

]
,

Li =

[
0
Li

]
, Bi = Ti

[
Bi
0

]
, Di = Di,

and where Li = C̄iĀn̄
i (T

′
i Ti)−1T ′

i .
We define the matrix Ḡ = G + diag(ι1, . . . , ιN). It then

follows from [4, Lemma 7] that all the eigenvalues of Ḡ
are in the open right-half complex plane. Next, define τ =
mini=1,...,N Re(λi(Ḡ))> 0.

The pair (C ,A ) is always observable; hence, we can
define a matrix P = P ′ > 0 as the unique solution of the
algebraic Riccati equation

A P +PA ′ − τPC ′C P + In̄p = 0. (24)

We construct the observer

˙̂χi = (A +Li)χ̂i +Biσ(ui)+S(!)PC ′(ζi − ζ̂i)

+S(!)PC ′(ψi − ιi(C χ̂i +Diσ(ui))), (25a)
ˆ̄xi = (T ′

i Ti)
−1T ′

i χ̂i, (25b)

where S(!) = blk diag(Ip!, Ip!2, . . . , Ip!n̄) and !> 1 is a high-
gain parameter.

Based on the observer estimate, we define the variable
ηi = C χ̂i +Diσ(ui) to be shared with the other agents via
the network communication infrastructure as described in
Section II-A, and the observer-based control law

ui =
[
Fi,ε Γr

i −Fi,ε Πr
i
]

ˆ̄xi. (26)

Together, the observers for agents i ∈ {1, . . . ,N} form a
distributed observer parameterized by a high-gain parameter
!. It has been shown in [4, Lemma 4] that the estimation
errors dynamics are globally exponentially stable, that is,
limt→∞(x̄i − ˆ̄xi) = 0, by choosing the high-gain parameter !
sufficiently large.

Remark 8: If all the agents have the same dynamics, it is
not necessary to design an observer based on the high-order
system (23) and one can design an observer based on the
original system (12).



In summary, for any given arbitrarily large bounded sets
Xi ⊂Rni and Pi ⊂Rpn̄, there exist ε∗ with the property that
for any ε ∈ (0,ε∗] there exists !∗ such that for ! ≥ !∗, the
observer-based implementation (25) and (26), ensure that

lim
t→∞

ei(t) = 0, ∀i ∈ {1, . . . ,N} , (27)

for all initial conditions xi(0) ∈ Xi, χ̂i(0) ∈ Pi, and ω(0) ∈
Ω0.

B. Comparison with the case where the agents have no
actuator magnitude constraints

Let us make a few comments to compare our result to the
case where the agents do not have actuator saturation.

• The regulator equations (9) have to be solvable for the
case with actuator magnitude constraints. In our previ-
ous work for the case without saturation we assumed
existence of a solution of the regulator equations but in
that case this existence is not necessary.

• For the case with actuator magnitude constraints, we
only achieve semi-global regulation of output synchro-
nization.

• For the case with actuator magnitude constraints, it
is required that all the eigenvalues of agents’ system
matrices are in the closed left-half complex plane.

• For the case with actuator magnitude constraints, we
have constraints on the size of the synchronized output
trajectory as given by (10).
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